
PHYSICAL REVIEW E, VOLUME 63, 021110
Influence of auto-organization and fluctuations on the kinetics
of a monomer-monomer catalytic scheme
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We study analytically the kinetics of an elementary bimolecular reaction scheme of the Langmuir-
Hinshelwood type taking place on ad-dimensional catalytic substrate. We propose a general approach that
takes into account explicitly the influence of spatial correlations on the time evolution of the mean particle
density. With this approach, we recover some known results concerning the time evolution of the mean particle
density and establish others.
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I. INTRODUCTION

Catalytically activated processes play a significant role
numerous technologies as they serve to produce requ
products from species that are nonreactive under nor
physical conditions. These chemically stable species m
however, enter into reaction in the presence of some t
substance—the catalytic substrate@1–3#. Despite the wide-
spread use of such processes, the knowledge of the und
ing physics and chemistry still rests largely on phenome
logical ideas and prescriptions, and thus remains a challe
for fundamental research@1–5#.

At the simplest, mean-field level of description, reacti
kinetics theory presumes that the reaction rate should be
sidered as the product of the reactant densities and the
constant, which is dependent on the nature of the bind
forces and on the particle dynamics. This rate constan
proportional to the hopping rate if the process is diffusi
controlled, or to the reaction frequency, in case the reac
is kinetically controlled@6–9#. Hence, a clear cut separatio
is presumed to exist between the local variables that coul
derived, say, from quantum mechanics, and collective v
ables, expressed in the most simple way as the produc
mean densities of the particles involved.

One of the most significant recent developments in
field has been the recognition of the substantial importa
of the multiparticle effects, spatial fluctuations, and se
organization, as opposed to conventional local energetic c
siderations, which emphasized the purely chemical c
straints and focused on refined descriptions of the elemen
reaction. Subsequently, statistical physics concepts were
troduced in order to describe anomalous fluctuation-indu
behaviors of noncatalytic chemical reactions@10–27# and
simplest catalytic schemes@28–38#, as well as to gain a bet
ter understanding of such collective phenomena as wave
mation, presence of excitable media, or stochastic aggr
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tion in chemical systems~see Refs. @30,34,35#, and
references therein!. One conclusion that can be drawn fro
the statistical physics approach is that fluctuations, eit
spatial or temporal, may drive the reactive system into a
of new states that cannot be understood and describe
terms of mean-field kinetic equations.

In this paper, we discuss in detail the influence of spa
fluctuations, statistical self-organization and random dif
sive motion of reactants on the kinetics of catalytic reactio
using as a particular example the Langmuir-Hinshelwo
type reaction scheme.~See Fig. 1.! This reaction process
which is also often referred to as the monomer-monom
catalytic scheme, involves two different kinds of speciesA
andB, which are deposited~continuously in time with mean
intensity I ) onto the catalytic substrate by some extern
source; then, the particles start to diffuse along the subst
and react at encounters forming an inert reaction producO,
A1B→O, which is immediately removed from the system
Our aims here are twofold. First, we show that this see
ingly simple catalytic reaction@which has, in fact, severa
practical applications~see, e.g., Refs.@28,29#!# shows quite a
rich behavior and represents an ideal illustrative example

Sil-

FIG. 1. Langmuir-Hinshelwood reaction on a two-dimension
catalytic substrate. Black and gray spheres denote particles ofA and
B species, respectively;~1! describes the situation in which anA
and aB appear within the reactive distance from each other a
may enter into reaction.
©2001 The American Physical Society10-1



b
rl
tic
o
a
th
I

sl
a
ti

th
w

n
tic
ne
f
i.

rie

ro

th
ct
tio
tw

he
e
d
te
ho
u

at
,
ri

cl
n

ee
a
in

on

he
ve
ic
re
de

e

m

u

to

the
wn
me
lts
r-

ence
the

a

te-
the

u-

isti-
er

nts
t
qual
lly

wo
n
g

ry
al
e

ng
ly

’’
of

are

cle

e-

and

e

ther
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the statistical effects in the reaction kinetics, which may
generic to more complicated schemes involved in real wo
catalytic processes. Second, we develop a unified analy
description that takes into account explicitly the influence
spatial correlations, dimensionality of space, and the w
that the particles are introduced into the reaction bath on
time evolution of observables—mean particle densities.
terms of this approach, we recover some of previou
known results and obtain others. We also note that our
proach can be routinely generalized to describe the kine
of more complex reaction schemes.

We focus here on several different aspects of
Langmuir-Hinshelwood reaction scheme. In particular,
address the question of how the kinetics depends on the
mensionalityd of the reactive system. In addition to the sta
dard Langmuir-Hinshelwood model in which the cataly
substrate is a two-dimensional flat surface, we analyze ki
ics of A1B→0 reactions followed by an external input o
reactive species in one- and three-dimensional systems,
the situations appropriate to reactions in capillary geomet
@39# and annealing of the radiation damage in solids@14#.
We show that the monomer-monomer catalytic reaction p
ceeds quite differently in low-dimensional (d51,2) and
three-dimensional systems. In addition, we examine how
method of introducing the particles into the system affe
the properties of stationary states and also how these sta
ary states are approached in time. We consider here
different types of external inputs; in the first one~case I!, the
A andB particles are introduced independently of each ot
at random times and at random positions in space, whil
the second case~case II!, anA and aB species are introduce
in correlated pairs of a fixed radius, the pairs being injec
at random times and at random positions in space. We s
that the way of input does matter significantly and may res
in a completely different behavior.

The paper is structured as follows. In Sec. II we formul
the model, introduce a general analytic approach, and
terms of this approach, derive closed-form equations desc
ing the time evolution of the mean densities of the parti
and pairwise correlation functions. In Sec. III we prese
solutions to these equations in one-, two-, and thr
dimensional systems corresponding to different ways of p
ticles injection to the reaction bath. Finally, we conclude
Sec. IV with a brief summary of our results and discussi

II. DEFINITIONS AND BASIC EQUATIONS

In this section we present a kinetic description of t
monomer-monomer catalytic scheme involving diffusi
particles in terms of a certain analytical approach, wh
takes explicitly into account the influence of pairwise cor
lations on the time evolution of mean densities; such a
scription was first proposed in Ref.@11#, which analyzed the
effects of fluctuations on the kinetics ofA1B→O reactions
and yielded the celebratedt2d/4 law for the decrease of th
mean particle density. Subsequent works@24,26,27,40–48#
extended this approach to more general reaction sche
~e.g., reversible and coagulation reactions!, three-body and
catalytic reactions, and also included the possibility of m
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tual long-ranged interparticle interactions.
Here we will focus on the application of the approach

the analytical description of theA1B→O reaction kinetics
in systems with a continuous, random external input of
reactive species. We will recover some previously kno
results obtained for the monomer-monomer catalytic sche
involving diffusive monomers and will establish other resu
concerning primarily the long-time relaxation of mean pa
ticles density to their steady-state values and the depend
of this steady-state densities and pairwise correlations on
system parameters.

We start with the formulation of the model. Consider
d-dimensional reaction bath of volumeV @we suppose thatV
is sufficiently large such that we can discard different fini
size effects, e.g., hard-core exclusion between particles,
termination of reaction within a finite time interval or sat
ration ~poisoning!# in which A and B particles are continu-
ously introduced by an external random source. The stat
cal properties of the source will be defined below. Aft
injection into the system, theA andB particles begin to dif-
fuse. For simplicity, we assume that their diffusion consta
are equal, i.e.,DA5DB5D. It will be made clear below tha
such a description is also appropriate to the case of none
diffusivities; the calculations in this case are only essentia
more lengthy even in absence of external particle input@49#.
Now, the reaction event is defined as follows: When any t
A andB particles approach each other at a fixed separatioR
~the reaction radius!, they may enter into reaction, formin
~an inert with respect to the reaction! reaction productO. The
recombination upon an encounter ofA andB happens with a
finite probability p ~with probability q512p, the particles
can be reflected! that defines the constant of an elementa
reaction,K. This constant describes the intrinsic chemic
activities of A and B molecules and is dependent on th
nature of the intramolecular and intermolecular bindi
forces. In the following we will suppose that this pure
‘‘chemical’’ constant is knowna priori. Furthermore, we
will assume thatK is large~i.e., the probability of reflection
is low! and thus will emphasize the ‘‘statistical physics
effects on the reaction kinetics, rather than the effects
chemical constraints. Consequently, all the factors that
exponentially small inK will be neglected here.

We now define the statistical properties of the parti
injection more precisely. LetI A(r ,t) andI B(r ,t) be the local,
at the point with the vectorr, intensities of the production
rates of A and B particles. We assume that the volum
averaged values of the production rates obey

1

VEV
drI A~r ,t !5

1

VEV
drI B~r ,t !5I , ~1!

which means that particle generation is steady in time
the mean production ratesI of A andB particles are equal.

To define the correlations in the production ratesI A,B(r ,t)
we consider two different situations. In the first one~case I!,
we suppose thatA and B particles are introduced into th
reaction bath statistically independent of each other@16–24#;
that is, the fluctuations of the sources are correlated nei
in space nor in time. In this case, we have
0-2
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1

VEV
drI A~r ,t !I A~r 1l,t1t!2I 25Id~l!d~t!, ~2a!

1

VEV
drI B~r ,t !I B~r 1l,t1t!2I 25Id~l!d~t!, ~2b!

1

VEV
drI B~r ,t !I A~r 1l,t1t!50. ~2c!

In the second case we suppose thatA andB particles are
introduced as correlatedA-B pairs,1 separated by a fixed
distancelg @17,22–24#. This type of external generatio
may arise in chemical systems in which a complex reac
product O is continuously forced to break up by extern
radiation~say, laser pulses! into correlated pairs of the com
ponent molecules. Here the radius of pairlg will be mainly
determined by the difference of energy ‘‘attributed’’ toO
and the energy required to dissociate the reaction prod
Another example in which such pairs are produced is
annealing of radiation damage in solids. When the solid
irradiated, atoms are knocked out of their places in the lat
to become interstitials, leaving behind a vacancy; then
vacancies and interstitials diffuse and recombine. In cas
different A-B pairs are statistically uncorrelated, and occ
with an average intensityI, at random positions in the reac
tion bath. Then, the fluctuations of the sources obey@17,41#

1

VEV
drI A~r ,t !I A~r 1l,t1t!2I 25Id~l!d~t!, ~3a!

1

VEV
drI B~r ,t !I B~r 1l,t1t!2I 25Id~l!d~t!, ~3b!

1

VEV
drI B~r ,t !I A~r 1l,t1t!5gd~lg!Id~ ulu2lg!.

~3c!

In Eq. ~3c!, the parametergd(lg) is the normalization factor
that arises because of different possible angular orientat
of a givenA-B pair in ad-dimensional continuum; the valu
of gd(lg) depends on the dimensionality of the reaction b
and ford51, 2, and 3 equals 1, (2plg)21, and (4plg

2)21,
respectively.

Let CA(r ,t) and CB(r ,t) denote the local densities ofA
and B particles at a point with vectorr at time t. The time
evolution of local densities due to the diffusion of speci
their reaction, and an external production can be descr
by the following reaction-diffusion equations@16,21,22#:

ĊA~r ,t !52gd~R!KE
V
dr8d~ ur 2r 8u2R!CA~r ,t !CB~r 8,t !

1DD rCA~r ,t !1I A~r ,t !, ~4!

1The particles in the pair can, of course, diffuse apart after in
tion.
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ĊB~r ,t !52gd~R!KE
V
dr8d~ ur 2r 8u2R!CB~r ,t !CA~r 8,t !

1DD rCB~r ,t !1I B~r ,t !, ~5!

where the symbolD r denotes thed-dimensional Laplace op
erator acting on the spatial variabler, and the integration
with the delta functiond(ur 2r 8u2R) accounts for all pos-
sible orientations of anA-B pair, at which an elementary
reaction act can take place.

Now, the experimentally accessible property is not, ho
ever, the local density, but rather its volume-averaged va

C~ t !5
1

VEV
drCA,B~r ,t !. ~6!

To find an equation that governs the time evolution ofC(t),
let us first represent the local densities in the form

CA,B~r ,t !5C~ t !1dCA,B~r ,t !, ~7!

where dCA,B(r ,t) denote local deviations of the densitie
from their mean values. By definition,

1

VEV
drdCA,B~r ,t !50. ~8!

Then, substituting Eq.~7! into Eqs.~4! and~5! and taking the
volume average, we get the following equation:

Ċ~ t !52K@C2~ t !1GAB~ ulu5R,t !#1I , ~9!

in which GAB(l,t) stands for the pairwise, central correl
tion function of the form

GAB~l,t !5
1

VEV
E

V
drdr8d~r 2r 82l!dCA~r ,t !dCB~r 8,t !,

~10!

the variablel being ad-dimensional correlation parameter
Therefore, Eq.~9! shows that the time evolution of th

mean particle density is coupled to the evolution of the pa
wise correlations in the reactive system. Neglecting th
correlations, i.e., settingGAB(l,t)50, which is equivalent to
the traditional, ‘‘mean-field’’ assumption that the spatial d
tribution of particles is uniform, we obtain the customar
textbook ‘‘law of mass action.’’ Such an approximation pr
dicts a linear growth of the mean density at relatively sh
times, i.e.,

C~ t !}It , ~11!

and, in the large-t limit, an exponentially fast relaxation to
the equilibrium densityC(t5`)5(I /K)1/2, i.e.,

C~ t !}S I

K D 1/2

@12exp$22~ IK !1/2t%1•••#. ~12!

The short-time behavior of Eq.~11! is quite reasonable
and describes the regime in which the particles are me
added into the~initially empty! system by the external sourc
and the reaction between them is negligible, i.e., the reg
in which particle density remains very small. As for the an
lytical prediction in Eq.~12!, one may question its validity
-

0-3
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on intuitive grounds. First, diffusion is the only mechanis
to bring particles together and let them react. This motion
essentiallyd dependent, whilst Eq.~12! is independent of the
dimensionality of the reaction bath. Second, it shows t
with an increase of the chemical reaction constantK the
equilibrium density tends to zero, which is apparently
artificial behavior. Below we will show that the actual b
havior of C(t) as t→` is very different, depending essen
tially on the dimensionality of the reactive system and a
on the way that the particles are injected into the system

We turn now to Eq.~9! and continue our analysis of th
binary reaction kinetics taking into account the influence
pairwise correlations on the time evolution ofC(t). From
Eqs.~4!, ~5!, and~7!, we find that the system of equations f
the time evolution of the pairwise correlation functions rea

ĠAB~l,t !52KC~ t !@2GAB~l,t !1GAA~l,t !1GBB~l,t !#

12DDlGAB~l,t !1I AB~l!1TAB~l!, ~13!

ĠAA~l,t !522KC~ t !@GAB~l,t !1GAA~l,t !#

12DDlGAA~l,t !1Id~l!1TAA~l!, ~14!

ĠBB~l,t !522KC~ t !@GAB~l,t !1GBB~l,t !#

12DDlGBB~l,t !1Id~l!1TBB~l!, ~15!

where Dl denotes the Laplace operator acting on
d-dimensional variablel, the symbolI AB(l) in Eq. ~13!
describes the correlations in the production rates ofA andB
particles; it is equal to zero in case I~uncorrelated generatio
of particles! and to

I AB~l!5gd~lg!Id~ ulu2lg! ~16!

in case II, when the particles are introduced into the sys
in correlatedA-B pairs. Finally, in Eqs.~13!–~15! the terms
Ti j denote the third-order correlation functions.

The time evolution of the pairwise correlations is coupl
to the evolution of the third-order correlations, which,
turn, depends on the correlations of the fourth order. T
infinite hierarchy of equations coupled with the nonline
reaction-diffusion Eqs.~4! and ~5! requires one to resort to
some approximate methods@51#.

The most commonly used method of truncating the h
archy is to approximate the third-order correlation functio
in terms of C(t) and Gi j (l,t) @50#. Such an approach, a
was first noticed in Ref.@14#, results in the Smoluchowski
type approximate results with improved numerical coe
cients and is appropriate for the description of the sing
species reactionsA1A→O, but not for the description o
reactions involving two different types of particles. Th
problem is that such an approximation misses an impor
conservation law, which is specific forA1B→O reactions.
Namely, the reaction conserves the differenceZ(r ,t) of local
densities,Z(r ,t)5CA(r ,t)2CB(r ,t), which changes only as
the result of the diffusion of particles and thus is a pu
diffusive mode of the system. Conservation ofZ(r ,t) entails,
in turn, the conservation of the combination of pairwise c
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relation functions, S2(l,t)5GAA(l,t)1GBB(l,t)
22GAB(l,t), which is also a pure diffusive mode.2 Conse-
quently, only truncation schemes that do not violate the c
servation law can correctly describe the behavior of the
nary reaction@14#.

The simplest nontrivial truncation scheme, which pr
serves the conservation laws, was first proposed in Ref.@11#.
In this scheme the third-order correlation functions, i.e.,Ti j ,
were set equal to zero. This truncation, as shown in R
@24# and@40–42#, is equivalent to the assumption that field
dCA,B(l,t) have a Gaussian distribution. Then, the four
order correlation functions automatically decouple into t
product of pairwise correlation functions and the third-ord
correlations are equal to zero. Such an approach leads to
instance, the correct long-time decay law of the densit
i.e., thet2d/4 law, but fails to reproduce correctly the inte
mediate time behavior; at intermediate times, this appro
predicts essentially the same behavior as the formal kin
‘‘law of mass action’’ and thus disregards the effects of d
fusion at intermediate times.

This shortcoming has been revisited and improved
Refs.@40–42#, where it was shown that correlation function
of the third order are small only in the limitulu.R, while in
the domainulu'R, they are singular and this singularity ha
an impact on the behavior of the pairwise correlation at
intermediate times. In a discrete-space picture, essentia
scales ulu'R, the third-order correlation functions hav
been computed explicitly@41,51#,

TAA'TBB'TAB'gd~R!Ċ~ t !d~ ulu2R!. ~17!

Substituting Eq.~17! into Eqs.~13!–~15! yields a closed,
with respect toC(t) and Gi j (l,t), system of equations. To
solve it, it is expedient to represent the pairwise correlatio
in the form

Gi j ~l,t !5Ĝi j ~l,t !1gi j ~l,t !, ~18!

where Ĝi j (l,t) denotes a ‘‘singular’’ part, which account
merely for the behavior of the third-order correlations, a
gi j (l,t)—the ‘‘fluctuational’’ part, which accounts for the
fluctuation spectrum of the external source and fluctuati
stemming from reaction and diffusion.

The ‘‘singular’’ part of the pairwise correlation function
was determined in Ref.@41#. In particular, at sufficiently
large times the leading behavior ofĜi j (ulu5R,t) is

Ĝi j ~R,t !'Ċ~ t !~pt/8D !1/2, ~19!

in one-dimensional systems,

Ĝi j ~R,t !'Ċ~ t !
ln~Dt/R2!

8pD
~20!

and

Ĝi j ~R,t !'Ċ~ t !8pDR ~21!

2One may readily verify thatTAA1TBB22TAB is exactly equal to
zero.
0-4
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in two- and three-dimensional systems, respectively.
Now, inserting Eqs.~19!–~21! into Eq. ~9!, we obtain the

following equation for the time evolution of the density:

Ċ~ t !52
KKS~d!

K1KS~d!
@C2~ t !1gAB~ ulu5R,t !#

1
I

11K/KS~d!
, ~22!

whereKS(d) obeys, ast→`,

KS~d51!'S 8D

pt D
1/2

, ~23!

KS~d52!'
8pD

ln~Dt/R2!
, ~24!

and

KS~d53!'8pDR. ~25!

One may readily notice that in three dimensions
KS(d), Eq. ~25!, coincides exactly with the so-called ‘‘diffu
sive’’ Smoluchowski constant; a reaction constant that w
first calculated by von Smoluchowski@6# in his approximate
description of the effects of diffusion on the chemical rea
tions kinetics. This constant accounts for, heuristically,
‘‘resistivity’’ of random, diffusive transport of particles with
respect to the reaction@51#. Employing the Smoluchowsk
method, the analogues of such a constant have been obt
in Ref. @52# for one- and two-dimensional systems. Rema
ably, our results in Eqs.~23! and ~24! coincide with those
obtained in Refs.@9# and@52#. We note also that the prefac
tor before the brackets in Eq.~22!, i.e., the ratioKapp
5KKS(d)/@K1KS(d)#, is the so-called effective or appa
ent reaction constant, which was first derived for thre
dimensional systems in Ref.@7#. Therefore, accounting fo
the ‘‘singular’’ part of the third-order correlation functio
and subsequent extraction of the ‘‘singular’’ part in the pa
wise correlators leads us to results equivalent to those
tained with the Smoluchowski approach.

Hence, Eq.~12!, in which one setsgAB(ulu5R,t)50 and
KS(d)5`, reduces to the formal kinetic ‘‘law of mass a
tion,’’ while settinggAB(ulu5R,t)50 and usingKS(d) as in
Eqs.~23!–~25!, one obtains the effective kinetic equation
the Smoluchowski-type approach. Below, we proceed
show that by taking into account the time evolution of t
pairwise correlations, i.e., the termgAB(ulu5R,t), one ar-
rives at completely different physical behavior compar
with that predicted by the formal kinetic and Smoluchows
approaches.

Finally, we obtain the following system of equation
obeyed by the ‘‘fluctuational’’ part of the pairwise correl
tion functions:

ġAB~l,t !52KC~ t !@2gAB~l,t !1gAA~l,t !1gBB~l,t !#

12DDlgAB~l,t !1I AB~l!, ~26!
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ġAA~l,t !522KC~ t !@gAB~l,t !1gAA~l,t !#

12DDlgAA~l,t !1Id~l!, ~27!

ġBB~l,t !522KC~ t !@gAB~l,t !1gBB~l,t !#

12DDlgBB~l,t !1Id~l!. ~28!

Equations ~26!–~28!, accompanied by Eq.~22!, are now
closed with respect to the mean densities and pairwise
relations, and allow the computation of the time evolution
the monomer-monomer reaction scheme.

III. KINETICS OF THE MONOMER-MONOMER
REACTION SCHEME

Below we will analyze solutions of Eqs.~22!–~28! in sys-
tems of different dimensionalities and with different types
external particle generation. The derivation of results in c
of one-dimensional systems will be presented in detail. T
steps involved for such a derivation in higher dimensions
essentially the same and here we will merely discuss
results.

A. Low-dimensional systems

Let us start with the case of one-dimensional systems
which an external source produces uncorrelatedA andB par-
ticles.

We note first that the system of Eqs.~26!–~28! possesses
two integrable combinations

S2~l,t !52gAB~l,t !2gAA~l,t !2gBB~l,t !, ~29!

which is related to the conserved propertyZ(r ,t), and

S1~l,t !52gAB~l,t !1gAA~l,t !1gBB~l,t !. ~30!

These integrable combinations obey

Ṡ2~l,t !52DDlS2~l,t !22Id~l!, ~31!

which is thus the pure diffusive mode of the system, n
affected by the reaction, and

Ṡ1~l,t !52DDlS1~l,t !24KC~ t !S1~l,t !12Id~l!.
~32!

The desired property, i.e., the correlation functiongAB(l,t)
that enters Eq.~22!, may then be expressed in terms of the
integrable combinations as

gAB~l,t !5
1

4
@S2~l,t !1S1~l,t !#. ~33!

Consider now the solutions to Eqs.~31! and ~32! in one-
dimensional systems. Applying the Fourier transformat
over the variablel,

S6~v,t !5
1

A2p
E

2`

`

dl exp~ ivl!S6~l,t ! ~34!

to Eqs.~31! and~32!, and assuming that att50, noA andB
particles were present in the system, one readily gets tha
Fourier images of the integrable combinations as follow
0-5
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S2~v,t !52IA2

pE0

t

dt exp~22Dtv2!

52
I

Dv2A2p
@12exp~22Dtv2!# ~35!

and

S1~v,t !52IA2

pE0

t

dt expF22Dtv224KE
t

t

dt8C~t8!G .
~36!

Now we notice that in the extreme situation, when react
occurs at any encounter of anyA andB particle ~i.e., when
K5`) the second integrable combinationS1(v,t) vanishes
since the integral*t

t dt8C(t8) is obviously positively de-
fined. One can show, however, that even for the finiteKs the
influence ofS1(v,t) on the pairwise correlation function
Eq. ~33!, is not essential at large times and the domin
contribution togAB comes fromS2(v,t).

We note that settingt5` in Eq. ~35! we obtain that
S2(v,`) has a steady-state spectrum of the formS2(v,`)
;1/v2, i.e., the spectrum that has a nonintegrable singula
in low dimensions whenv→0. This singular behavior of the
fluctuation spectrum of the pairwise correlations in syste
with binary reactions followed by an external uncorrelat
production of the reactive species was first predicted, usin
different approach, in Refs.@16# and @17–19#. The authors
concluded that the steady state of such a system is hi
anomalous; since such a singularity is not integrable in lo
dimensional systems, the steady-state values of the
grable combinationS2(l,t), and thus of the correlation
function gAB , are infinitely large, which means that as tim
evolves the system progressively coarsens into the dom
containing particles of only one type.

Consider now how the integrable combinationS2(l,t)
and the correlation functiongAB grow in time. Taking the
inverse Fourier transformation of the first line in Eq.~35! we
get

S2~l,t !52
I

A2pD
E

0

t dt

At
exp~2l2/8Dt!. ~37!

The integrand in Eq.~37! is a bell-shaped function with a
maximum att5l2/8D. For boundedl, the bulk contribu-
tion to the integral comes from the algebraic tail 1/At and
consequently, the leading behavior att@R2/8D of the inte-
grable combination follows

S2~ ulu5R,t !52IA 2t

pD
. ~38!

Accordingly, the absolute value of the ‘‘fluctuational’’ pa
of the pairwise correlation function grows in time as

gAB~ ulu5R,t !52IA t

8pD
. ~39!
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Inserting this in Eq.~22! we notice that the source term o
the right-hand side of Eq.~22! vanishes ast→`, as does the
prefactor before the terms in the brackets—the apparent
constantKKS(d)/@K1KS(d)#; hence, the leading large-t as-
ymptotical behavior of the mean density in the Ricatti-ty
Eq. ~22! should be such that it compensates the nega
pairwise correlationsgAB(ulu5R,t) that grow by absolute
value. This implies that in the large-t limit

C~ t !'A2gAB~ ulu5R,t !, ~40!

which yields

C~ t !5I 1/2S t

8pD D 1/4

, ~41!

i.e., in one-dimensional systems with random uncorrela
generation of the reactive species the mean particle den
grows sublinearly in time. Note that this result is consiste
with the behavior observed numerically in Ref.@18#.

Consider now how the situation will be changed in t
case II, whenA andB particles are introduced into the rea
tive bath as correlated pairs. In this case we get that
Fourier image of the integrable combinationS2(l,t) obeys
the following equation:

Ṡ2~v,t !522Dv2S2~v,t !22I @12cos~vlg!#, ~42!

whose solution reads

S2~v,t !52
I @12cos~vlg!#

Dv2A2p
@12exp~22Dtv2!#.

~43!

We note now a very important feature of Eq.~43!; in striking
contrast to case I, the steady-state spectrum is no longer
gular in the limitv→0, but tends to a constant value,

S2~v→0,t5`!52
Ilg

2

A8pD
, ~44!

which means thatS2(l,`) and hence,gAB(l,`) are
bounded in systems of any dimensionality, and thus the w
defined steady-state mean densityC(t5`) should exist. We
notice, however, that the steady-state pairwise correla
function is proportional tolg

2 and thus may increase indefi
nitely with growth of lg . This unbounded growth is, o
course, quite consistent with the result in Eq.~39!, since the
limit lg→` corresponds to the case of uncorrelated gene
tion of particles.

Now, inverse Fourier transformation gives
0-6
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S2~l,t !52
I

A2pD
E

0

t dt

At
H expS 2

l2

8Dt D
2

1

2
expF2

~l2lg!2

8Dt G2
1

2
expF2

~l1lg!2

8Dt G J
52

Il

4DAp
H GF21/2,

l2

8DtG2
1

2
GF21/2,

~lg2l!2

8Dt G
2

1

2
GF21/2,

~lg1l!2

8Dt G J , ~45!

whereG(a,x) denotes the incomplete gamma function@53#.
Consider now the asymptotic behavior of the pairw

correlation function, Eq.~33!, for different values of param
etersl andlg at different values of timet.

We get from Eq.~45! that at sufficiently short times, whe
l@lg@8Dt, the pairwise correlation function obeys

gAB~l,lg ,t !52
3Ilg

2~8Dt !3/2

8ApDl4
expS 2

l2

8Dt D , ~46!

which shows that correlations drop off as a Gaussian fu
tion at large scales.

Now, at short scales, such thatl!lg and l!8Dt, and
when lg is sufficiently large,lg@8Dt, we obtain that
gAB(l,lg ,t) obeys Eq.~39!, which is not a surprising resul
since at such scales the correlations between injected
ticles should be irrelevant.

Within the opposite limit, when 8Dt!l!lg the cor-
relator follows

gAB~l,lg ,t !'2
I ~8Dt !3/2

16ApDl2
expS 2

l2

8Dt D , ~47!

which is reminiscent of the behavior in Eq.~46!.
Finally, in the limit when bothl!8Dt andlg!8Dt ~and

lg.l), i.e., in the limit of very long times, we find the
following asymptotic expansion

gAB~l,lg ,t !'2
I ~lg2l!

16D

3F12
lg

2

lApDt
expS 2

l2

8Dt D1O~1/t !G ,

lg>l, ~48!

where the symbolO(1/t) signifies that the correction term
decay with time as 1/t.

Equation~48! suffices to derive the large-t evolution of
the mean particle density in the case of generation by co
lated pairs, which reads

C~ t !'AI ~lg2R!

16D F12
lg

2

2RApDt
1O~1/t !G , lg>R.

~49!
02111
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Equations~49! reveals two surprising features; first, th
steady-state density turns out to be dependent both on
diffusion constant and on the radius of pairs, generated
the source. Such an unusual dependence is, of course, in
sistent with the predictions of the formal kinetic approac
based on the textbook ‘‘law of mass action.’’ Second, t
approach of particle densities to their steady-state va
obeys a power-law dependence, in a striking contrast to
exponential one, predicted both by the formal kinetic and
Smoluchowski approach.

To close this subsection let us briefly consider the beh
ior of solutions of the reaction-diffusion equations~22! and
~26!–~28! in two-dimensional systems.

In case I, we have from Eqs.~31! and ~33! that ast→`
the pairwise correlation function grows~by absolute value!
as

gAB~ ulu5R,t !'2I ln~Dt/R2!, Dt@R2, ~50!

and consequently, we get from Eq.~40! that in this case at
large times the mean particle density exhibits logarithmica
slow growth,

C~ t !'AI ln~Dt/R2!, ~51!

which is consistent with earlier predictions made in Re
@16,17# and @19#.

We turn next to analysis of case II. Here, we find th
gAB(ulu5R,`) behaves as

gAB~ ulu5R,`!'2I ln~lg!, ~52!

which implies that the steady-state density exists and
slowly growing function of the radius of the generated pai

C~ t5`!'AI ln~lg!. ~53!

Lastly, we find that the steady-state density is approached
an algebraic law

C~ t !2C~ t5`!'~Dt !21, ~54!

which should be contrasted to the exponential depende
predicted by mean-field descriptions.

B. Three-dimensional systems

As we have already mentioned, in case I, the steady-s
fluctuation spectrum is characterized by an essential sin
larity of the type 1/v2 as v→0. In three-dimensional sys
tems such a singularity is integrable, which ensures that
steady-state correlations exist and vanish asl→`. This cir-
cumstance allows us to claim@19# that segregation effect
are absent in three and higher dimensions.

Let us analyze now the form of these correlations. Solv
Eq. ~31! in three dimensions we find~up to the correction
terms that are exponentially small withK) that

gAB~l,t5`!'2
I

8pDl
, ~55!
0-7
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i.e., A-B correlations vanish with the distance between p
ticles l as 1/l, which shows that in the monomer-monom
catalytic scheme taking place in three-dimensional syst
the correlations in the steady-state show aquasi-long-range
order decaying only as the first inverse power of the int
particle distance. Straightforward calculations show t
quasi-long-rangeorder persists also in higher dimension
here, the decay of correlations is also algebraic and ob
gAB(l,t5`)'l2(d22). Therefore, we conclude that despi
the fact that segregation effects are absent in three-~and
higher-! dimensional systems, the steady state is still cha
terized by significant correlations.

Now, substituting Eq.~55! into Eq. ~22! we find the fol-
lowing expression for the steady-state density in three
mensions:

C~ t5`!5AS 1

8pDR
1

1

K D I , ~56!

which shows thatA-B correlations lead here to an effectiv
renormalization of the reaction constant in the steady st
i.e., C(t5`) has the formC(t5`)5AI /Kapp, whereKapp
is the above-mentioned apparent reaction constant@7#.

Consider now how such a steady-state is approache
long times. Expanding the solution of Eq.~31! near the
steady state, we find that pairwise correlations approach
steady state as a power law,

gAB~ ulu5R,t !'
I

8pDRF12
R

ApDt
1O~1/t !G , ~57!

which yields, in turn, a power-law relaxation of the me
particle density to the steady state

C~ t !2C~ t5`!'~Dt !21/2. ~58!

Therefore, in contrast to low-dimensional systems,
three-dimensional systems with random uncorrelated gen
tion of the reactive species, the essential singularity in
fluctuation spectrum is integrable, correlations vanish w
the distance between particles, and the steady-state m
particle density exists. However, the steady-state densit
different from that predicted by the mean-field ‘‘law of ma
action’’ and shows, in particular, dependence on the part
diffusivity D. In addition, Eq.~58! reveals that the approac
to the steady state is described by a power law with
characteristic exponent21/2, which is essentially non-mean
field behavior.

Finally, for case II, we find the following results for th
correlation function and mean density. In the steady state
A-B correlations are equal to zero forl>lg ~again, apart
from the exponentially small withK terms!. In the domain
l,lg , the correlations exist and are described by

gAB~l,t5`!'2
I

8pDl S 12
l

lg
D , ~59!
02111
-

s

-
t

;
ys

c-

i-

e,

at

he

ra-
e
h
an
is

le

e

he

which reduces to the result in Eq.~55! whenlg5`. In con-
trast to the behavior as in Eq.~55!, however, the correlations
vanish at finite values of the correlation parameterl.

Now, Eq. ~59! yields for the steady-state mean-partic
density

C~ t5`!5AI S 1

K
1

12R/lg

8pDR D , ~60!

which is less than the steady-state density in case I, Eq.~56!,
due to the factor 12R/lg , which renormalizes the Smolu
chowski constant. Consequently, forlg.R the apparent rate
constant takes the form

Kapp5
8pDRK

8pDR1~12R/lg!K
. ~61!

We finally find that such a steady state is approached v
power law,

C~ t !2C~ t5`!'~Dt !23/2, ~62!

which is faster than the approach described by Eq.~58!, but
still very different from the exponential behavior predicte
by mean-field analysis.

IV. CONCLUSION

To summarize, we have shown that in both cases I and
fluctuation effects dominate the kinetics of the monom
monomer catalytic scheme involving diffusive particles a
induce essential departures from the predictions of the me
field approaches. In case I, the effects of fluctuation are
pecially pronounced in low-dimensional systems—t
steady-state does not exist and mean particle density gr
indefinitely in time, in absence of hard-core exclusion b
tween particles. In three dimensions the steady state ex
but is characterized by very strong interparticle correlatio
which, in turn, have a strong impact on the value of t
steady-state mean particle density. The steady-state de
is different from that predicted by the mean-field ‘‘law o
mass action.’’ The approach to this steady state is descr
by an anomalous power law with the characteristic expon
21/2, which stems from the presence of an essential sin
larity in the steady-state fluctuation spectrum. In case II,
steady-state fluctuation spectrum and the steady-state m
particle density exist in any dimension, but show an anom
lous, non-mean-field dependence on the particles’ diffusiv
and the radius of pairs, generated by the source. Approac
the steady state follows a universal power law with the ch
acteristic exponent2d/2, which resembles, apart from th
dependence of the prefactors on the system parameters~e.g.,
constant of the backward reaction!, the long-time approach
to the equilibrium in reversible chemical reaction
@12,13,40–44#. The origin of this behavior is that the fluc
tuation spectrum in the steady state is flat at small value
the wave vector, i.e., the essential singularity in the stea
state spectrum of fluctuations is screened.
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