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Thermodynamics and diffusion of a lattice gas on a simple cubic lattice
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A lattice gas model with nearest neighbor attractive interactions on a simple cubic lattice is considered. The
method of nonequilibrium statistical ensembles due to Zubarev is used to derive expressions for jump and
chemical diffusion coefficients. For thermally activated hopping dynamics in the hydrodynaiicafre-
guency, long wavelengthimit, and neglecting specific memory effects, these expressions are represented in a
simple form in terms of the zero concentration limit of the chemical diffusion coefficient and equilibrium
characteristics, i.e., the chemical potential, and the probability for two nearest neighbor sites to be vacant.
These equilibrium characteristics are calculated by means of the self-consistent diagram approximation. The
equilibrium characteristics and diffusion coefficients are in a good agreement with extensive Monte Carlo
simulation results.
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[. INTRODUCTION straightforward manner. Several different approaches are
used that employ thermally activated particle hopping, which
Many important properties, equilibrium as well as non-is the basic characteristic of a lattice gas. For the two-
equilibrium, of interacting many-body systems can be underdimensional case important results were obtained consider-
stood considering relatively simple lattice systefis-6].  ing the quasiequilibrium distributiof23] and by a semiphe-
However, even for these simplified systems exact solutionsomenological approach[24]. Monte Carlo (MC)
of numerous important problems do not exist except for sevsimulations of two-and three-dimensional interacting lattice
eral well known cases such as, for example, Onsager’s resujiases have also appeaf@8—27]. With the progress of com-
for the free energy of the Ising two-dimensional mofél putational techniques extensive and more sophisticated two-
Thus, there has been a considerable effort to develop amlimensional simulations were performgzB,29.
proximate approaches, mainly for calculating equilibrium In spite of the above progress, much less attention has
properties. been given to the statistical mechanical description of non-
The best known approaches for investigating equilibriumequilibrium processes in lattice gases. Kuteeal. [26] de-
characteristics are based on the mean field approximationeloped a mean field treatment with emphasis on the critical
The latter can be used in the most simple Bragg-Williamsbehavior of the chemicdkollective diffusion coefficient in
form or in the form of the Bethe-Peierls-Weigsr qua- three-dimensional lattice gases obeying Kawasaki dynamics.
sichemical approximation (see [7]). However, these ap- For two-dimensional lattice gases, a simple and rather gen-
proximations, as well as a newely suggested[@}ean give  eral derivation of the microscopic expression for the chemi-
only semiquantitative results. The Kikuchi cluster variationcal diffusion coefficient was given by Zhdan¢@0]. The
method[9,10] in its simplest form also cannot be used for quasiequilibrium distribution of mobile particles similar to
guantitative investigations, or it requires cumbersome calcuRefs.[23], [24] was used in this derivation. The dynamical
lations. Moreover, the methods based on different series exstructure factor was used to represent the chemical diffusion
pansiong 11] that can in principle yield as exact results ascoefficient[31] in terms of the Mori’s continuous fractions
necessary suffer from a weak series convergence and canri@2] and for the two-dimensional lattice gas the calculations
be used for applications if results at different thermodynamiavere performed on the basis of Kikuchi’s approximatiéh
conditions are required. Some general results concerning diffusion in lattice gases
Diffusion coefficients represent the most important non-were obtained33,34] on the basis of the theory of Markov
equilibrium characteristics of lattice gas systems. These cgarocesses.
efficients were considered for spin dynamics by Kawasaki Recently[35,36, general expressions for the juri®,4]
[12] and by Kadanoff and Swiftf13] in the framework of and chemical diffusion coefficients were derived in the frame
Kubo’s linear response theory. For systems where dynamiasf the nonequilibrium statistical ensemble metfbdESEM)
may be described on the basis of simple model Hamiltoniandue to Zubarey37,38. This method is in line with modern
the quantum mechanical formalism was widely exploitednonequilibrium statistical mechanical theories developed by
[14-18. Similar techniques were used for lattice modelsKubo [39], Mori [32], Zwanzig [40], McLennan[41], and
with transition rates defined by kinematic conditions or in themany others, and may be considered as the most suitable
simplest mean field approximatiof$9—22. However, the technique for applications. For thermally activated hopping
transition rates of lattice gas models have more complicatedynamics when specific memory effects are neglected the
structures and do not allow us to use this formalism in adiffusion coefficients are represented in terms of the transi-
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tion rate at zero concentration and thermodynamical charaahere{a} is an orthonormalized set of vectasisrepresent-
teristics(the chemical potential and the vacancy distributioning all the particular states of the systeR, is the probabil-
function) only. Here these expressions are used to investigatiey to find the lattice gas system in the state

lattice gas diffusion of interacting particles in an attractive We assume that the evolution of the lattice gas is gov-
field on a three-dimensional simple culii8C) lattice. The erned by the master equati¢ésee[5,12,27)

equilibrium characteristics are calculated within the self-

consistent diagram approximatiofSCDA) [42] that was dpP(t) _wp 5
shown to be quite accurate for a two-dimensional square lat- dt OF )
tice. This approximation is extended now to the three-
dimensional case. where the matrix elements

The paper is organized as follows: The derivation of the
chemical diffusion coefficient is outlined in the next section. W(a, ') =W(a,a')— 5a’a,2 w(a”,a') (6)

The SCDA expressions for calculating the chemical potential o
and distribution functions are derived in Sec. lll. MC simu-

lation techniques for equilibrium characteristics and diffu-represent the transition matri andw(a, ") is the transi-
sion coefficients are described in Sec. IV. Also the results fotion rate from staten’ to statea(a’# «). The transition
attractive interactions from the calculations and the comparimatrix W satisfies the detailed balance condition

son between the statistical mechanical and MC simulation

data are discussed in this section. Section V presents the WPeq=0, @)
conclusions. The derivation of the expression for the mean

transition rate and the expressions defining the SCDA meaWh_Ie_Leeﬁ‘;qttriigre:rgsrg;iecgliglzr'gg;ﬁggjgatmgyr:éségr gft't? 2' s
potentials are given in Appendixes A and B, respectively, for[z] at constar?t(zeré/) level of bzrriers(wr?/ich need to be P
attractive interactions.

overcome by diffusing particlgsvhen the transitiorthop-
ping) rate from sitei to a NN sitej is given by
Il. GENERAL EXPRESSIONS FOR THE DIFFUSION
COEFFICIENTS wii = v exd B(e;+Uu)]=wgexp Be)), (8

A. Description of the model where 8= (kgT) ! is an inverse temperaturkg the Boltz-

We consider a lattice gas system mparticles on a SC Mann constant,
lattice with nearest neighbdNN) interactions described by

a potential energy Wo= v exp(Bu) C)
Nz N is the transition rate of a single particle on the lattice, and
u=3> 3 an+u (1) is a frequency determining the time scale of the diffusion

i=1j=1 i=1 process. The potential well depth in E§) is created by the

external field potentiall and the interactions of a particle on

whereN is the number of lattice sites. The interaction con-sitei with the neighboring particles

stantJ is positive for repulsive and negative for attractive )

interactions. The external site potentiais usually negative _ E N

to capture a particle at a lattice site. The occupation numbers & _Jk:l M-

f; are considered as dynamical variables whose distribution

over the lattice sites defines a microscopic state of the sys-onger range than NN transitions are forbidden. The hop-

tem. The summation opruns over thez nearest neighbor ping dynamics is widely used in considerations of lattice gas

sites of sitei. For a SC latticez=6. Double occupancy of a diffusion processes by different methofia—5,23,25,27—

site is forbidden, i.e., 29,31]. We note that according to Eg&) and (8)—(10) the
transition matrix is a strongly nonlinear operator.

(10

1 if the lattice sitei is occupied

N = i 2 ' . ) )
[ 0 otherwise, ) B. The evolution equation for concentration fluctuations

The chemical potentigk; is considered to be the thermo-
N dynamic conjugate quantity f . In generalu; depends on
n:E fi;=const. (3)  the site position and is a function of time. The deviations
i=1 (fluctuations of the chemical potential and mean occupation
numbers(concentratioin from their equilibrium values
A nonequilibrium state of the lattice gas is determined by a

probability distribution vector OMi= i~ M,
5ﬁJ:ﬁJ_C, C:<ﬁj> (11)
P(t)=2>, P,(t)a, 4 _ . .
) % (Ve @ are interconnected by the thermodynamic relati8%3§
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1
8(Bwi) =g 24 XiyoN.

5nj:<5ﬁj>r:<ﬁj>r_c, (12)
where() and( ), denote averaging over the equilibrium an
the relevant(or quasiequilibriun probability distributions
[37,38, respectively.,u andc are equilibrium values of the
chemical potential and the lattice concentratigs). is a N
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through the bare evolution operatdf and the operator

Q=1-P, (19

where the Mori projection operatd? acts[32,38,43 on a
d function b; of the dynamical variables as

X N matrix. Its inverse value is related to the static correla-

tion function of concentratiofdensity fluctuations
71_ 71 A~ A~
Xij =C (on;on;). (13

According to the NESEM 37,38 the evolution of the

mean value deviation of the occupation numbers from thei

equilibrium values(in the thermodynamic limitN—oo,n
—o at n/N=c=cons} obeys the Mori typd32] integro-
differential equation

d5n|(t)
dt

N N
_Bcgl Q|]5/LJ+,80121 fo @lj(T)éluj(t_T)dT
-0 (14)

where ();; and ®;; are a static correlation matrix and a
memory matrix, respectively. The former can be written as

Qijzcil<5’hi5ﬁj>7 (15)

where the microscopic particle flux is defined according to

the master equatiofb) and the occupation number restric-
tion Eq.(2)

hFJZl [wij;Nj(1—ny) —wy;Ai(1—0)]. (16)

The mean particle flux at equilibrium is equal to zero, which

has a consequence that the total and the fluctuation fluxes
equal:sh, = f; . For lattices with equivalent directiorijsand
ji the matrix(};; is a symmetric matrix.

Since the master equatidb) is irreversible the equilib-

rium mean value of a product of quantities of different time
symmetry is not equal to zero. Hence, in contrast to systemgq o )
|

with reversible dynamics the matri};; in Eq. (14) plays an

important role in the irreversible evolution of lattice systems.

This peculiarity and the possibility to calculate kinetic coef-
ficients of lattice systems using the relevamt quasiequilib-
rium) distribution was already considered by Kawaddi].

The formal solution of the master equation has the form

being characteristic for a linear differential equation,

P(t)=exp(Wt)P(0) 17
that enables us to represent the memory matrix
0;;(7)=c~ Y Qan; exp FQWQ)Q4N;)
=c~%Q5h;(0)QsM;(7)) (18)

%

S| o
From Eq.(20) for b;= oA, =f; it follows

j.k

Thus, the memory matrix contains subtracted fludgs(1

—P)f;, the time evolution of which is described by the
modified evolution operator (2 P)W(1— P). The latter cir-
cumstance substantially complicates the explicit evaluation
of the memory matrix.

C. Jump and chemical diffusion coefficients

It has recently been show[85,36 that for the two-
dimensional lattice gas with attractive interactions in the hy-
drodynamic(long wave, low frequendylimit the memory
matrix contribution to the diffusion coefficients is negligibly
small. We neglect this contribution for a SC lattice as well.
This approximation will be later verified by comparison with
MC simulation results.

To calculate the static correlation matfi; we substitute
Eq. (16) into Eq. (15)

Q; =Cl< ﬁjzl [Wilﬁl(l_ﬁi)_Wliﬁi(l_ﬁl)]>- (22)

For two conjugated system states that differ from each other
by the states of the two sitesand| (from which only one is
cupied by a particlethe detailed balance condition E@)
can be written as

Wil Py, =WiiPy, . (23)
and «; designate system states with the occupied

site | or i, respectively, and equivalent states of the other
lattice sites;Pa” is an equilibrium probability of the state

ay; . A particle move from sitd to sitei corresponds to a
change of the system state framy to «;, and vice versa.
Fquation(23) implies that at equilibrium the sum of direct
and reverse particle fluxes between two lattice sites is equal
to zero, and does not depend on the particular states of the
other lattice sites.

Thus, if neitheri norl coincide withj the two terms in the
right-hand side(rhs) of Eq. (22) cancel each other. Fdr
=]j the identitiesﬁjzzﬁj andn;(1—n;)=0 lead to the dis-
appearance of the second term in E2R) but preserve the
first one. Then, the nondiagonal matrix eleméhf can be
written in the form
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Qij=wy, (24) in terms of its zero concentration limity and equilibrium
characteristics onlysee Appendix A
where the mean transition rate between NN sitead|
wy=Wwgexp(Bu)F(0,0)/c, (32
wy=c~Xw;Ri(1-A))) (25)
whereF(0,0) is a probability for two NN site6 andj) to be

is introduced. Because of the symmetry of the lattice the/acant. With this expression E¢B1) transforms to the form
mean transition rates between all NN sites are equal.

Due to the same identities for occupation numbers only D,=Dgexp Bu)F(0,0/c, Do=wya (33
the second term of Ed22) contributes to the diagonal ma-
trix elements, Such an expression for a two-dimensional gas on a square
lattice was derived by Zhdandw0]. The quasiequilibrium
Qji=—zwy. (26)  distribution was used in his derivation. Our derivation shows
] that in the frame of hopping dynamics the only necessary
The matrix();; obeys the sum rule approximation leading to Eq33) is the neglecting of spe-
N cific memory effects described by the memory ma®ixNo
z _ 27 approximations like mean field ones are necessary. Due to

the complicated character of the mat@x which may not be
handled by analytical means, the accuracy of B8) has to
because of the mutual cancellation of the diagonal and norpe tested by alternative methods, e.g., by MC simulations.
diagonal matrix elements.
Although it is possible to investigate the wave vector de- lIl. SCDA FOR SC LATTICE
pendence of the diffusion coefficients on the basis of Eq.
(14) (see Refs[35,36) we restrict our considerations to the  Equilibrium properties of the lattice gas can be extracted
hydrodynamic limit. Due to the sum rule and E¢24) and  from the free energy of the system per lattice site
(26) the second term in Eq14) can be represented as a
second finite difference of the chemical potential with re- F=—(kgT/N)InQ,. (34)
spect to lattice site positions that corresponds to the Laplac-
ian (A) in continuous(hydrodynamics representation. Tak-
ing into account that the number density: c/a®, wherea is
a lattice parameter, E¢14) can be rewritten as

We now introduce a reference system, which is defined by
one-particle mean potentiats;(n;) describing the interac-
tion of a particle f;=1) or a vacancyff;=0) at sitei with
sitej. Its potential energy can be written as

% =w,ayA (29) N
ot 1d XTAP, (O)_E 2 () (35
where the thermodynamic factécompressibility is intro-
duced as We assumeyp;(h;)=0, i.e., there are no interactions of a
particle or a vacancy with itself.
= p (Bu) e d(Bur) (29) The partition function of the initial system can be identi-
T_ .

dgp  ~ dc cally expressed &st2]

The derivatived(8u)/dc is calculated at constant tempera- NN
ture. =Q'{ I _H (1+fp)) (36)
Equation(28) represents Fick’s second law, which gives T 0

the chemical diffusion coefficient where the angular brackets with subscript O represent mean

D= x7DJ, (30)  Values over states of the reference system and the partition
function of the latter
where the jumg3] (or kinetic [4]) diffusion coefficient is

. . . 1 N N
given in terms of the mean transition rate _ - A
ng): nl_—Io Cni1ex _,3]2_:1 ej(h) |, ni=n=0,1,

DJ: Wlaz. (31) (37)

In & more general case in the rh; of Eﬁl) the multiplier is written through concentrations of vacancies and particles
z/2d appears, wherd is a space dimensionality. For square
and SC lattices this multiplier is equal to one. co=(N—n)/N, c;=c=n/N. (38

The calculation of the mean transition rate according to
Eq. (25 for interacting lattice gases requires averaging oveMayer-like functions
a statistical ensemble. It is an important point that for ther-
mally activated hopping dynamics described by E).the fi; (A7) =exp[— B[P Nidj— @; () — @i(A)) ]} — 1
mean transition rate as defined by E25) can be expressed (39
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are advantageous as compared to standard [ohé4] be- The last expression differs from the free energy expansion

cause the mean potentials, if properly found, will reduce valfor a square lattice by the graph coefficients only because a

ues of the Mayer-like functions leading to better convergenc&C lattice consists of three plains with a square lattice in

of the free energy expansion in these functions. each of them and the structure of graphs with up to four
On the basis of Eq934) and (36) the free energy of the vertices is the same for both lattices.

system can be calculated. Its expansion in the Mayer-like According to the variational condition the derivatives of

functions truncated at some level can be used to develop BEqg.(43) with respect to the mean potentials for next NN sites

self-consistent scheme for proper determination of the meaare equal to zero. This idea is used to derive the complete set

potentialg42]. In the case under consideration all irreducibleof expressions for the mean potentidiee Appendix B

graphs up to four vertices are taken into account. TransfoiWith these expressions, similarly to the two-dimensional

mation (36) is an identity and the partition function as well case(see Appendix in Ref.42]) the graphs entering E43)

as the free energy of the system do not depend on the meaan be summed up. Then, the free energy of the system ac-

potentials. As an approximation, the same requirement caquires the form

be applied to the truncated part of the expansion. This means

that its variationgor partial derivativeswith respect to the F F

mean potentials have to be equal to zero. T = T
As a first step in the free energy expansion we consider B B

the free energy of the reference system

+3{}. (44)

Again, the coefficient in front of the square graph is three

L L 2 zk¢§k) times larger than for a square lattice. It is also possible to
Fo=kgT 2 ciInc; +E Ci 2 T (40 take into account graphs with more vertices, but it is difficult
=0 =0 k=1 Ts to calculate them explicitly. Thus, we suggest that these con-
and the two-vertex graph contributions only, tributions are proportional to the square graph and adopt the

coefficient of this graph in Eq44) in such a way that the
_ critical temperature is close to its best estimation. The final
F = F,—3ksT ({"'} +2 {/} + ) ! (42) expression for the free energy is as follofgsantitiess;; are
given in Appendix B:
The two graphs in Eq(41) represent mean values of the

Mayer-like functions for nearest and next nearest neighbor F Fo td )
lattice sites, respectively. For example, KeT kB_T_O'A'ZiZO J_ZO Bijcic; - (45)
! ) The best estimation of the critical temperatdreunits of the
{._.} = Z fij CiCys (42) interaction parametgis 1.128 and Eq(45) yields the same
Ly=0 result that can be compared with 1.19 for E44) and 1.23
where the superscript shows that the diagram is written fofor the quasichemical approximation. N
NN sites. The chemical potentigk and the probability=(1,1) for

The variation condition formulated above and applied totwo NN sites to be occupied by particles are defined by the
Eq. (41) results in the NN mean potentials, which lead to derivatives
zero value of the graph represented by Et9) with one of
its vertices opened, i.e., when the sum over one of the indices n=(9Fldc)T, (46)
i orj is omitted. It means that all graphs for Mayer-like
functions that include at least one vertex connected to the F(LD=(9F/0d)1. (47
graph by one line are zero graphs and the quasichemicgl o onapility for two NN sites to be vacant can be calcu-
approximation takes implicitly into account contributions of |14 from the normalization condition
all such graphs.

At the previous step the mean potentials between next NN F(0,0=1—2c+F(1,1). (48)
sites were found to be equal to zero. In the next step we
preserve the quasichemical expressions for the NN mean po- In spite of its simplicity, the SCDA yields a surprisingly
tentials(which are explicitly written in Appendix Band take  accurate descriptiofsee the next sectipof lattice gas equi-
into account all two-, three-, and four- vertex irreducible librium as well as diffusion characteristics.
graphs, which include one next NN Mayer-like function at
most because the latter are considered as the first order cor- IV. NUMERICAL RESULTS

rections. Then the free energy is represented as
A. Monte Carlo simulation techniques

F _ Fy _6 12 In the two preceding sections quite simple statistical me-
kT  kgT {rr—12{a} chanical expressions for investigating equilibriohemical
potential and distribution functiohsas well as nonequilib-
—3{m —6{mt - rium (jump and chemical diffusion coefficienttattice gas

(43 characteristics were derived on the basis of SCDA. The spe-
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cific memory effects were neglected as well. However, it is
not possible to test the validity of these approximations by
strict analytical calculations, and thus we resort to MC simu-
lations as the most appropriate means for testing these ex-
pressions. =
The grand canonical ensemble is used for simulating the 3
equilibrium characteristics. The lattice gas system under
consideration is realized by a three-dimensional array of
MXMXM lattice sites with periodic boundary conditions.
For given values of the chemical potenti@hich includes
the external potential) and temperature the grand canonical -2 8-— b) 1
distribution function ~l
Nz N _ -2'9_' l
Py=const exr{ —/3( (‘]/2)21 21 ﬁiﬁj—,uzl ﬁi” % -3.0r .
i=1j= 1= r
(49 -3+ .
. . . -3.2+ 8
is modeled by changing the number and positions of par- I
ticles. A lattice site(say, sitei) is chosen at random. An -3.3L . .
attempt is made in that the particle is pladeedmoved on 0.0 OCS 10
the site depending on whether it is vacdatcupied. The
energy difference FIG. 1. Chemical potential versus concentrationTAf,=0.95
(1); 1.05(2); 1.2 (3); 2.0 (4). The solid lines represent the SCDA
z results, the full circles are the MC simulation dé&aM =50). The
AU :JE ﬁj —u (50 data points in@) are moved along the vertical axis by a factor of 5
=1 from each othefthe original position of each curve is determined
by u/|J]=—3 atc=0.5. Curve 1 in(b) is shown in larger scale
and the transition probability and its intersections with the line=3J define the phase transition
points.
P,=exp ¥ BAU) (51

otherwise no jump occurs. One MCS represents the consid-

are calculated. The sum grruns over nearest neighbors of eration ofn lattice sites. Before starting the diffusion runs the
site i. Upper/lower sign in Eq(51) is chosen if sitei is  equilibration of the system is performed for 2000 MCS. The
vacant/occupied. If the exponent in the last equation is posidiffusion calculations typically go up to $0MCS. The lat-
tive the change of the system state is accepted. In the opptice size wasM =30. Simulations for smallerM = 10,20)
site case a random numbe=®,,,<1 is generated and the and larger latticegup toM =50) were used exemplarily and
change is accepted ®,,<P, . Otherwise the trial is re- it was shown that size effects are negligible fd=30 and
jected. After this the procedure is repeated again. One Mont&rger, except, perhaps in the vicinity of second order phase
Carlo step(MCS) consists ofn trials. transitions.

Thermodynamic equilibrium is established before the av- The jump diffusion coefficient is calculated by the Green-
eraging procedure starts. The approach to equilibrium i&ubo expressio3,5]
monitored by following the total energy and number of par-

ticles, and it is assumed to occur when these quantities begin 1 n 2
to fluctuate around their average values. In most cases it is Djgk= lim >tnd (2 Afi) , (53
found that atM =50 attaining equilibration requires no more toreo 2N =1

than 2000 MCSs. After the equilibration process is finished

the average concentration and probabilities for two particle§yhere Ar; stands for the displacement of thth particle

or two vacancies or a particle and a vacancy to occupy NNrom its initial (att=0) position and is the number of MCS.
sites are calculated over additionaf MCSs. The same pro-

cedure was used to calculate the phase transition points. In o _

the vicinity of the critical point (0.99.<T<T,M =100 B. Equilibrium properties

and up to 18 realizations were used. In Fig. 1 the chemical potentighbsorption isotherms are
Nonequilibrium characteristics are simulated in the cashown. The temperature is given in reduced ufit3 .,

nonical ensemblen=cN particles are distributed ovétlat-  where the critical temperature for a SC lattice is taken equal

tice sites at random. Then, a sités randomly selected. If to the best estimates from the high temperature free energy

filled, a NN destination sitgis chosen at random and,jifs  series expansiop#5] (T.=1.128J|/kg), which is the result

vacant, a jJump may occur with probability of the SCDA Eq/(45) as well. At all temperatures considered
(from 0.95 till 6.0 the SCDA and MC simulation results are
Pjump=€XQ( Bei), (520  in a good agreement.
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FIG. 2. Phase diagram for a system of particles with NN attrac- ©

tive interactions on a SC lattice. The full circles are the MC simu-  FIG. 3. The thermodynamic fact¢BCDA result$ versus con-
lation data. The curves represent the SCOAand quasichemical centration for squaré¢a) and simple cubidb) lattices at reduced

approximationfin units of the exact; (2) or specific for this ap-  temperaturesT/T.=1.05 (1), 1.2 (2), 2.0 (3), 6.0 (4), and for a
proximationT.,=1.094T (3) critical temperaturgsresults. noninteracting lattice gaf5).

Below T the SCDA chemical potential isotherms demon-two systems. The inverse of the thermodynamic factor is a
strate the well known van der Waals kink. The Maxwell measure of concentration fluctuations. These fluctuations are
construction allows us to determine the phase transitiomuch stronger in the two-dimensional system where low val-
points. Figure (b) demonstrates that the chemical potentialues of the thermodynamic factor in a wide concentration
isotherms have to be calculated with very high accuracy itange are well pronounced, especially on the lowest tempera-
order to construct reasonably the phase transition curve. Atire isothermT=1.05T,. Such a difference disappears al-
T=0.95T the deviations of the value @f/J from 3.0 are of = most completely al =2T..
the order of 0.01 when states between the phase transition The static correlations can be investigated by means of
points are consideretsee the range 0:2c<0.8). At tem-  the distribution functions, i.e., the probabilities for particles
peratures closer td. these deviations are even smaller. and vacancies to occupy different lattice sites. The probabili-
However, the range of the/J values is at least two orders ties for two particlesF(1,1) or a particle and a vacancy

of magnitude larger. This is the reason why many approxi+(1,0) to occupy NN sites are plotted in Fig. 4. To demon-
mate approaches are unable to accurately describe phase

transitions in lattice gas systems. 25
On the other hand, the small isothermal deviations of the
chemical potential from its constant value in the two-phase
region mean that the instability of the corresponding thermo-
dynamical states is very wedia Fig. 1(a) the corresponding
part of the isotherm af=0.95T. looks like a horizontal
line]. The canonical ensemble simulations of the lattice gas
on a square lattice have shoy#6] that the system at ther-
modynamically unstable conditions even at temperatures as
low asT=0.6T creates structures from an initially homoge-
neous state rather slowly. 0555 05 10
Due to the high accuracy of the SCDA we can use it for
further analysis instead of the MC simulations. This is espe-

)

2.0}

1.5¢

101

Distribution functions

Cc
cially important for three-dimensional lattices for which even 2 25} p) 1
the equilibrium simulations are rather time consuming and 5
many characteristics are defined in terms of free energy or ‘§ 20l
chemical potential derivatives. 2 3
The phase diagram displaying the first order lattice gas— 5 15 5
lattice liquid phase transition is shown in Fig. 2. The devia- 5
tions of the SCDA phase transition temperatures from the £ /7
MC simulation data are within a percent that can be com- g 1o <2
pared to roughly a 10% difference for the quasichemical ap- 2 4
proximation in the absolutesee Fig. 2, curve)r in its own o.g 0 05 10 5
(curve 3 critical temperature units. ' ' T '
<

At near critical temperatures the phase diagram for a SC
lattice is not as flat as for a two-dimensional square lattice. g, 4. Distribution functions versus concentratit and in-
Thus, the chemical potential isotherms at temperaturegerse temperaturéh). Curves 1, 3, 5, 7, and 9 represé(tL,1)/c2;
slightly above critical(T/T,=1.05 and 1.2in their central  curves 2, 4, and 6 represe(1,0)/ic(1—c). (@ T/T.=1.05
parts show not as pronounced flat segments as for the tw@curves 1,2 1.2 (3,4); 2.0 (5,6). (b) c=0.1 (1,2); 0.3 (3,4); 0.5
dimensional casésee[42]). This feature is demonstrated in (5,6); 0.7 (7,4); 0.9 (9,2). The solid lines represent the SCDA re-
Fig. 3 by the comparison of the thermodynamic factor for thesults; the filled circles are the MC simulation data.
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oG eI
LA al
\10.8 35} 5 ]
o=l 30l 3 {3l
0.6 EJ 2.5-§ E X
hl 2of2_— 17
0.4 15} 11t
L 10_1/ 1ol
0.2 055570 '

TST c
FIG. 6. The jump diffusion activation energi€SCDA results,
in units of the interaction parametgk) versus(a) concentration at

T/T.=0.95(1); 1.05(2); 1.2 (3); 2.0 (4); 6.0 (5) and (b) inverse
temperature at=0.1(1); 0.3 (2); 0.5(3); 0.7 (4); 0.9 (5).

0.0/

D/,

lattices with size 38=27000 lattice sites and runs as long as
10° MCS performing averaging over 500—2000 realizations
r the MC simulation data fluctuate around the curves corre-
I sponding to Eq(33). Probably, at better MC simulation sta-
0.01 5 3 tistics the coincidence between the data could be even better.
[ Statistical mechanics calculations were in part performed
| for temperatures and concentrations below the coexistence
1E-3 E o :
B curve shown in Fig. 2 that correspond to thermodynamically
0.0 0.5 1.0 metastable or unstable states. Up to temperatures as low as
T/T 0.8T, the distribution functions and jump diffusion coeffi-
cient in Figs. 4b) and 3b) do not show any indication of the
FIG. 5. The jump diffusion coefficient versiia) concentration phase transition. In the pat6] MC simulations of an un-
atT/T.=0.95(1); 1.05(2); 1.2(3); 2.0(4); 6.0(5) and(b) inverse  stable two-dimensional system has shown that although
temperature at=0.1(1); 0.3(2); 0.5(3); 0.7(4); 0.9(5). The lines  mean square displacements of particles are not linear func-
are the calculation results according to E8f7); the full circles are  {jong of time, the deviations from the linear behavior are not
the MC simulation data. strongly pronounced at temperatures slightly below critical.
In the present MC simulations &= 0.95T; [not shown in

transparent at high concentrations, where their values arﬁg' 5(@)] the jump diffusion coefficient agrees with the re-

o L 'Sults of Eq.(33) with the same accuracy as &t 1.05T.
close to zero, these probabilities are divided by the Langmuwl_hus the (jqu(mp)diffusion coefficient calcﬁlated for exacmple
gas values? andc(1—c), respectively. It follows from the ' ' '

! by Green-Kubo Eq(53) can be a measure of mobility of the
symmetry arguments that the prqba_bnl'-iy(0,0) for two NN system in strongly nonequilibrium conditions. The chemical
sites to be vacant at concentratioris equal toF(1,1) at

. X oy .. diffusion coefficient does not exist at unstable conditions at
concentration *c. Again, these probabilities agree with

MC simulati Its withi © W that th all because the thermodynamic factor becomes negative.
simulation resuits within a percent. Yve can see that the Equation(33) allows us to investigate the concentration

deviations from the Langmuir gas correlation functions are; 4 temperature dependence of the diffusion coefficients in

considerably reduced as compare_d to the square lattice at tlai%tail. Figure B) shows that the jump diffusion coefficient
same reduced temperatgr@e Fig. 5 in Ref[42]). The obeys Arrhenius behavior almost perfectly at a half coverage
reason IS that the critical tgmpera_tture for the WO~y hile it deviates at other concentrations. The measure of
dimensional system (0.56H/kg) is considerably lower due g . geviations may be understood by considering the tem-
to the difference in the number of nearest neighbors. perature dependence of the diffusion activation energy.

The activation energy for diffusion can be defined as

0.1}

C. Diffusion coefficients and activation energies

Equation(33) relates the jump and chemical diffusion co- U=-d(InD)/3pB. (54)

efficients to equilibrium lattice gas characteristics except for-l-
a rather trivial factor representing the diffusion coefficient at
zero concentration or the transition rate of a single particl
on the lattice. As equilibrium characteristics are represente
by SCDA quite accurately, the comparison of the jump dif-
fusion coefficients calculated by E(B3) and simulated ac- ;= — g(InD,)/df=— u—B(dulIB)— 9 In F(0,0//dB.
cording to Eq.(53) allows one to test whether the contribu- (55)

tion of the memory matrix® can be neglected as it was

suggested in Sec. Il. Figure 5 demonstrates that this is validlhe dependence of the activation energy on the inverse tem-
for the system under consideration. Although we have usegerature and concentration is presented in Figa) &nd

his quantity is widely used for the interpretation of experi-

mental diffusion results and, therefore, we will discuss it in
ome detail.

For the kinetic diffusion coefficient Eq33) yields

066108-8



THERMODYNAMICS AND DIFFUSION OF A LATTICE.. .. PHYSICAL REVIEW E 64 066108

S 4 Es chemical diffusion activation energy as a function of concen-
5 50r tration exhibits a bell-shaped structure with a maximum at a
o1 40| half coverage. The maximum strongly increases when tem-
sol perature decreases. Such a bell-shaped structure was de-
001l sol s_crlbed_ by Uebing and Gom@?_S] on _the basis of the_ MC
simulation results for the two-dimensional square lattice gas.
1E-3f ]
00 05 10 00 05 10 V. CONCLUSIONS
/T T

Thermodynamics and diffusion of the lattice gas with
FIG. 7. SCDA results for the chemical diffusion coefficié¢at nearest n_eighbqr attractive int(_ara}ctions ona §imple cubic lat-
and its activation energfb) versus inverse temperatuie= 0.1 (1), tice are |nve§tlgated by s?atlstlcal mechanics and Monte
0.3(2), 0.5(3), 0.7 (4), 0.9(5). From the low temperature side the Carlo simulation means. It is shown that the SCDA results
curves are terminated at the phase transition line, see Fig. 2. coincide within 1% with the Monte Carlo simulation data for
the lattice gas equilibrium characteristithe chemical po-
tential and probabilities for particles and vacancies to occupy
rEearest neighbor sitesThe jump diffusion coefficient calcu-
low (c~0.1-0.2) and highd=~0.8—0.9) lattice concentra- fated by Eq.(_33} acc_:urately reproduc_es t_he MC sim_ulati_on
) . S data, too. This implies that the contribution to the diffusion
tions, and(ii) the activation energy at low temperatures - o e
changes more significantly at low and high concentrations(;:oe‘cfICIentS of .the speC|f|c_stat|st|c_aI memory effects repre-
and is nearly independent of coverage at middle concentraic'—emed by the time correlation matrix of the subtracted fluxes

tions. Due to the fact that only pairwise interactions are cons> negligibly small and can be disregarded. Thus, SCDA and

) o . Eq. (33) can be used to investigate the lattice gas equilibrium
sidered(maintaining the particle-hole symmetry of the cor- e i .
. . . . .~ and diffusion characteristics with good accuracy.
responding lattice gas Hamiltonigthe chemical potential is

. : The chemical potential along near critical isotherms does
symmetric around half coverage at any particular tempera- .
not contain as pronounced flat segments as for the two-

ture. The corresponding part of the activation energy is rep-,. . . ! o
! dimensional square lattice gas and concentration derivatives
resented by the symmetrically arranged curves. However, the,

L S . ; . of the chemical potential are not so small as well. Thus, for
contribution from the distribution function slightly violates ; . . .
R S I the lattice gas on a SC lattice the concentration fluctuations
the symmetry of the activation energy distribution.

. 2 at near critical conditions are not as strong as in the case of
At low concentrations the activation energy approache§he square lattice gas

zero while in the opposite limiting case of high concentra- Although the jump diffusion activation energy is within

m?r?btgreol:cr?:ggge\éﬁlﬁg O;solérgﬁfhi?hi?ﬁ lsathzrrggzlr_rsfr\rl] the range(0 to 5J) for the lattice gas on a SC lattice com-
9 b gap JUMPsared to the rangé to 3J) on a square lattice, deviations of

in analogy with the two-dimensional case discussed in Ref he former from Arrhenius behavior are less pronounced and
[28], [36] where this number is equal to 3. At high tempera- n be attributed to the considerably higher critical tempera-

Fures the poncentratlon degendence of th? activation energﬁe in the three-dimensional case. The temperature depen-
is approximately linearU,=5|J|c [see Fig. &) for T

—6T,]. Deviations from this linear dependence at IOWerdence of the chemical diffusion coefficient is strongly non-

temperatures are not as pronounced as for the lattice gas Oﬁé\rrhenius except for the cases of low and high
P . P 9 t8ncentrations or high temperatures.
square latticédsee Ref[36]).

According to Eqs(32), (33) the total activation energy Fmally,_ we note _that the jump _dlffu5|on cc_Jeff|C|ent is a
. ; . . characteristic quantity for which it is not required to be cal-
consists of the external site potential which enters the

Langmuir gas diffusion coefficierd, [see Eq/(9)], and the culated at equilibrium. In Eq53) the averaging over a non-

contribution of the interparticle interactions that is discussecﬁqu”'b”.udm egsemble can be pet:flt_)rmid and the_ r(?sult may
above. EvidentlyD, obeys Arrhenius behavior. Thus, the e considered to represent a mobility characteristic for a non-

o . LA . ; ilibrium m.
deviations of the jump diffusion coefficient from Arrhenius equilibrium syste
behavior become significantly weaker if the site potential is
considerably stronger than the interparticle interaction

(Ju[>13]). ) . o o _ This work was in part supported by INTAS Grant No.
At the same time, the chemical diffusion coefficient devi- 96-0533 and by the Ministry of Education of Belarus. The
ates from the Arrhenius law much more stronffjyg. 7@] vyisits of V.S.V. and Y.G.G. at the University of Thessaloniki
than the jump diffusion coefficient due to the thermodynamicyere supported by the NATO Fellowship Program and an
factor, which demonstrates strongly non-Arrhenius behavioryNTAS grant, Grant No. YSF 00-4154, respectively. Fruitful

The activation energy for chemical diffusion depends ongiscussions with Dr. C. Uebing are gratefully acknowledged.
temperature much more than for jump diffusipsee Fig.

7(b)], especially at intermediate concentrations and not too
high temperatures. Concentration fluctuations create ex-
tremely high barriers for collective diffusion but do not in-  In the canonical ensemble the explicit expression for the
fluence the jump diffusion coefficient. It is evident that the mean value entering E@25) is given by

6(b), respectively. It is obvious thdt) the temperature de-
pendence of the activation energy is largely pronounced
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(k) — — A
(WL 73))=Qn ' wyAy(1—Apexe ~ BUy), X = e = Bewhl By
‘ (A1) wherei designates the state of the lattice dibecupied {
=1) or vacant {(=0)] while the superscripk refers to the
mean potentials to the neares=(1) or next nearestk
Qn:g exp(— BUna), (A2) =2 neighbors. Then, the variational condition leads to an

algebraic set of equatiori;n more detail the calculations for

whereQ, is the partition function, andJ,,, the interaction & square lattice are described in Ref2])

energy of the system of particles in a microscopic state L .

The summation is carried out over all states of the system. NOE 2 Wi(j >c,—

| :

In fact, ; in Eqgs.(8) and (10) represents the interaction PRV i=0,1, k=12 (B2)
energy of a particle on sitewith the othem— 1 particles of )
the system. Hence with the kernels
Wi eXp(— BUnq) =Wo eXH — B(Uns— i) ] Wh=exp(—BJ), WH=Wd=wd=1 (B3
=Wo exp(—BUn-14), (A3)
- | L owpwg
i.e., the energyJ, ,, of n—1 particles appears here. In the WP=B2, Bj=> ! (B4)

. ; L . ij = (Dy(1)y(1)y2-
last expressiom designates the distribution af- 1 particles k=0 XX (X)
over N—1 lattice sites(site i cannot be occupied by these
particles. It is possible to sum over the valuesfgf(0 and 2

in Eq. (A1) and to rewrite the latter in the form

The solution of Eq(B2) can be written in a closed form

X4 =X5 7, (B5)
(Wi (1=A)) =wo(Qn-1/Qn) 2 (1—A)) where
X[exp(—BUn-14)/Qn-1]1 (A4) X =\eotci/n,  X§P= \/V00Co+(V01C1/772).( |
B6
because the energy,_,, does not depend on the state of
sitei. The expression in the square brackets in @d}) can c1—Co c1—Co\% ¢ L
be interpreted as a normalized distribution function of the T 2¢o ) + c_OW(“)' (B7)

system ofn— 1 particles oveN sites under the condition that
sitei is vacant. Having in mind that

= Vou(€1— o) + Vi €1~ Co)* + 4V 11C0Cs

Qn—llQn: eXF(B,U/) (AS) 2= 2VO0C0 ’
and that sitg is a NN of sitei Eq. (A4) leads to the final (2
form of Eq.(32). Vi =W (B8)
APPENDIX B Although NN interactions are only taken into account the

mean potential for the next neargsecond neighbors is
It is convenient to simplify notations introducing quanti- different from zero due to statistical effects, which manifest
ties themselves through the keréi?) in Eq. (B2).
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