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Influence of auto-organization and fluctuations on the kinetics
of a monomer-monomer catalytic scheme
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We study analytically the kinetics of an elementary bimolecular reaction scheme of the Langmuir-
Hinshelwood type taking place ondadimensional catalytic substrate. We propose a general approach that
takes into account explicitly the influence of spatial correlations on the time evolution of the mean particle
density. With this approach, we recover some known results concerning the time evolution of the mean particle
density and establish others.
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I. INTRODUCTION tion in chemical systems(see Refs.[30,34,33, and
references thereinOne conclusion that can be drawn from

Catalytically activated processes play a significant role irthe statistical physics approach is that fluctuations, either
numerous technologies as they serve to produce requiregpatial or temporal, may drive the reactive system into a set
products from species that are nonreactive under normdlf new states that cannot be understood and described in
physical conditions. These chemically stable species mayerms of mean-field kinetic equations.
however, enter into reaction in the presence of some thirg [N this paper, we discuss in detail the influence of spatial
substance—the catalytic substrée-3]. Despite the wide- fI_uctuatlc_)ns, statistical self—organlza_tlon and rar_1dom q|ﬁu—
spread use of such processes, the knowledge of the underf§Ve motion of reactants on the kinetics of cat_alyt_lc reactions,
ing physics and chemistry still rests largely on phenomeno- sing as a particular example the Langmuir-Hinshelwood-

logical ideas and prescriptions, and thus remains a challeng%p.e reaction schemdSee Fig. 1. This reaction process,
for fundamental researdtL—5]. hich is also often referred to as the monomer-monomer

At the simplest, mean-field level of description reactionCatalytic scheme, involves two different kinds of specis,
o piest, . ption, andB, which are depositettontinuously in time with mean
kinetics theory presumes that the reaction rate should be co

forces and on the particle dynamics. This rate constant ig + g_, o which is immediately removed from the system.
proportional to the hopping rate if the process is diffusionoyr aims here are twofold. First, we show that this seem-
controlled, or to the reaction frequency, in case the reactioqhg|y simple catalytic reactiofiwhich has, in fact, several

is kinetically controlled 6—9]. Hence, a clear cut separation practical applicationésee, e.qg., Ref$28,29)] shows quite a

is presumed to exist between the local variables that could bgch behavior and represents an ideal illustrative example of
derived, say, from quantum mechanics, and collective vari-

ables, expressed in the most simple way as the product of

mean densities of the particles involved. OB ® 0o () o ()
One of the most significant recent developments in the o
field has been the recognition of the substantial importance () o P (%) o
of the multiparticle effects, spatial fluctuations, and self- A Y [ o
organization, as opposed to conventional local energetic con- — ,
siderations, which emphasized the purely chemical con- ®0 o o
straints and focused on refined descriptions of the elementary o
reaction. Subsequently, statistical physics concepts were in- / O ) O A
troduced in order to describe anomalous fluctuation-induced y ) o
behaviors of noncatalytic chemical reactiofi¥—27 and '/
simplest catalytic schem¢&8-38, as well as to gain a bet- o ()

ter understanding of such collective phenomena as wave for-
mation, presence of excitable media, or stochastic aggrega- Fig. 1. Langmuir-Hinshelwood reaction on a two-dimensional
catalytic substrate. Black and gray spheres denote particlesuofl
B species, respectivelyl) describes the situation in which ah
*Present address: United Technologies Research Center, 411 Silnd aB appear within the reactive distance from each other and
ver Lane, 129-21 East Hartford, CT 06108. may enter into reaction.
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the statistical effects in the reaction kinetics, which may beual long-ranged interparticle interactions.

generic to more complicated schemes involved in real world Here we will focus on the application of the approach to
catalytic processes. Second, we develop a unified analyticéthe analytical description of th&+B— O reaction kinetics
description that takes into account explicitly the influence ofin systems with a continuous, random external input of the
spatial correlations, dimensionality of space, and the wayeactive species. We will recover some previously known
that the particles are introduced into the reaction bath on theesults obtained for the monomer-monomer catalytic scheme
time evolution of observables—mean particle densities. Irnvolving diffusive monomers and will establish other results
terms of this approach, we recover some of previouslyconcerning primarily the long-time relaxation of mean par-
known results and obtain others. We also note that our apicles density to their steady-state values and the dependence
proach can be routinely generalized to describe the kineticef this steady-state densities and pairwise correlations on the
of more complex reaction schemes. system parameters.

We focus here on several different aspects of the We start with the formulation of the model. Consider a
Langmuir-Hinshelwood reaction scheme. In particular, wed-dimensional reaction bath of volum&[we suppose tha¥
address the question of how the kinetics depends on the dis sufficiently large such that we can discard different finite-
mensionalityd of the reactive system. In addition to the stan- size effects, e.g., hard-core exclusion between particles, the
dard Langmuir-Hinshelwood model in which the catalytic termination of reaction within a finite time interval or satu-
substrate is a two-dimensional flat surface, we analyze kinetration (poisoning] in which A and B particles are continu-
ics of A+B—0 reactions followed by an external input of ously introduced by an external random source. The statisti-
reactive species in one- and three-dimensional systems, i.&al properties of the source will be defined below. After
the situations appropriate to reactions in capillary geometriemjection into the system, th& andB particles begin to dif-
[39] and annealing of the radiation damage in solidi4]. fuse. For simplicity, we assume that their diffusion constants
We show that the monomer-monomer catalytic reaction proare equal, i.e.D,=Dg=D. It will be made clear below that
ceeds quite differently in low-dimensionad€1,2) and such a description is also appropriate to the case of nhonequal
three-dimensional systems. In addition, we examine how thdiffusivities; the calculations in this case are only essentially
method of introducing the particles into the system affectanore lengthy even in absence of external particle ihgat.
the properties of stationary states and also how these statiohtow, the reaction event is defined as follows: When any two
ary states are approached in time. We consider here twa andB particles approach each other at a fixed separdion
different types of external inputs; in the first ofease ), the  (the reaction radiys they may enter into reaction, forming
A andB particles are introduced independently of each othefan inert with respect to the reactjoraction producO. The
at random times and at random positions in space, while imecombination upon an encounterAdfindB happens with a
the second cagease l), anA and aB species are introduced finite probability p (with probability g=1—p, the particles
in correlated pairs of a fixed radius, the pairs being injectedtan be reflectedthat defines the constant of an elementary
at random times and at random positions in space. We shoveaction,K. This constant describes the intrinsic chemical
that the way of input does matter significantly and may resultactivities of A and B molecules and is dependent on the
in a completely different behavior. nature of the intramolecular and intermolecular binding

The paper is structured as follows. In Sec. Il we formulateforces. In the following we will suppose that this purely
the model, introduce a general analytic approach, and, ifichemical” constant is knowna priori. Furthermore, we
terms of this approach, derive closed-form equations descrilwill assume thaK is large(i.e., the probability of reflection
ing the time evolution of the mean densities of the particleis low) and thus will emphasize the “statistical physics”
and pairwise correlation functions. In Sec. lll we presenteffects on the reaction kinetics, rather than the effects of
solutions to these equations in one-, two-, and threeehemical constraints. Consequently, all the factors that are
dimensional systems corresponding to different ways of parexponentially small irk will be neglected here.
ticles injection to the reaction bath. Finally, we conclude in  We now define the statistical properties of the particle
Sec. IV with a brief summary of our results and discussion.injection more precisely. Lét,(r,t) andlg(r,t) be the local,

at the point with the vector, intensities of the production
rates of A and B particles. We assume that the volume-

Il. DEFINITIONS AND BASIC EQUATIONS averaged values of the production rates obey

In this section we present a kinetic description of the
monomer-monomer catalytic scheme involving diffusive lf drla(r,t) = lf drig(r.t)=1 1)

. . . . . ALl L) = glh,t)=1,
particles in terms of a certain analytical approach, which V)v Vi)v
takes explicitly into account the influence of pairwise corre-
lations on the time evolution of mean densities; such a dewhich means that particle generation is steady in time and
scription was first proposed in Réfl1], which analyzed the the mean production ratésof A andB particles are equal.
effects of fluctuations on the kinetics 8+ B— O reactions To define the correlations in the production ratgg(r,t)
and yielded the celebratad % law for the decrease of the we consider two different situations. In the first oicase ),
mean particle density. Subsequent wofRkg,26,27,40-48 we suppose thaf and B particles are introduced into the
extended this approach to more general reaction schemesaction bath statistically independent of each ofthiér24;
(e.g., reversible and coagulation reactiprthree-body and that is, the fluctuations of the sources are correlated neither
catalytic reactions, and also included the possibility of mu-in space nor in time. In this case, we have

021110-2



INFLUENCE OF AUTO-ORGANIZATION AND.. ..

1
—f drla(r,)la(r+Nt+7)—12=18(N\)8(7), (28
Vv

1
vj drig(r,t)lg(r+\,t+7)—12=18\)8(7), (2b)
Vv

1 —
vadrlB(r,t)IA(r+)\,t+r)—O. (20

In the second case we suppose thatnd B particles are
introduced as correlated-B pairs® separated by a fixed
distancehy [17,22-24. This type of external generation
may arise in chemical systems in which a complex reactio
product O is continuously forced to break up by external
radiation(say, laser pulsesnto correlated pairs of the com-
ponent molecules. Here the radius of pajrwill be mainly
determined by the difference of energy “attributed” @

and the energy required to dissociate the reaction product.

Another example in which such pairs are produced is th
annealing of radiation damage in solids. When the solid i

irradiated, atoms are knocked out of their places in the lattice
to become interstitials, leaving behind a vacancy; then the
vacancies and interstitials diffuse and recombine. In case Il,

different A-B pairs are statistically uncorrelated, and occur
with an average intensitl, at random positions in the reac-
tion bath. Then, the fluctuations of the sources ofdeR;41]

1
vadrlA(r,t)lA(r+)\,t+T)—I2=I5()\)5(7'), (33
1

vadrlB(r,t)IB(r+)\,t+T)—I2=I5()\)6(7'), (3b)

1
vadrlB(r,t)IA(r+A,t+ 7)=7a(Ag) 1 S(N|—Ng).
(30

In Eq. (30), the parameteyy(\ ) is the normalization factor
that arises because of different possible angular orientatio
of a givenA-B pair in ad-dimensional continuum; the value
of y4(\g) depends on the dimensionality of the reaction bat
and ford=1, 2, and 3 equals 1, ) %, and (47\g) 7,
respectively.

Let Ca(r,t) and Cg(r,t) denote the local densities &f
and B particles at a point with vectar at timet. The time

evolution of local densities due to the diffusion of species, ) o
their reaction, and an external production can be describe@d: in the large-limit, an

by the following reaction-diffusion equation&6,21,22:

Calr,t)=— yd(R)KLdr’é(lr—r’|—R)CA(r,t)CB(r’,t)

+DA,CA(r,t) +14(r,1), (4)

1
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Cg(r,t)=— yd(R)KJVdr’5(|r—r’|—R)CB(r,t)CA(r’,t)

+DA,Cg(r,t)+1g(r,1), (5)

where the symbal, denotes the&l-dimensional Laplace op-
erator acting on the spatial variabte and the integration
with the delta functions(|r —r’|—R) accounts for all pos-
sible orientations of arA-B pair, at which an elementary
reaction act can take place.

Now, the experimentally accessible property is not, how-
ever, the local density, but rather its volume-averaged value

1
C(t)= vfvdrcA,B(r,t). (6)

n
To find an equation that governs the time evolutiorCgf),
let us first represent the local densities in the form

CA,B(rrt):C(t)+5CA,B(rvt)! (7)

avhere 6C, g(r,t) denote local deviations of the densities
dgrom their mean values. By definition,

1
vJVdWCA,B(r,t):O- (8)
'Then, substituting Eq7) into Egs.(4) and(5) and taking the
volume average, we get the following equation:

C(t)=—K[CA1)+Gap(|\|=R,1)]+1, (9)

in which Gpg(\,t) stands for the pairwise, central correla-
tion function of the form

1
Gag(\,t)= vafvdrdr’é(r—r’—)x)éCA(r,t)ﬁcB(r’,t),
(10

the variablex being ad-dimensional correlation parameter.

Therefore, Eq.(9) shows that the time evolution of the
mean particle density is coupled to the evolution of the pair-
wise correlations in the reactive system. Neglecting these
correlations, i.e., settin@g(\,t) =0, which is equivalent to
TRe traditional, “mean-field” assumption that the spatial dis-
ribution of particles is uniform, we obtain the customary,
extbook “law of mass action.” Such an approximation pre-
dicts a linear growth of the mean density at relatively short
times, i.e.,

C(t)xlt, (11)

exponentially fast relaxation to

the equilibrium densityC(t=)=(1/K)*?, i.e.,

1/2

[1-exp—2(IK)Y2} +...]. (12

I
C(t)M(R>
The short-time behavior of Eq11) is quite reasonable
and describes the regime in which the particles are merely
added into théinitially empty) system by the external source
and the reaction between them is negligible, i.e., the regime

The particles in the pair can, of course, diffuse apart after injecin which particle density remains very small. As for the ana-

tion.

lytical prediction in Eq.(12), one may question its validity
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on intuitive grounds. First, diffusion is the only mechanismrelation functions,  S_(\,t)=Gpa(\,t) +Ggg(A,t)
to bring particles together and let them react. This motion is— 2G,g(\,t), which is also a pure diffusive modeConse-
essentiallyd dependent, whilst Eq12) is independent of the quently, only truncation schemes that do not violate the con-
dimensionality of the reaction bath. Second, it shows thagervation law can correctly describe the behavior of the bi-
with an increase of the chemical reaction constéinthe  nary reactior{14].
equilibrium density tends to zero, which is apparently an The simplest nontrivial truncation scheme, which pre-
artificial behavior. Below we will show that the actual be- Serves the conservation laws, was first proposed in[Ref.
havior of C(t) ast— is very different, depending essen- In this scheme the thlrd-ord(_ar correla‘glon functions, |Tq
tially on the dimensionality of the reactive system and also[Were set equal to zero. This truncation, as shown in Refs.
on the way that the particles are injected into the system. |24 and[40-43, is equivalent to the assumption that fields
We turn now to Eq(9) and continue our analysis of the 0Ca g(N,t) have a Gaussian distribution. Then, the fourth-

binary reaction kinetics taking into account the influence of2"der correlation functions automatically decouple into the
pairwise correlations on the time evolution 6{t). From product of pairwise correlation functions and the third-order

i . correlations are equal to zero. Such an approach leads to, for
Egs.(4), (5), and(7), we find that the system of equations for instance, the corrqect long-time decay Ianp of the densities
the time evolution of the pairwise correlation functions reads; o thetldm law, but fails to reproduce correctly the inter- ’
. mediate time behavior; at intermediate times, this approach
Ga(A,1)=—KC(1)[2Gag(A,1) + Gan(N,1) + Ggg(N, 1) ] predicts essentially the same behavior as the formal kinetic
“law of mass action” and thus disregards the effects of dif-
+2D2)Gas(\ D) +1as(M) + Tap(M), 13 fusion at intermediate times, k
. This shortcoming has been revisited and improved in
Gaa(N,t)=—2KC(t)[Gap(N,t) + Gaa(A )] Refs.[40—47, where it was shown that correlation functions
of the third order are small only in the limjik|>R, while in
F2DA\GAAN D IS FTan(N), (14 the domain\|~R, they are singular and this singularity has
. an impact on the behavior of the pairwise correlation at the
Geg(N )= —2KC(t)[Gap(N,1) +Gpp(N 1) ] intermediate times. In a discrete-space picture, essential at
scales|\|~R, the third-order correlation functions have
+2DA)Gep(N, 1) +15(N) +Teg(M), (19 been c|orl1puted explicitlj41,51

where A, denotes the Laplace operator acting on the ~T o T~ - _
d-dimensional variablex, the symbollg(\) in Eq. (13) Tan~Tee~Tae~ 7(RICH AN =R). (17
describes the correlations in the production rated ahdB Substituting Eq(17) into Egs.(13)—(15) yields a closed,
particles; it is equal to zero in caséuncorrelated generation Wwith respect toC(t) and G;j(\,t), system of equations. To
of particleg and to solve it, it is expedient to represent the pairwise correlations
in the form
lag(N)= A O(IN| =N 16 ~
AB(N) = vl g) (| | g) (16) Gij()\rt):Gij()\it)+gij()\:t)y (18)

in case Il, when the particles are introduced into the system A o . .

in correlatedA-B pairs. Finally, in Eqs(13)—(15) the terms where G; (A, 1) denot(_as a smgular part, which accounts

T.. denote the third-order correlation functions merely for the behavior of the third-order correlations, and
1) "

The time evolution of the pairwise correlations is coupledgii()"t)__the “fluctuational” part, which accounts for thg
to the evolution of the third-order correlations, which, in quctuatlon spectrum.of the ex.tem?" source and fluctuations
turn, depends on the correlations of the fourth order. Thiéte_lr_';]m'gg_ frorln r”eactlonfarr:d diffusion. lation functi
infinite hierarchy of equations coupled with the nonlinear g singu a(; _pago Afle rl)alrW|s_e clorre atlonff_ur_\ctu?ns
reaction-diffusion Eqs(4) and (5) requires one to resort to &S determined in efi41]. n particular, at sufficiently
some approximate methofs1]. large times the leading behavior Gf;(|]\|=R,t) is

The most commonly used method of truncating the hier- A . 2
archy is to approximate the third-order correlation functions Gij(R,t)~C(t)(7t/8D)™, (19)
in terms on(t) gnd Gij(\ 1) [50]. S_uch an approach, as in one-dimensional systems,
was first noticed in Ref14], results in the Smoluchowski-

type approximate results with improved numerical coeffi- & (R ~C In(Dt/R?) 20
cients and is appropriate for the description of the single- i (RO~C() 87D (20)
species reactiond+A— O, but not for the description of

reactions involving two different types of particles. The and

problem is that such an approximation misses an important éij(R,t)~C(t)8wDR (21)

conservation law, which is specific fé&x+B— O reactions.
Namely, the reaction conserves the differe@¢e,t) of local
densitiesZ(r,t)=Ca(r,t) —Cg(r,t), which changes only as
the result of the diffusion of particles and thus is a pure

diffusive mode of the system. Conservatiorn/Zgf ,t) entails, 20One may readily verify thaf sp+ Tgg— 2T ag is exactly equal to
in turn, the conservation of the combination of pairwise cor-zero.
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in two- and three-dimensional systems, respectively. dan(N 1) = — 2K C(t A+ Mt
Now, inserting Eqs(19)—(21) into Eq.(9), we obtain the 9aa(h.1) (D1gas(M D+ gan(M. )]
following equation for the time evolution of the density: +2DA,gaa(N, ) +1S8(N), (27
. KKg(d) gsa(\,t) = —2KC(1)[gas(\,t) + ggp(N,1)]
CO=~ g g [C°+Tnal N =R.D)] e N o
S +2DA,ggg(N\,t)+18(N). (28)

n (22) Equations (26)—(28), accompanied by Eq(22), are now
1+K/Kg(d)’

closed with respect to the mean densities and pairwise cor-
relations, and allow the computation of the time evolution of

whereK¢(d) obeys, ag— o, the monomer-monomer reaction scheme.
D)\ 12 lll. KINETICS OF THE MONOMER-MONOMER
Ks(d=1~|—| (23 REACTION SCHEME

Below we will analyze solutions of Eq§22)—(28) in sys-
87D tems of different dimensionalities and with different types of

Ks(d=2) (24)  external particle generation. The derivation of results in case

TP/ R2)
In(DU/R?) of one-dimensional systems will be presented in detail. The
d steps involved for such a derivation in higher dimensions are
an essentially the same and here we will merely discuss the
Ks(d=3)~87DR. (25  'esults.

One may readily notice that in three dimensions the A. Low-dimensional systems

K4(d), Eq.(25), coincides exactly with the so-called “diffu- Let us start with the case of one-dimensional systems in
sive” Smoluchowski constant; a reaction constant that wagvhich an external source produces uncorrel#ehdB par-
first calculated by von Smoluchowslé] in his approximate ticles.

description of the effects of diffusion on the chemical reac- We note first that the system of Eq26)—(28) possesses
tions kinetics. This constant accounts for, heuristically, thewo integrable combinations

“resistivity” of random, diffusive transport of particles with

respect to the reactiofb1]. Employing the Smoluchowski S_(NM1)=20as(N,t) =gaa(N,t) —gaa(A,t), (29
method, the analogues of such a constant have been obtaingglic is related to the conserved propeziffr ,t), and

in Ref.[52] for one- and two-dimensional systems. Remark-

ably, our results in Eqs(23) and (24) coincide with those S, (N, 1)=2gag(N\,t) +gaa(N,t) +gge(N,t). (30
obtained in Refs[9] and[52]. We note also that the prefac-
tor before the brackets in Eq22), i.e., the ratioK,,,
=KKg(d)/[K+Kg(d)], is the so-called effective or appar- ¢ _ _

ent reaction constant, which was first derived for three- S-(\)=2DA,S-(\H =21 500), S
dimensional systems in Reff7]. Therefore, accounting for which is thus the pure diffusive mode of the system, not
the “singular” part of the third-order correlation function affected by the reaction, and

and subsequent extraction of the “singular” part in the pair- .

wise correlators leads us to results equivalent to those ob- S+ (A1) =2DAS, (N, 1) —4KC(t)S,(N,t)+215(N).

tained with the Smoluchowski approach. (32)

Hence, Eq(12), in which one SetSAB(lk‘[:th):O and  The desired property, i.e., the correlation functigs(\,t)
Kg(d) =2, reduces to the formal kinetic “law of mass ac- hat enters Eq22), may then be expressed in terms of these
tion,” while settinggag(|\|=R,t)=0 and using(s(d) asin  jntegrable combinations as
Egs.(23)—(25), one obtains the effective kinetic equation of

the Smoluchowski-type approach. Below, we proceed to 1
show that by taking into account the time evolution of the 9as(N, D)= Z[S_()\,t)+8+()\,t)]. (33)
pairwise correlations, i.e., the tergyg(|\|=R,t), one ar-
rives at completely different physical behavior compared Consider now the solutions to E¢&1) and(32) in one-
with that predicted by the formal kinetic and Smoluchowskidimensional systems. Applying the Fourier transformation
approaches. over the variable\,

Finally, we obtain the following system of equations, 1 e
obeyed by the “fluctuational” part of the pairwise correla- __ = ;
fiors functions: S.(w,t) T _wd)\ explioN)S.(\,t) (34

These integrable combinations obey

QAB(K,U = —KC()[2ga(\,1) + Gaa(N, D) +gaa(N,1)] to Egs.(31) and(32), an.d assuming that a0, n_oA andB
particles were present in the system, one readily gets that the
+2DA,gag(N,t) +1ag(N), (26) Fourier images of the integrable combinations as follows:
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2 rt Inserting this in Eq{(22) we notice that the source term on
S (w,t)=—1I \/:f drexp — 2D 7w?) the right-hand side of E422) vanishes as— =, as does the
mJo prefactor before the terms in the brackets—the apparent rate
constantKKg(d)/[K + Kg(d)]; hence, the leading largeas-
[1-exp—2Dtw?)] (35  ymptotical behavior of the mean density in the Ricatti-type

|
Dw?\2m Eqg. (22) should be such that it compensates the negative

pairwise correlationg,g(|]\|=R,t) that grow by absolute
and value. This implies that in the largelimit
\/5 t , t
S, (w,t)=—1 ;fodrexp{—ZDTw _4KdeT C(7")|. C(t)~ /_QAB(|7\|:R'U, (40)

(36)

. . . . . which yields
Now we notice that in the extreme situation, when reaction y

occurs at any encounter of adyand B particle (i.e., when

K=o0) the second integrable combinati&n (w,t) vanishes s va

since the integrall'd7'C(7') is obviously positively de- C(t)=I 87D/ (41)
fined. One can show, however, that even for the fikisethe

influence ofS, (w,t) on the pairwise correlation function,

Eqg. (39), is not essential at large times and the dominani-€., in one-dimensional systems with random uncorrelated
contribution tog,g comes fromS_(w,t). generation of the reactive species the mean particle density

We note that setting=% in Eq. (35) we obtain that grows sublinearly in time. Note that this result is consistent
S_(w,») has a steady-state spectrum of the f@m(w,)  With the behavior observed numerically in RE£8]. _
~1/w?, i.e., the spectrum that has a nonintegrable singularity Consider now how the situation will be changed in the
in low dimensions whem— 0. This singular behavior of the €ase Il, wherA andB particles are introduced into the reac-
fluctuation spectrum of the pairwise correlations in systemdive bath as correlated pairs. In this case we get that the
with binary reactions followed by an external uncorrelatedFourier image of the integrable combinatin(\,t) obeys
production of the reactive species was first predicted, using e following equation:
different approach, in Ref§16] and[17-19. The authors
concluded that the steady state of such a system is highly
anomalous; since such a singularity is not integrable in low-
dimensional systems, the steady-state values of the inte-
grable combinationS_(\,t), and thus of the correlation \yhose solution reads
functiong,g, are infinitely large, which means that as time
evolves the system progressively coarsens into the domains

S (w,t)=—2Dw?S_(w,t)—2I[1—-cogwhy)], (42

containing particles of only one type. I[1—cogwhy)] 5
Consider now how the integrable combinati6n (\,t) S-(o.)=—————=[1-exp—2Dtw)].
. ) N . Dw\2m
and the correlation functiog,g grow in time. Taking the 43)
inverse Fourier transformation of the first line in E§5) we
get

We note now a very important feature of E43); in striking
| tdr ) - contrast to case |, the steady-state spectrum is no longer sin-
S_(\t)=——=—=| —=exp(—\°/8Dr). 3 i imi
( 2nDJor p( gular in the limitw— 0, but tends to a constant value,

The integrand in Eq(37) is a bell-shaped function with a I\2
maximum atr=\?%/8D. For bounded\, the bulk contribu- S (w—0t=x)=— S (44
tion to the integral comes from the algebraic tail/z/and \8mD
consequently, the leading behaviortatR%/8D of the inte-
grable combination follows which means thatS_(\,) and hence,gag(\,) are
bounded in systems of any dimensionality, and thus the well-
S_(I\|=R,t)=—11 [ < (38) defined steady-state mean dengitft=c0) should exist. We
’ D notice, however, that the steady-state pairwise correlation

) ) function is proportional tmg and thus may increase indefi-
Accordingly, the absolute value of the “fluctuational” part pjtely with growth of \y. This unbounded growth is, of

of the pairwise correlation function grows in time as course, quite consistent with the result in E89), since the
. limit \y—oc corresponds to the case of uncorrelated genera-
_ ] tion of particles.
9as([M=R.=~I 87D’ (39 Now, inverse Fourier transformation gives
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| tdr Equations(49) reveals two surprising features; first, the

S(AN)=—— —[eXp( ) steady-state density turns out to be dependent both on the

V2mDJo\r 8D~ diffusion constant and on the radius of pairs, generated by

1 (A—\g) (N0 )2 the source. Such an unusual dependence is, of course, incon-
— —exl{ g } F{ 9 ] sistent with the predictions of the formal kinetic approach,

2 8D~ based on the textbook “law of mass action.” Second, the
N approach of particle densities to their steady-state values
_l { obeys a power-law dependence, in a striking contrast to the
N exponential one, predicted both by the formal kinetic and the

5 Smoluchowski approach.
_ 1/2()‘9‘”‘) H (45) To close this subsection let us briefly consider the behav-
8Dt ' ior of solutions of the reaction-diffusion equatio(®2) and
(26)—(28) in two-dimensional systems.
wherel(«,x) denotes the incomplete gamma funct[&3]. In case I, we have from Eq$31) and (33) that ast— o

Consider now the asymptotic behavior of the pairwisethe pairwise correlation function growy absolute value
correlation function, Eq(33), for different values of param- g5

etersh and\ at different values of time.
We get from Eq(45) that at sufficiently short times, when das(IN=R,t)~—1In(Dt/R?), Dt>R? (50)
A>\,>8Dt, the pairwise correlation function obeys

1/2

e

8Dt} 2t 8Dt

2

and consequently, we get from E@O) that in this case at

3INg(8D1)3? A2 large times the mean particle density exhibits logarithmically
Gnslhhg =" =0 =5 ®P ~“gpg)r 49 slow growth,
which shows that correlations drop off as a Gaussian func- C(t)~IIn(Dt/R?), (52)

tion at large scales. o _ . _ o )

Now, at short scales, such thet\, and \<8Dt, and which is consistent with earlier predictions made in Refs.
when \, is sufficiently large,\,>8Dt, we obtain that [16,17 and[19]. _ _

¢ e ‘o We turn next to analysis of case Il. Here, we find that

das(N,\g,t) obeys Eq(39), which is not a surprising result Yy ' '
since at such scales the correlations between injected pagAB(|)‘|:R’°°) behaves as
ticles should be irrelevant. B —11 5

Within the opposite limit, when Bt<\ <\, the cor- gas(IM=R,2)~=TIn(xy), (52)

relator follows S . . .
which implies that the steady-state density exists and is a

|(8D1)32 A2 slowly growing function of the radius of the generated pairs,
gas(\,\ ,t)~——ex;{——), (47)
BT 16(7DA? 8Dt Clt=o)~\TIn(\g). (53

which is reminiscent of the behavior in EG6). Lastly, we find that the steady-state density is approached via
Finally, in the limit when bott\ <8Dt andA4<8Dt (and 4 algebraic law

Ag>N\), i.e., in the limit of very long times, we find the

following asymptotic expansion C(t)—C(t=0)~(Dt) %, (54)
Ias(\hg )~ — I(Ag—M) which should be contrasted to the exponential dependence
ABLRg o 16D predicted by mean-field descriptions.
2 2
x| 1— )‘g exp< A )+O(1/t) B. Three-dimensional systems
N\ 7Dt 8Dt

As we have already mentioned, in case I, the steady-state
fluctuation spectrum is characterized by an essential singu-
larity of the type 1b? as w—0. In three-dimensional sys-
tems such a singularity is integrable, which ensures that the
steady-state correlations exist and vanish ase. This cir-
cumstance allows us to claifii9] that segregation effects
are absent in three and higher dimensions.

Let us analyze now the form of these correlations. Solving
Eqg. (32) in three dimensions we finup to the correction

Ag=N\, (48)

where the symboD(1/t) signifies that the correction terms
decay with time as 1/

Equation(48) suffices to derive the largeevolution of
the mean particle density in the case of generation by corre-
lated pairs, which reads

T —R)- \2 terms that are exponentially small wik) that
~ 9 _ g9
C(t)~ 16D 1 2R\/mﬂLO(llt) . AR |

021110-7
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i.e., A-B correlations vanish with the distance between parwhich reduces to the result in EG5) when\ =°. In con-
ticles\ as 1k, which shows that in the monomer-monomer trast to the behavior as in E5), however, the correlations
catalytic scheme taking place in three-dimensional systemganish at finite values of the correlation parameter

the correlations in the steady-state shoguasi-long-range Now, Eq. (59) yields for the steady-state mean-particle
order decaying only as the first inverse power of the interdensity
particle distance. Straightforward calculations show that

: : N . LT 1 1-R/
guasi-long-rangeorder persists also in higher dimensions; C(t=o)=/I R — (60)
here, the decay of correlations is also algebraic and obeys K~ 8nDR

_ ~\ —(d—2 i
gas(\ t=00)=\"(72). Therefore, we conclude that despite ich is less than the steady-state density in case I(58),
the fact that segregation effects are absent in th(@ed gy to the factor + R/\,, which renormalizes the Smolu-

higher) dimensional systems, the steady state is still characspowski constant. Consequently, fiog> R the apparent rate

terized by significant correlations. constant takes the form
Now, substituting Eq(55) into Eq. (22) we find the fol-
lowing expression for the steady-state density in three di- Ko 8mDRK 61)
mensions: PP 8aDR+(1-R/N K
1 We finally find that such a steady state is approached via a
) — il power law,
C(t=) 877DR+K l (56)

C(t)—C(t=w)~(Dt) %2 (62)

which shows thafA-B correlations lead here to an effective which is faster than the approach described by (B6), but
renormalization of the reaction constant in the steady statestill very different from the exponential behavior predicted
i.e., C(t==) has the formC(t=2)= /K, WhereK,,, Py mean-field analysis.

is the above-mentioned apparent reaction cong@nt

Consider now how such a steady-state is approached at IV. CONCLUSION

long times. Expanding the solution of E(1) near the To summarize, we have shown that in both cases | and I,
steady state, we find that pairwise correlations approach thguctuation effects dominate the kinetics of the monomer-
steady state as a power law, monomer catalytic scheme involving diffusive particles and

induce essential departures from the predictions of the mean-

R field approaches. In case I, the effects of fluctuation are es-
1— +0(11) |, (57 pecially pronounced in low-dimensional systems—the

V7Dt steady-state does not exist and mean particle density grows
indefinitely in time, in absence of hard-core exclusion be-

which yields, in turn, a power-law relaxation of the meantween particles. In three dimensions the steady state exists,

|
gas(/\| :R,t)~8’7TDR

particle density to the steady state but is characterized by very strong interparticle correlations,
which, in turn, have a strong impact on the value of the
C(t)— C(t=0)~(Dt) 12 (58) steady-state mean particle density. The steady-state density

is different from that predicted by the mean-field “law of
. , ) . mass action.” The approach to this steady state is described
Therefore, in contrast to low-dimensional systems, inpy an anomalous power law with the characteristic exponent
three-dimensional systems with random uncorrelated genera: 1 /> \vhich stems from the presence of an essential singu-
tion of _the reactive species, the essential _smgularle n t_hGFarity in the steady-state fluctuation spectrum. In case I, the
fluctugmon spectrum is mte_grable, correlations vanish W'”Eteady—state fluctuation spectrum and the steady-state mean
the distance between particles, and the steady-state meggicie density exist in any dimension, but show an anoma-
particle density exists. However, the steady-state density i, 5 non-mean-field dependence on the particles’ diffusivity
different from that predicted by the mean-field “law of mass 5 the radius of pairs, generated by the source. Approach to
action” and shows, in particular, dependence on the particlgyg gteady state follows a universal power law with the char-
diffusivity D. In addition, Eq.(58) reveals that the approach ,yeristic exponent-d/2, which resembles, apart from the
to the stga@y state is descrlb.ed .by a power law with th%ependence of the prefactors on the system parameteys
qharacterlsyc exponent 1/2, which is essentially non-mean- ., ctant of the backward reactjorihe long-time approach
fleld_behawor. ) . to the equilibrium in reversible chemical reactions
Flnal_ly, for case Il, we find the f_ollowmg results for the [12,13,40—44 The origin of this behavior is that the fluc-
correlation function and mean density. In the steady state the 5+ion spectrum in the steady state is flat at small values of

A-B correlations are equal to zero far=\, (again, apart  he wave vector, i.e., the essential singularity in the steady-
from the exponentially small with terms. In the domain  gate spectrum of fluctuations is screened.

A<\4, the correlations exist and are described by
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