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Thermodynamics and diffusion of a lattice gas on a simple cubic lattice
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A lattice gas model with nearest neighbor attractive interactions on a simple cubic lattice is considered. The
method of nonequilibrium statistical ensembles due to Zubarev is used to derive expressions for jump and
chemical diffusion coefficients. For thermally activated hopping dynamics in the hydrodynamical~low fre-
quency, long wavelength! limit, and neglecting specific memory effects, these expressions are represented in a
simple form in terms of the zero concentration limit of the chemical diffusion coefficient and equilibrium
characteristics, i.e., the chemical potential, and the probability for two nearest neighbor sites to be vacant.
These equilibrium characteristics are calculated by means of the self-consistent diagram approximation. The
equilibrium characteristics and diffusion coefficients are in a good agreement with extensive Monte Carlo
simulation results.
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I. INTRODUCTION

Many important properties, equilibrium as well as no
equilibrium, of interacting many-body systems can be und
stood considering relatively simple lattice systems@1–6#.
However, even for these simplified systems exact soluti
of numerous important problems do not exist except for s
eral well known cases such as, for example, Onsager’s re
for the free energy of the Ising two-dimensional model@7#.
Thus, there has been a considerable effort to develop
proximate approaches, mainly for calculating equilibriu
properties.

The best known approaches for investigating equilibri
characteristics are based on the mean field approxima
The latter can be used in the most simple Bragg-Willia
form or in the form of the Bethe-Peierls-Weiss~or qua-
sichemical! approximation ~see @7#!. However, these ap
proximations, as well as a newely suggested one@8# can give
only semiquantitative results. The Kikuchi cluster variati
method@9,10# in its simplest form also cannot be used f
quantitative investigations, or it requires cumbersome ca
lations. Moreover, the methods based on different series
pansions@11# that can in principle yield as exact results
necessary suffer from a weak series convergence and ca
be used for applications if results at different thermodynam
conditions are required.

Diffusion coefficients represent the most important no
equilibrium characteristics of lattice gas systems. These
efficients were considered for spin dynamics by Kawas
@12# and by Kadanoff and Swift@13# in the framework of
Kubo’s linear response theory. For systems where dynam
may be described on the basis of simple model Hamiltoni
the quantum mechanical formalism was widely exploit
@14–18#. Similar techniques were used for lattice mode
with transition rates defined by kinematic conditions or in t
simplest mean field approximations@19–22#. However, the
transition rates of lattice gas models have more complica
structures and do not allow us to use this formalism in
1063-651X/2001/64~6!/066108~11!/$20.00 64 0661
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straightforward manner. Several different approaches
used that employ thermally activated particle hopping, wh
is the basic characteristic of a lattice gas. For the tw
dimensional case important results were obtained consi
ing the quasiequilibrium distribution@23# and by a semiphe-
nomenological approach @24#. Monte Carlo ~MC!
simulations of two-and three-dimensional interacting latt
gases have also appeared@25–27#. With the progress of com-
putational techniques extensive and more sophisticated
dimensional simulations were performed@28,29#.

In spite of the above progress, much less attention
been given to the statistical mechanical description of n
equilibrium processes in lattice gases. Kutneret al. @26# de-
veloped a mean field treatment with emphasis on the crit
behavior of the chemical~collective! diffusion coefficient in
three-dimensional lattice gases obeying Kawasaki dynam
For two-dimensional lattice gases, a simple and rather g
eral derivation of the microscopic expression for the che
cal diffusion coefficient was given by Zhdanov@30#. The
quasiequilibrium distribution of mobile particles similar t
Refs. @23#, @24# was used in this derivation. The dynamic
structure factor was used to represent the chemical diffus
coefficient @31# in terms of the Mori’s continuous fraction
@32# and for the two-dimensional lattice gas the calculatio
were performed on the basis of Kikuchi’s approximation@9#.
Some general results concerning diffusion in lattice ga
were obtained@33,34# on the basis of the theory of Marko
processes.

Recently@35,36#, general expressions for the jump@3,4#
and chemical diffusion coefficients were derived in the fra
of the nonequilibrium statistical ensemble method~NESEM!
due to Zubarev@37,38#. This method is in line with modern
nonequilibrium statistical mechanical theories developed
Kubo @39#, Mori @32#, Zwanzig @40#, McLennan@41#, and
many others, and may be considered as the most suit
technique for applications. For thermally activated hopp
dynamics when specific memory effects are neglected
diffusion coefficients are represented in terms of the tran
©2001 The American Physical Society08-1
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ARGYRAKIS, GRODA, BOKUN, AND VIKHRENKO PHYSICAL REVIEW E64 066108
tion rate at zero concentration and thermodynamical cha
teristics~the chemical potential and the vacancy distributi
function! only. Here these expressions are used to investig
lattice gas diffusion of interacting particles in an attracti
field on a three-dimensional simple cubic~SC! lattice. The
equilibrium characteristics are calculated within the se
consistent diagram approximation~SCDA! @42# that was
shown to be quite accurate for a two-dimensional square
tice. This approximation is extended now to the thre
dimensional case.

The paper is organized as follows: The derivation of
chemical diffusion coefficient is outlined in the next sectio
The SCDA expressions for calculating the chemical poten
and distribution functions are derived in Sec. III. MC sim
lation techniques for equilibrium characteristics and dif
sion coefficients are described in Sec. IV. Also the results
attractive interactions from the calculations and the comp
son between the statistical mechanical and MC simula
data are discussed in this section. Section V presents
conclusions. The derivation of the expression for the m
transition rate and the expressions defining the SCDA m
potentials are given in Appendixes A and B, respectively,
attractive interactions.

II. GENERAL EXPRESSIONS FOR THE DIFFUSION
COEFFICIENTS

A. Description of the model

We consider a lattice gas system ofn particles on a SC
lattice with nearest neighbor~NN! interactions described b
a potential energy

U5J(
i 51

N

(
j 51

z

n̂j n̂i1u(
i 51

N

n̂i , ~1!

whereN is the number of lattice sites. The interaction co
stant J is positive for repulsive and negative for attracti
interactions. The external site potentialu is usually negative
to capture a particle at a lattice site. The occupation numb
n̂i are considered as dynamical variables whose distribu
over the lattice sites defines a microscopic state of the
tem. The summation onj runs over thez nearest neighbo
sites of sitei. For a SC latticez56. Double occupancy of a
site is forbidden, i.e.,

n̂i5H 1 if the lattice site i is occupied

0 otherwise,
~2!

n5(
i 51

N

n̂i5const. ~3!

A nonequilibrium state of the lattice gas is determined b
probability distribution vector

P~ t !5(
$aI %

Pa~ t !aI , ~4!
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where$aI % is an orthonormalized set of vectorsaI represent-
ing all the particular states of the system.Pa is the probabil-
ity to find the lattice gas system in the statea.

We assume that the evolution of the lattice gas is g
erned by the master equation~see@5,12,22#!

dP~ t !

dt
5WP~ t !, ~5!

where the matrix elements

W~a,a8!5w~a,a8!2da,a8(
a9

w~a9,a8! ~6!

represent the transition matrixW andw(a,a8) is the transi-
tion rate from statea8 to statea(a8Þa). The transition
matrix W satisfies the detailed balance condition

WPeq50, ~7!

wherePeq represents the equilibrium probability distributio
The lattice gas dynamics is specified by the model of tr

@2# at constant~zero! level of barriers~which need to be
overcome by diffusing particles! when the transition~hop-
ping! rate from sitei to a NN sitej is given by

wji 5n exp@b~« i1u!#5w0 exp~b« i !, ~8!

whereb5(kBT)21 is an inverse temperature,kB the Boltz-
mann constant,

w05n exp~bu! ~9!

is the transition rate of a single particle on the lattice, ann
is a frequency determining the time scale of the diffusi
process. The potential well depth in Eq.~8! is created by the
external field potentialu and the interactions of a particle o
site i with the neighboring particles

« i5J(
k51

z

n̂k . ~10!

Longer range than NN transitions are forbidden. The h
ping dynamics is widely used in considerations of lattice g
diffusion processes by different methods@2–5,23,25,27–
29,31#. We note that according to Eqs.~6! and ~8!–~10! the
transition matrix is a strongly nonlinear operator.

B. The evolution equation for concentration fluctuations

The chemical potentialm i is considered to be the thermo
dynamic conjugate quantity ton̂i . In general,m i depends on
the site position and is a function of time. The deviatio
~fluctuations! of the chemical potential and mean occupati
numbers~concentration! from their equilibrium values

dm i5m i2m,

dn̂ j5n̂ j2c, c5^n̂ j& ~11!

are interconnected by the thermodynamic relations@37,38#
8-2
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d~bm i !5
1

c (
j

x i j dnj ,

dnj5^dn̂ j& r5^n̂ j& r2c, ~12!

where^ & and^ & r denote averaging over the equilibrium an
the relevant~or quasiequilibrium! probability distributions
@37,38#, respectively.m and c are equilibrium values of the
chemical potential and the lattice concentration.x i j is a N
3N matrix. Its inverse value is related to the static corre
tion function of concentration~density! fluctuations

x i j
215c21^dn̂idn̂ j&. ~13!

According to the NESEM@37,38# the evolution of the
mean value deviation of the occupation numbers from th
equilibrium values~in the thermodynamic limitN→`,n
→` at n/N5c5const! obeys the Mori type@32# integro-
differential equation

ddni~ t !

dt
2bc(

j 51

N

V i j dm j1bc(
j 51

N E
0

`

Q i j ~t!dm j~ t2t!dt

50, ~14!

where V i j and Q i j are a static correlation matrix and
memory matrix, respectively. The former can be written

V i j 5c21^d ṅ̂idn̂ j&, ~15!

where the microscopic particle flux is defined according
the master equation~5! and the occupation number restri
tion Eq. ~2!

ṅ̂i5(
j 51

z

@wi j n̂j~12n̂i !2wji n̂i~12n̂ j !#. ~16!

The mean particle flux at equilibrium is equal to zero, whi
has a consequence that the total and the fluctuation fluxe
equal:d ṅ̂i5 ṅ̂i . For lattices with equivalent directionsij and
ji the matrixV i j is a symmetric matrix.

Since the master equation~5! is irreversible the equilib-
rium mean value of a product of quantities of different tim
symmetry is not equal to zero. Hence, in contrast to syst
with reversible dynamics the matrixV i j in Eq. ~14! plays an
important role in the irreversible evolution of lattice system
This peculiarity and the possibility to calculate kinetic coe
ficients of lattice systems using the relevant~or quasiequilib-
rium! distribution was already considered by Kawasaki@12#.
The formal solution of the master equation has the fo
being characteristic for a linear differential equation,

P~ t !5exp~Wt !P~0! ~17!

that enables us to represent the memory matrix

Q i j ~t!5c21^Qd ṅ̂i exp~tQWQ!Qd ṅ̂ j&

5c21^Qd ṅ̂i~0!Qd ṅ̂ j~t!& ~18!
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through the bare evolution operatorW and the operator

Q512P, ~19!

where the Mori projection operatorP acts @32,38,43# on a
function b̂i of the dynamical variables as

Pb̂i5^b̂i&1
1

c (
i ,k

x i j ^b̂ jdn̂k&dn̂k . ~20!

From Eq.~20! for b̂i5d ṅ̂i5 ṅ̂i it follows

Pd ṅ̂i5(
j ,k

x i j V jkdn̂k . ~21!

Thus, the memory matrix contains subtracted fluxesJi5(1
2P) ṅ̂i , the time evolution of which is described by th
modified evolution operator (12P)W(12P). The latter cir-
cumstance substantially complicates the explicit evalua
of the memory matrix.

C. Jump and chemical diffusion coefficients

It has recently been shown@35,36# that for the two-
dimensional lattice gas with attractive interactions in the h
drodynamic~long wave, low frequency! limit the memory
matrix contribution to the diffusion coefficients is negligib
small. We neglect this contribution for a SC lattice as we
This approximation will be later verified by comparison wi
MC simulation results.

To calculate the static correlation matrixV i j we substitute
Eq. ~16! into Eq. ~15!

V i j 5c21K n̂ j(
l 51

z

@wil n̂l~12n̂i !2wli n̂i~12n̂l !#L . ~22!

For two conjugated system states that differ from each o
by the states of the two sitesi and l ~from which only one is
occupied by a particle! the detailed balance condition Eq.~7!
can be written as

wil Pa l i
5wli Pa i l

. ~23!

Here a l i and a i l designate system states with the occup
site l or i, respectively, and equivalent states of the oth
lattice sites;Pa l i

is an equilibrium probability of the state

a l i . A particle move from sitel to site i corresponds to a
change of the system state froma l i to a i l , and vice versa.
Equation~23! implies that at equilibrium the sum of direc
and reverse particle fluxes between two lattice sites is eq
to zero, and does not depend on the particular states o
other lattice sites.

Thus, if neitheri nor l coincide withj the two terms in the
right-hand side~rhs! of Eq. ~22! cancel each other. Forl
5 j the identitiesn̂ j

25n̂ j and n̂ j (12n̂ j )50 lead to the dis-
appearance of the second term in Eq.~22! but preserve the
first one. Then, the nondiagonal matrix elementV i j can be
written in the form
8-3
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ARGYRAKIS, GRODA, BOKUN, AND VIKHRENKO PHYSICAL REVIEW E64 066108
V i j 5w1 , ~24!

where the mean transition rate between NN sitesi and j

w15c21^wji n̂i~12n̂ j !& ~25!

is introduced. Because of the symmetry of the lattice
mean transition rates between all NN sites are equal.

Due to the same identities for occupation numbers o
the second term of Eq.~22! contributes to the diagonal ma
trix elements,

V i i 52zw1 . ~26!

The matrixV i j obeys the sum rule

(
j 51

N

V i j 50 ~27!

because of the mutual cancellation of the diagonal and n
diagonal matrix elements.

Although it is possible to investigate the wave vector d
pendence of the diffusion coefficients on the basis of
~14! ~see Refs.@35,36#! we restrict our considerations to th
hydrodynamic limit. Due to the sum rule and Eqs.~24! and
~26! the second term in Eq.~14! can be represented as
second finite difference of the chemical potential with
spect to lattice site positions that corresponds to the Lap
ian ~n! in continuous~hydrodynamics! representation. Tak
ing into account that the number densityr5c/a3, wherea is
a lattice parameter, Eq.~14! can be rewritten as

]r

]t
5w1a2xTDr, ~28!

where the thermodynamic factor~compressibility! is intro-
duced as

xT5r
]~bm!

]r
5c

]~bm!

]c
. ~29!

The derivative](bm)/]c is calculated at constant temper
ture.

Equation~28! represents Fick’s second law, which giv
the chemical diffusion coefficient

Dch5xTDJ, ~30!

where the jump@3# ~or kinetic @4#! diffusion coefficient is
given in terms of the mean transition rate

DJ5w1a2. ~31!

In a more general case in the rhs of Eq.~31! the multiplier
z/2d appears, whered is a space dimensionality. For squa
and SC lattices this multiplier is equal to one.

The calculation of the mean transition rate according
Eq. ~25! for interacting lattice gases requires averaging o
a statistical ensemble. It is an important point that for th
mally activated hopping dynamics described by Eq.~8! the
mean transition rate as defined by Eq.~25! can be expresse
06610
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y
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in terms of its zero concentration limitw0 and equilibrium
characteristics only~see Appendix A!

w15w0 exp~bm!F~0,0!/c, ~32!

whereF(0,0) is a probability for two NN sites~i andj! to be
vacant. With this expression Eq.~31! transforms to the form

DJ5D0 exp~bm!F~0,0!/c, D05w0a2. ~33!

Such an expression for a two-dimensional gas on a sq
lattice was derived by Zhdanov@30#. The quasiequilibrium
distribution was used in his derivation. Our derivation sho
that in the frame of hopping dynamics the only necess
approximation leading to Eq.~33! is the neglecting of spe
cific memory effects described by the memory matrixQ. No
approximations like mean field ones are necessary. Du
the complicated character of the matrixQ, which may not be
handled by analytical means, the accuracy of Eq.~33! has to
be tested by alternative methods, e.g., by MC simulation

III. SCDA FOR SC LATTICE

Equilibrium properties of the lattice gas can be extrac
from the free energyF of the system per lattice site

F52~kBT/N!ln Qn . ~34!

We now introduce a reference system, which is defined
one-particle mean potentialsw j (n̂i) describing the interac-
tion of a particle (n̂i51) or a vacancy (n̂i50) at sitei with
site j. Its potential energy can be written as

U ~0!5(
i 51

N

(
j 51

N

w j~ n̂i !. ~35!

We assumew j (n̂ j )50, i.e., there are no interactions of
particle or a vacancy with itself.

The partition function of the initial system can be iden
cally expressed as@42#

Qn5Qn
~0!K )

i 51

N

)
j 5 i 11

N

~11 f i j !L
0

, ~36!

where the angular brackets with subscript 0 represent m
values over states of the reference system and the part
function of the latter

Qn
~0!5H )

ni50

1

cni

21 expF2b(
j 51

N

w j~ n̂i !G J N

, ni5n̂i50,1,

~37!

is written through concentrations of vacancies and partic

c05~N2n!/N, c15c5n/N. ~38!

Mayer-like functions

f i j ~ n̂i ,n̂ j !5exp$2b@F i j n̂i n̂ j2w j~ n̂i !2w i~ n̂ j !#%21
~39!
8-4



a
nc

lik
p

ea
le
fo
ll
e

ca
a

ide

e
bo

fo

to
to

ic
e
th
ic

of

N
w
p

le
a
c

ion
e a
in
ur

of
es
set

al

ac-

ee
to

ult
on-
the

nal

the

u-

y

e-

pe-
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are advantageous as compared to standard ones@7,44# be-
cause the mean potentials, if properly found, will reduce v
ues of the Mayer-like functions leading to better converge
of the free energy expansion in these functions.

On the basis of Eqs.~34! and ~36! the free energy of the
system can be calculated. Its expansion in the Mayer-
functions truncated at some level can be used to develo
self-consistent scheme for proper determination of the m
potentials@42#. In the case under consideration all irreducib
graphs up to four vertices are taken into account. Trans
mation ~36! is an identity and the partition function as we
as the free energy of the system do not depend on the m
potentials. As an approximation, the same requirement
be applied to the truncated part of the expansion. This me
that its variations~or partial derivatives! with respect to the
mean potentials have to be equal to zero.

As a first step in the free energy expansion we cons
the free energy of the reference system

F05kBTF(
i 50

1

ci ln ci1(
i 50

1

ci (
k51

2 zkw i
~k!

kBT G ~40!

and the two-vertex graph contributions only,

~41!

The two graphs in Eq.~41! represent mean values of th
Mayer-like functions for nearest and next nearest neigh
lattice sites, respectively. For example,

~42!

where the superscript shows that the diagram is written
NN sites.

The variation condition formulated above and applied
Eq. ~41! results in the NN mean potentials, which lead
zero value of the graph represented by Eq.~42! with one of
its vertices opened, i.e., when the sum over one of the ind
i or j is omitted. It means that all graphs for Mayer-lik
functions that include at least one vertex connected to
graph by one line are zero graphs and the quasichem
approximation takes implicitly into account contributions
all such graphs.

At the previous step the mean potentials between next
sites were found to be equal to zero. In the next step
preserve the quasichemical expressions for the NN mean
tentials~which are explicitly written in Appendix B! and take
into account all two-, three-, and four- vertex irreducib
graphs, which include one next NN Mayer-like function
most because the latter are considered as the first order
rections. Then the free energy is represented as

~43!
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The last expression differs from the free energy expans
for a square lattice by the graph coefficients only becaus
SC lattice consists of three plains with a square lattice
each of them and the structure of graphs with up to fo
vertices is the same for both lattices.

According to the variational condition the derivatives
Eq. ~43! with respect to the mean potentials for next NN sit
are equal to zero. This idea is used to derive the complete
of expressions for the mean potentials~see Appendix B!.
With these expressions, similarly to the two-dimension
case~see Appendix in Ref.@42#! the graphs entering Eq.~43!
can be summed up. Then, the free energy of the system
quires the form

~44!

Again, the coefficient in front of the square graph is thr
times larger than for a square lattice. It is also possible
take into account graphs with more vertices, but it is diffic
to calculate them explicitly. Thus, we suggest that these c
tributions are proportional to the square graph and adopt
coefficient of this graph in Eq.~44! in such a way that the
critical temperature is close to its best estimation. The fi
expression for the free energy is as follows~quantitiesBi j are
given in Appendix B!:

F

kBT
5

F0

kBT
20.42(

i 50

1

(
j 50

1

Bi j
2 cicj . ~45!

The best estimation of the critical temperature~in units of the
interaction parameter! is 1.128 and Eq.~45! yields the same
result that can be compared with 1.19 for Eq.~44! and 1.23
for the quasichemical approximation.

The chemical potentialm and the probabilityF(1,1) for
two NN sites to be occupied by particles are defined by
derivatives

m5~]F/]c!T , ~46!

F~1,1!5~]F/]J!T,c . ~47!

The probability for two NN sites to be vacant can be calc
lated from the normalization condition

F~0,0!5122c1F~1,1!. ~48!

In spite of its simplicity, the SCDA yields a surprisingl
accurate description~see the next section! of lattice gas equi-
librium as well as diffusion characteristics.

IV. NUMERICAL RESULTS

A. Monte Carlo simulation techniques

In the two preceding sections quite simple statistical m
chanical expressions for investigating equilibrium~chemical
potential and distribution functions! as well as nonequilib-
rium ~jump and chemical diffusion coefficients! lattice gas
characteristics were derived on the basis of SCDA. The s
8-5
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cific memory effects were neglected as well. However, i
not possible to test the validity of these approximations
strict analytical calculations, and thus we resort to MC sim
lations as the most appropriate means for testing these
pressions.

The grand canonical ensemble is used for simulating
equilibrium characteristics. The lattice gas system un
consideration is realized by a three-dimensional array
M3M3M lattice sites with periodic boundary condition
For given values of the chemical potential~which includes
the external potentialu! and temperature the grand canonic
distribution function

PN5const• expF2bS ~J/2!(
i 51

N

(
j 51

z

n̂i n̂ j2m(
i 51

N

n̂i D G
~49!

is modeled by changing the number and positions of p
ticles. A lattice site~say, sitei! is chosen at random. An
attempt is made in that the particle is placed~removed! on
the site depending on whether it is vacant~occupied!. The
energy difference

DU5J(
j 51

z

n̂j2m ~50!

and the transition probability

Ptr5exp~7bDU ! ~51!

are calculated. The sum onj runs over nearest neighbors
site i. Upper/lower sign in Eq.~51! is chosen if sitei is
vacant/occupied. If the exponent in the last equation is p
tive the change of the system state is accepted. In the o
site case a random number 0<Pran<1 is generated and th
change is accepted ifPran<Ptr . Otherwise the trial is re-
jected. After this the procedure is repeated again. One Mo
Carlo step~MCS! consists ofn trials.

Thermodynamic equilibrium is established before the
eraging procedure starts. The approach to equilibrium
monitored by following the total energy and number of p
ticles, and it is assumed to occur when these quantities b
to fluctuate around their average values. In most cases
found that atM550 attaining equilibration requires no mo
than 2000 MCSs. After the equilibration process is finish
the average concentration and probabilities for two partic
or two vacancies or a particle and a vacancy to occupy
sites are calculated over additional 104 MCSs. The same pro
cedure was used to calculate the phase transition point
the vicinity of the critical point (0.99Tc,T,Tc)M5100
and up to 105 realizations were used.

Nonequilibrium characteristics are simulated in the
nonical ensemble.n5cN particles are distributed overN lat-
tice sites at random. Then, a sitei is randomly selected. If
filled, a NN destination sitej is chosen at random and, ifj is
vacant, a jump may occur with probability

Pjump5exp~b« i !, ~52!
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otherwise no jump occurs. One MCS represents the con
eration ofn lattice sites. Before starting the diffusion runs th
equilibration of the system is performed for 2000 MCS. T
diffusion calculations typically go up to 105 MCS. The lat-
tice size wasM530. Simulations for smaller (M510,20)
and larger lattices~up to M550! were used exemplarily and
it was shown that size effects are negligible forM530 and
larger, except, perhaps in the vicinity of second order ph
transitions.

The jump diffusion coefficient is calculated by the Gree
Kubo expression@3,5#

DJGK5 lim
t→`

1

2tnd K S (
i 51

n

Dr i D 2L , ~53!

where Dr i stands for the displacement of thei th particle
from its initial ~at t50! position andt is the number of MCS.

B. Equilibrium properties

In Fig. 1 the chemical potential~absorption! isotherms are
shown. The temperature is given in reduced unitsT/Tc ,
where the critical temperature for a SC lattice is taken eq
to the best estimates from the high temperature free en
series expansion@45# (Tc51.128uJu/kB), which is the result
of the SCDA Eq.~45! as well. At all temperatures considere
~from 0.95 till 6.0! the SCDA and MC simulation results ar
in a good agreement.

FIG. 1. Chemical potential versus concentration atT/Tc50.95
~1!; 1.05 ~2!; 1.2 ~3!; 2.0 ~4!. The solid lines represent the SCD
results, the full circles are the MC simulation data~at M550!. The
data points in~a! are moved along the vertical axis by a factor of
from each other~the original position of each curve is determine
by m/uJu523 at c50.5!. Curve 1 in~b! is shown in larger scale
and its intersections with the linem53J define the phase transitio
points.
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Below Tc the SCDA chemical potential isotherms demo
strate the well known van der Waals kink. The Maxw
construction allows us to determine the phase transi
points. Figure 1~b! demonstrates that the chemical potent
isotherms have to be calculated with very high accuracy
order to construct reasonably the phase transition curve
T50.95Tc the deviations of the value ofm/J from 3.0 are of
the order of 0.01 when states between the phase trans
points are considered~see the range 0.2,c,0.8!. At tem-
peratures closer toTc these deviations are even smalle
However, the range of them/J values is at least two order
of magnitude larger. This is the reason why many appro
mate approaches are unable to accurately describe p
transitions in lattice gas systems.

On the other hand, the small isothermal deviations of
chemical potential from its constant value in the two-pha
region mean that the instability of the corresponding therm
dynamical states is very weak@in Fig. 1~a! the corresponding
part of the isotherm atT50.95Tc looks like a horizontal
line#. The canonical ensemble simulations of the lattice
on a square lattice have shown@46# that the system at ther
modynamically unstable conditions even at temperature
low asT50.6Tc creates structures from an initially homog
neous state rather slowly.

Due to the high accuracy of the SCDA we can use it
further analysis instead of the MC simulations. This is es
cially important for three-dimensional lattices for which ev
the equilibrium simulations are rather time consuming a
many characteristics are defined in terms of free energ
chemical potential derivatives.

The phase diagram displaying the first order lattice ga
lattice liquid phase transition is shown in Fig. 2. The dev
tions of the SCDA phase transition temperatures from
MC simulation data are within a percent that can be co
pared to roughly a 10% difference for the quasichemical
proximation in the absolute~see Fig. 2, curve 2! or in its own
~curve 3! critical temperature units.

At near critical temperatures the phase diagram for a
lattice is not as flat as for a two-dimensional square latt
Thus, the chemical potential isotherms at temperatu
slightly above critical~T/Tc51.05 and 1.2! in their central
parts show not as pronounced flat segments as for the
dimensional case~see@42#!. This feature is demonstrated i
Fig. 3 by the comparison of the thermodynamic factor for

FIG. 2. Phase diagram for a system of particles with NN attr
tive interactions on a SC lattice. The full circles are the MC sim
lation data. The curves represent the SCDA~1! and quasichemica
approximation@in units of the exactTc ~2! or specific for this ap-
proximationTcq51.094Tc ~3! critical temperatures# results.
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two systems. The inverse of the thermodynamic factor i
measure of concentration fluctuations. These fluctuations
much stronger in the two-dimensional system where low v
ues of the thermodynamic factor in a wide concentrat
range are well pronounced, especially on the lowest temp
ture isothermT51.05Tc . Such a difference disappears a
most completely atT52Tc .

The static correlations can be investigated by means
the distribution functions, i.e., the probabilities for particl
and vacancies to occupy different lattice sites. The probab
ties for two particlesF(1,1) or a particle and a vacanc
F(1,0) to occupy NN sites are plotted in Fig. 4. To demo

-
- FIG. 3. The thermodynamic factor~SCDA results! versus con-
centration for square~a! and simple cubic~b! lattices at reduced
temperaturesT/Tc51.05 ~1!, 1.2 ~2!, 2.0 ~3!, 6.0 ~4!, and for a
noninteracting lattice gas~5!.

FIG. 4. Distribution functions versus concentration~a! and in-
verse temperature~b!. Curves 1, 3, 5, 7, and 9 representF(1,1)/c2;
curves 2, 4, and 6 representF(1,0)/c(12c). ~a! T/Tc51.05
~curves 1,2!; 1.2 ~3,4!; 2.0 ~5,6!. ~b! c50.1 ~1,2!; 0.3 ~3,4!; 0.5
~5,6!; 0.7 ~7,4!; 0.9 ~9,2!. The solid lines represent the SCDA re
sults; the filled circles are the MC simulation data.
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strate the influence of interactions and make the results m
transparent at high concentrations, where their values
close to zero, these probabilities are divided by the Langm
gas valuesc2 andc(12c), respectively. It follows from the
symmetry arguments that the probabilityF(0,0) for two NN
sites to be vacant at concentrationc is equal toF(1,1) at
concentration 12c. Again, these probabilities agree wit
MC simulation results within a percent. We can see that
deviations from the Langmuir gas correlation functions
considerably reduced as compared to the square lattice a
same reduced temperatures~see Fig. 5 in Ref.@42#!. The
reason is that the critical temperature for the tw
dimensional system (0.567uJu/kB) is considerably lower due
to the difference in the number of nearest neighbors.

C. Diffusion coefficients and activation energies

Equation~33! relates the jump and chemical diffusion c
efficients to equilibrium lattice gas characteristics except
a rather trivial factor representing the diffusion coefficient
zero concentration or the transition rate of a single part
on the lattice. As equilibrium characteristics are represen
by SCDA quite accurately, the comparison of the jump d
fusion coefficients calculated by Eq.~33! and simulated ac-
cording to Eq.~53! allows one to test whether the contrib
tion of the memory matrixQ can be neglected as it wa
suggested in Sec. II. Figure 5 demonstrates that this is v
for the system under consideration. Although we have u

FIG. 5. The jump diffusion coefficient versus~a! concentration
at T/Tc50.95 ~1!; 1.05 ~2!; 1.2 ~3!; 2.0 ~4!; 6.0 ~5! and~b! inverse
temperature atc50.1 ~1!; 0.3 ~2!; 0.5 ~3!; 0.7 ~4!; 0.9 ~5!. The lines
are the calculation results according to Eq.~37!; the full circles are
the MC simulation data.
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lattices with size 303527000 lattice sites and runs as long
105 MCS performing averaging over 500–2000 realizatio
the MC simulation data fluctuate around the curves co
sponding to Eq.~33!. Probably, at better MC simulation sta
tistics the coincidence between the data could be even be

Statistical mechanics calculations were in part perform
for temperatures and concentrations below the coexiste
curve shown in Fig. 2 that correspond to thermodynamica
metastable or unstable states. Up to temperatures as lo
0.8Tc the distribution functions and jump diffusion coeffi
cient in Figs. 4~b! and 5~b! do not show any indication of the
phase transition. In the past@46# MC simulations of an un-
stable two-dimensional system has shown that altho
mean square displacements of particles are not linear fu
tions of time, the deviations from the linear behavior are n
strongly pronounced at temperatures slightly below critic
In the present MC simulations atT50.95Tc @not shown in
Fig. 5~a!# the jump diffusion coefficient agrees with the r
sults of Eq.~33! with the same accuracy as atT51.05Tc .
Thus, the jump diffusion coefficient calculated, for examp
by Green-Kubo Eq.~53! can be a measure of mobility of th
system in strongly nonequilibrium conditions. The chemic
diffusion coefficient does not exist at unstable conditions
all because the thermodynamic factor becomes negative

Equation~33! allows us to investigate the concentratio
and temperature dependence of the diffusion coefficient
detail. Figure 5~b! shows that the jump diffusion coefficien
obeys Arrhenius behavior almost perfectly at a half cover
while it deviates at other concentrations. The measure
such deviations may be understood by considering the t
perature dependence of the diffusion activation energy.

The activation energy for diffusion can be defined as

U52]~ ln D !/]b. ~54!

This quantity is widely used for the interpretation of expe
mental diffusion results and, therefore, we will discuss it
some detail.

For the kinetic diffusion coefficient Eq.~33! yields

UJ52]~ ln DJ!/]b52m2b~]m/]b!2] ln F~0,0!/]b.
~55!

The dependence of the activation energy on the inverse t
perature and concentration is presented in Figs. 6~a! and

FIG. 6. The jump diffusion activation energies~SCDA results,
in units of the interaction parameteruJu! versus~a! concentration at
T/Tc50.95 ~1!; 1.05 ~2!; 1.2 ~3!; 2.0 ~4!; 6.0 ~5! and ~b! inverse
temperature atc50.1 ~1!; 0.3 ~2!; 0.5 ~3!; 0.7 ~4!; 0.9 ~5!.
8-8
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6~b!, respectively. It is obvious that~i! the temperature de
pendence of the activation energy is largely pronounce
low (c'0.1– 0.2) and high (c'0.8– 0.9) lattice concentra
tions, and ~ii ! the activation energy at low temperatur
changes more significantly at low and high concentrati
and is nearly independent of coverage at middle concen
tions. Due to the fact that only pairwise interactions are c
sidered~maintaining the particle-hole symmetry of the co
responding lattice gas Hamiltonian! the chemical potential is
symmetric around half coverage at any particular tempe
ture. The corresponding part of the activation energy is r
resented by the symmetrically arranged curves. However
contribution from the distribution function slightly violate
the symmetry of the activation energy distribution.

At low concentrations the activation energy approac
zero while in the opposite limiting case of high concent
tions the limiting value of 5J is reached. Five is the maxima
number of nearest neighbors still permitting a particle ju
in analogy with the two-dimensional case discussed in R
@28#, @36# where this number is equal to 3. At high temper
tures the concentration dependence of the activation en
is approximately linear,UJ>5uJuc @see Fig. 6~b! for T
56Tc#. Deviations from this linear dependence at low
temperatures are not as pronounced as for the lattice gas
square lattice~see Ref.@36#!.

According to Eqs.~32!, ~33! the total activation energy
consists of the external site potentialu, which enters the
Langmuir gas diffusion coefficientD0 @see Eq.~9!#, and the
contribution of the interparticle interactions that is discuss
above. Evidently,D0 obeys Arrhenius behavior. Thus, th
deviations of the jump diffusion coefficient from Arrheniu
behavior become significantly weaker if the site potentia
considerably stronger than the interparticle interact
(uuu@uJu).

At the same time, the chemical diffusion coefficient de
ates from the Arrhenius law much more strongly@Fig. 7~a!#
than the jump diffusion coefficient due to the thermodynam
factor, which demonstrates strongly non-Arrhenius behav
The activation energy for chemical diffusion depends
temperature much more than for jump diffusion@see Fig.
7~b!#, especially at intermediate concentrations and not
high temperatures. Concentration fluctuations create
tremely high barriers for collective diffusion but do not in
fluence the jump diffusion coefficient. It is evident that t

FIG. 7. SCDA results for the chemical diffusion coefficient~a!
and its activation energy~b! versus inverse temperature.c50.1 ~1!,
0.3 ~2!, 0.5 ~3!, 0.7 ~4!, 0.9 ~5!. From the low temperature side th
curves are terminated at the phase transition line, see Fig. 2.
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chemical diffusion activation energy as a function of conce
tration exhibits a bell-shaped structure with a maximum a
half coverage. The maximum strongly increases when te
perature decreases. Such a bell-shaped structure was
scribed by Uebing and Gomer@28# on the basis of the MC
simulation results for the two-dimensional square lattice g

V. CONCLUSIONS

Thermodynamics and diffusion of the lattice gas w
nearest neighbor attractive interactions on a simple cubic
tice are investigated by statistical mechanics and Mo
Carlo simulation means. It is shown that the SCDA resu
coincide within 1% with the Monte Carlo simulation data f
the lattice gas equilibrium characteristics~the chemical po-
tential and probabilities for particles and vacancies to occ
nearest neighbor sites!. The jump diffusion coefficient calcu
lated by Eq.~33! accurately reproduces the MC simulatio
data, too. This implies that the contribution to the diffusi
coefficients of the specific statistical memory effects rep
sented by the time correlation matrix of the subtracted flu
is negligibly small and can be disregarded. Thus, SCDA a
Eq. ~33! can be used to investigate the lattice gas equilibri
and diffusion characteristics with good accuracy.

The chemical potential along near critical isotherms do
not contain as pronounced flat segments as for the t
dimensional square lattice gas and concentration derivat
of the chemical potential are not so small as well. Thus,
the lattice gas on a SC lattice the concentration fluctuati
at near critical conditions are not as strong as in the cas
the square lattice gas.

Although the jump diffusion activation energy is withi
the range~0 to 5J! for the lattice gas on a SC lattice com
pared to the range~0 to 3J! on a square lattice, deviations o
the former from Arrhenius behavior are less pronounced
can be attributed to the considerably higher critical tempe
ture in the three-dimensional case. The temperature de
dence of the chemical diffusion coefficient is strongly no
Arrhenius except for the cases of low and hig
concentrations or high temperatures.

Finally, we note that the jump diffusion coefficient is
characteristic quantity for which it is not required to be c
culated at equilibrium. In Eq.~53! the averaging over a non
equilibrium ensemble can be performed and the result m
be considered to represent a mobility characteristic for a n
equilibrium system.
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APPENDIX A

In the canonical ensemble the explicit expression for
mean value entering Eq.~25! is given by
8-9
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^wji n̂i~12n̂ j !&5Qn
21(

a
wji n̂i~12n̂ j !exp~2bUna!,

~A1!

Qn5(
a

exp~2bUna!, ~A2!

whereQn is the partition function, andUna the interaction
energy of the system ofn particles in a microscopic statea.
The summation is carried out over all states of the syste

In fact, « i in Eqs. ~8! and ~10! represents the interactio
energy of a particle on sitei with the othern21 particles of
the system. Hence

wji exp~2bUna!5w0 exp@2b~Una2« i !#

5w0 exp~2bUn21,a!, ~A3!

i.e., the energyUn21,a of n21 particles appears here. In th
last expressiona designates the distribution ofn21 particles
over N21 lattice sites~site i cannot be occupied by thes
particles!. It is possible to sum over the values ofn̂i ~0 and 1!
in Eq. ~A1! and to rewrite the latter in the form

^wji n̂i~12n̂ j !&5w0~Qn21 /Qn!(
a

~12n̂ j !

3@exp~2bUn21,a!/Qn21# ~A4!

because the energyUn21,a does not depend on the state
site i. The expression in the square brackets in Eq.~A4! can
be interpreted as a normalized distribution function of
system ofn21 particles overN sites under the condition tha
site i is vacant. Having in mind that

Qn21 /Qn5exp~bm! ~A5!

and that sitej is a NN of sitei Eq. ~A4! leads to the final
form of Eq. ~32!.

APPENDIX B

It is convenient to simplify notations introducing quan
ties
on

06610
.

e

Xi
~k!5exp@2bw~k!~ n̂i !#, ~B1!

where i designates the state of the lattice site@occupied (i
51) or vacant (i 50)# while the superscriptk refers to the
mean potentials to the nearest (k51) or next nearest (k
52) neighbors. Then, the variational condition leads to
algebraic set of equations~in more detail the calculations fo
a square lattice are described in Ref.@42#!

Xi
~k!5(

j 50

1 Wi j
~k!cj

Xj
~k! , i 50,1, k51,2 ~B2!

with the kernels

W11
~1!5exp~2bJ!, W10

~1!5W01
~1!5W00

~1!51, ~B3!

Wi j
~2!5Bi j

2 , Bi j 5 (
k50

1 ckWik
~1!Wjk

~1!

Xi
~1!Xj

~1!~Xk
~1!!2 . ~B4!

The solution of Eq.~B2! can be written in a closed form

X1
~k!5X0

~k!hk , ~B5!

where

X0
~1!5Ac01c1 /h1, X0

~2!5AV00c01~V01c1 /h2!,
~B6!

h152
c12c0

2c0
1AS c12c0

2c0
D 2

1
c1

c0
W11

~1!, ~B7!

h25
2V01~c12c0!1AV01

2 ~c12c0!214V00V11c0c1

2V00c0
,

Vi j 5Wi j
~2! . ~B8!

Although NN interactions are only taken into account t
mean potential for the next nearest~second! neighbors is
different from zero due to statistical effects, which manife
themselves through the kernelWi j

(2) in Eq. ~B2!.
a
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