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We developed a model to mimic the exciton dynamics in J-aggregates of cyanine dyes on the basis of Monte
Carlo simulations. We consider the aggregates to be linear one-dimensional chains, where the in-phase
combination of molecular excitons leads to a stabilization. A random distribution of segment lengths limits
the effective coherence length and induces an inhomogeneous band broadening. The model takes into account
the incoherent energy hopping between aggregates following the excitation. The results of the simulation
could be fitted to the experimentally obtained absorption and fluorescence spectra and to the fluorescence
decays of the J-aggregates of 3,3′-disulfopropyl-5,5′-dichloro-thiacarbocyanine (THIATS).

I. Introduction

During recent years there has been considerable interest in
studies of quasi-one-dimensional structures manifesting features
quite different from those in bulk of materials. In particular,
J-aggregates of cyanine dyes as well as conjugated polymers,
which can be approximately modeled by linear Frenkel chains,
display extraordinary peculiarities in their photoresponse,1,2

caused mainly by the collective (excitonic) character of the
excitations. A major problem in the J-aggregates is the complete
assignment of the different bands and their relation to molecular
packing. This relation can be elucidated to some extent by a
detailed investigation of their macroscopic properties, such as
absorption and emission spectra and their fluorescence decay.

Among typical J-aggregate properties are the narrow absorp-
tion and emission peaks, produced by delocalized excitonic
states of the aggregate created by the electronic coupling of
neighboring dye molecules, the numerous effects of the
polarization of the luminescence, and unusual exciton transport
properties. Though the spectral properties of these systems have
been under intensive investigations for more than fifty years
since the discovery of Jelly and Scheibe,3-5 the key structural
and energetic transport properties remain unclear so far. There
exist several different kinds of molecular aggregate models. In
the simplest model J-aggregates6-8 are described as one-
dimensional molecular arrays with nearest neighbor interactions.
Despite its simplicity, this model accounts for most spectral
properties of the aggregates with one molecule per unit cell.
Other models reported in the literature9-12 are usually variations
or extensions of this model.

The one-dimensional J-aggregate model treats the molecular
aggregate as if it were a linear chain made of a large number
of the aggregated coupled molecules (monomers). This is similar
to the linear polymer model with the difference that the
molecules are bound by van der Waals forces rather than by

chemical bonds, as polymers are. Such an aggregate structure
produces a narrow peak in the absorption spectrum. Conven-
tionally, these aggregates that reveal red-shifted absorption peaks
relative to the monomer position are called J-aggregates or
bathochromic, while aggregates that exhibit the blue-shifted
absorption peak are called H-aggregates or hypsochromic.
Though this model was widely used recently,13-15 no attempt
was made to obtain more than the simulated absorption
spectrum. In this paper we make an attempt to construct a self-
consistent model of the 3,3′-disulfopropyl-5,5′-dichloro-thiacar-
bocyanine (THIATS) J-aggregate by simultaneous simulation
of both the absorption and emission spectra, as well as the
luminescence decay profiles.

II. The Model

A. Analytical Result for One-dimensional Chain.We treat
the molecular aggregate within the frame of the J-aggregate
model and assume that each molecule of the monomer has two
states, a ground state and an excited state, and thus in the site
representation the Hamiltonian of the system can be written
as15-17

Here|n〉 denotes the state in which moleculen (n ) 1, 2, ...,
N) is excited and all others are in the ground state,En represents
the molecular excitation energy,Vnm is the intermolecular
interaction between moleculesn and m, which is assumed to
be of electrostatic origin and is often approached by a point
dipole interaction.6,7,9,10,16In the general case,En andVnm vary
from site to site due to diagonal and off-diagonal disorder,
expressing a variation in the intermolecular interactions. Because
eq 1 in general form is rather intractable, simplifying assump-
tions are usually made. Following the basic work of Schreiber
and Toyozawa13 we consider the transfer energyVnm to be
constant,V being nonzero only between the adjacent molecules.
In the simplest case when the system is not subject to any kind
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of disorder, the Hamiltonian can be diagonalized in a straight-
forward manner, leading to the eigenfunctions

with energies

The oscillator strengthfk of each transition is proportional to
µb*k

2 where µb*k
2 is the transition dipole to thekth level in the

exciton band, and thus from eq 2 it is obvious that whenk is
even the oscillator strength is zero, while for small, oddk
numbers it is

whereµb/

monomer is the component of the transition dipole of a
monomer parallel to the aggregate axis. ForN . 1 andk ) 1,
this can be approximated by

Therefore, our basic equations are 3 and 4, which give the
transition energies and intensities for a linear segment ofN
monomers in case of no disorder of any kind.

We do not attempt to calculate the intramolecular coupling
and corresponding spectral shifts using the extended dipole
model. Instead, we use the values ofVmn determined from the
observed spectral shift. However, since we are simulating only
the J-band, we can take into account just the lower states, which
are well reproduced by the simplest one-molecule-per-unit-cell
model. Thus, and sinceVmn is negative, this simplification will
not influence the density of states distribution of the exciton
band in a quantitative way in the desired spectral region.

B. Disorder. The exciton energy states in J-aggregates are
largely delocalized, and in an ideal aggregate they extend over
the entire crystal. Because of the presence of the disorder
induced by neighborhood effects and spontaneous packaging
defects, there can appear an inhomogeneous distribution of the
segment ground energies (diagonal disorder), and a distribution
of resonance coupling constants (off-diagonal disorder).15 The
presence of disorder in the chain causes energy localization,
while the exciton still extends over a number of monomers.
These exciton localizations can be considered as separate
segments of different length, each interacting weakly between
each other.

We adopt the “broken rod” model (Figure 1), which assumes
that an aggregate is made of a linear sequence of segments.18-20

The length of these segments (which is the number of monomers
N that constitute a segment) is random, accounting for the

random nature of the energy localizing disorder. Such a segment
model corresponds to the transient absorption spectra of
J-aggregates in both long18 and short21-23 pulse limits. The
segments themselves are considered to be perfectly straight
aggregates without any defects. Excitations are completely
localized on an individual segment.

The segment length is an integer random variable, which
obeys an exponential distribution function characterized by a
mean valueN0, i.e.

This corresponds to the randomly broken chain of the molecules.
The excitation energies of the monomers are assumed to be

all equal inside each segment and correspond to the zero order
excitation energiesE0 of the segment. However, due to different
local environments, the energiesE0 are subject to a Gaussian
random shift, different for each segment, but the same within
the particular segment. The standard deviationσExN0/xN
represents the Gaussian diagonal disorder of anN-mer aggregate,
where σE is the standard deviation for the monomer. This
parameter governs mostly the width of the red wing of the J-peak
in the absorption spectrum.14 The exciton bandwidth, however,
is always the same and equal to 4V because no nondiagonal
disorder is considered here. The energies of each segment and
the corresponding oscillator strengths are computed by use of
equations 3 and 4 for segments ofN monomers.

C. Excitation Transport Model and Algorithm. Since the
statek ) 1 bears the largest part of the oscillator strength
(around 90%) and because of the rapid intrasegment relaxation,
we only take into account thek ) 1 state. At timet ) 0, an
excitation is placed in the central segment of the aggregate. After
each time step the excitation moves to one of its 10 nearest
neighbors (five to the left and five to the right) with probability
pi (Σpi ) 1). For distances longer than 5 segments away, the
transition probability, as calculated in our model, is extremely
low. These probabilities are the product of two different factors
denoted byWj.

We consider the segments to interact through Coulomb
operators (Fo¨rster transfer).10,24-26 We adopt the extended dipole
approximation andW1 becomes proportional to the square of
the couplingUi between the two segments

On each N-mer segment we assign a transition dipole

which is no longer a point dipole but has a length equal to half
the segment length, i.e.,a‚N/2 wherea is the length of a single
dye monomer. This means that the charges at the end of the
dipole equal

taking into account eqs 4 and 4a. The couplingUij is given by
the electrostatic interactions among the four charges of the two
interacting dipoles. Furthermore, we assume the N-mers ar-
rangement geometry given in Figure 1. As numerical calcula-
tions suggested, the values ofUij are close to those calculated

Figure 1. Schematic representation of the “broken rod” model for a
1-dimensional aggregate. The defects split the chain in segments (in
this example into five segments), and each segment contains a different
numberN of monomers. Monomers in a segment, represented in this
figure as dipoles, form aW-like structure.
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∑
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using a point dipole model. The coupling between aggregates
of the same coherence lengthNi will be proportional toNi

1/2

Ni
1/2 divided by the cube of the distance between the centers.

As the latter is proportional toNi, Uij will be proportional to
Ni

-2.
The rate of exciton migration will also be influenced by

energetic effects, which we can reduce to a thermal factorW2

(Boltzmann effect). We calculate the energy difference between
the two interacting segments:∆E ) Eneighbor- Ei, where the
energy of an N-mer segment is given by

since we always considerk ) 1. We use the standard Monte
Carlo23,27criterion depending on whether the energy difference
is favorable or not, andW2 is given by

Although this criterion was originally developed for electron
transfer, it can be generalized for other nonadiabatic processes
(e.g., energy transfer) whose rate is governed by the golden
rule.28 The value of the intermolecular couplingV was estimated
from the fact that the J-aggregate band, in the presumption of
the infinite segment length, should be shifted from the monomer
position to the value of 16100 cm-1, since the total bandwidth
of the excitonic band should be according to eq 3 given by 4V.
Therefore, this value has been fixed toV ) 770 cm-1, and the
lattice size to 400 sites. We examined the behavior of〈N〉t as a
function of N0, σ, andT. This value of 770 cm-1, which has
been determined experimentally from the spectral shift of the
J-aggregate band, corresponds to theoretical values calculated
for a similar dye using a transition density of a CNDO
formalism.29-31

According to eqs 1 and 3, the electronic matrix element
between two aggregates with aggregation numberNi ) Nj ) N
is given in a naive point dipole approximation by

where a is the intermolecular distance,µ*M
2 the transition

dipole of a monomer, andε0 the permittivity of vacuum (8.85
× 10-12 C2/Vm). Using 5.97× 10-30 Cm for µ*M,32-34 3.66×
10-10 m for a, 10 forNi andNj, we obtain as an upper limit for
the electronic factor forUijNi

1/2Nj
1/2 ) 6.5 cm-1. Using the

extended dipole approximation and taking into account Franck-
Condon factors will further reduce the matrix element. This
matrix element is 2 orders of magnitude smaller than the disorder
or the thermal energy both at 77 and 287 K (50 and 200 cm-1).
Hence the hopping rate can be described in the framework of
a golden rule. Therefore, the probability of hopping to a specific
segment is determined by the relationpi)W1W2. In the present
approach, allpi’s are normalized by their sumΣp. We divide
the unit interval to segments of length equal to these probabilities
pi/Σk pk. The choice of the exciton move is performed by
drawing a random number. This number falls in a segment,
which corresponds to a specific probability, and the excitation
moves to this N-mer. This procedure is considered to consume
one time unit, equivalent to one Monte Carlo step. The excitation
makes a move in every step, i.e., there is no probability for it
to stay on the same segment. In this picture the time unit is a

mean value of all possible hopping times the excitation can
perform. The excitation, in general, may require a variable time
interval in order to perform a jump and to stay on a particular
segment. Since we cannot describe these hops in detail we
consider that each hop lasts a mean constant time. It includes
both the residence time and the time needed for the hop, and
we call it “hopping time”. In the computational model, one
Monte Carlo step is exactly the same as one unit of this hopping
time.

We have also taken into account the natural lifetime of the
excitation and thus introduced a finite probability for the
excitation to decay. At each time step there are two options:
either the excitation decays or chooses to move to an adjacent
site, with the algorithm described above. The probability of
decay depends on a decay constantd and is equal toNd, where
N is the segment length. Therefore, the first decision made is
whether the excitation will decay. This is done by comparing a
random number to the productNd. If the outcome is favorable
for decay the motion of the excitation stops and we repeat the
whole procedure with another excitation. If it continues to exist
it uses the above-mentioned Monte Carlo algorithm and moves
to a neighboring site, where again we check for decay, and so
on.

III. Experimental and Simulation Procedures

A. Experimental. The triethylammonium salt of 3,3′-di-
sulfopropyl-5,5′ -dichlorothiacarbocyanine iodide (THIATS) was
obtained by courtesy of AGFA N. V. For preparation of the
molecular aggregate THIATS was dissolved in a 3:2 v/v water/
ethylene glycol (WEG) mixture upon heating to 60°C. The
solutions with dye concentration of 10-4 to 10-3 M were cooled
to room temperature, put into a dismountable glass cell 300
mm in thickness, then cooled and kept at 250 K for about 10
min. At this stage a narrow red-shifted J-band appeared in the
absorption spectrum. The samples were then quickly frozen in
liquid nitrogen and placed into a nitrogen or helium cryostat.
To measure the absorption spectra, the Jobin-Yvon polychro-
mator coupled with the PAR OMA-2 optical multichannel
analyzer was used. For the lifetime measurements the Edinburgh
Instruments time-correlated single-photon counting setup with
the time resolution of 54 picoseconds was used.

B. Numerical Investigation of the Exciton Random Walk.
At first, we view the exciton transfer as a simple diffusion
process modeled by a random walk. We thus monitor<R2>,
the mean squared displacement, as a function of time.

In Figure 2 we show<R2> versus time for five different
temperatureskT ) 1, 5, 20, 200, and 350 cm-1 (equivalently,
T ) 1.4, 7.2, 28.6, 287, and 500 K). The lines are the result of
the average of 10000 different realizations. The classical
prediction with no disorder would give<R2> ) t. As we see
in Figure 2, the effect of temperature is important only in the
region of low temperatures. As we raise the temperature the
thermal energy becomes of the same magnitude as the difference
of the excitation energy of two neighboring segments (2VπσN/
〈N〉3), and this factor is no longer affecting the decisions
anymore, allowing the Forster factor to predominate. Thus, at
higher temperatures the classical random walk is recovered. We
also observe that at lowT the system is highly nonlinear, which
is expected when one considers the above thermal factors.

Another quantity of interest is the aggregation numberN of
the segment where the excitation is found aftert time steps,
and especially whether the excitation prefers segments of large
or smallN. By fixing the timet and performing several different
realizations of the walk, typically of the order of 10000 runs,

Ek ) E0 - 2V cos( kπ
N+1) (7)

W2 ∼ {e-∆E/kT ∆E > 0
1 ∆E e 0

(8)

UijNi
1/2Nj

1/2 )
Ni

1/2Nj
1/2µ/2

M

4πε0(Ni + Nj

2 )3

a3

≈ µ/2
M

4πε0N
2a3

(9)
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we can construct the histogramP(N,t), which gives the
probability of finding the excitation at timet on a segment of
lengthN. From such histograms we can evaluate the mean value
of the segment length〈N〉 as a function of time for different
sets of parameters. This mean value is given by

and can be considered as a measure of the total emission
intensity at timet due to the proportionality of the fluorescent
rate constant withN. We observe that the mean values of the
segment lengths〈N〉 are shifted toward shorter segment lengths
than N0. This could be explained by the fact that since our
ensemble has exponential distribution of the segment lengths,
the short segments dominate in the segment size spectrum. It is
worth mentioning here that our model does not take into account
the possibility of the exciton trapping. Even though longer
segments possess lower energy, on the next time step the exciton
is forced to move to one of the nearest segments. We should
stress, however, that the exciton transport in our model is
governed mostly by the Fo¨rster factor rather than the thermal
one.

In Figure 3 we present〈N〉t versus time forN0 ) 20. Three
different temperatures are presented, namelykT ) 20, 200, 350

cm-1. We notice that, independent of the temperature, the mean
value of N is shifted asymptotically toward shorter segment
lengths. ForkT ) 20 cm-1 the 〈N〉 value is always larger than
that for higher temperatures, because the thermal factor is an
additional obstacle for the excitation to move toward a smaller
segment.

C. Simulation of the Spectra.The absorption spectrum can
be calculated by applying the standard procedure of calculating
the eigenenergies and the corresponding oscillator strengths.13,14

We generate random chains by using an exponential distribution
for the segment lengths. Equations 3 and 4 indicate the energies
where these chains absorb and the corresponding absorption
intensity. We construct the absorption spectrum by using a
binning technique, where the width of each bin is equal to 1
cm-1. Every time we determine an absorption line for a
particular chain we add the value of its oscillator strength to
the corresponding bin. Upon repeating this procedure for a large
number of chains we gradually build a histogram, which is the
absorption spectrum. We then peak-normalize to 1 in order to
compare this to the experimental spectrum.

To construct the emission spectrum we need to also take into
account the finite lifetime of an excitation. For each de-excitation
a photon is emitted, and we add this to the energy corresponding
to its wavelength with the appropriate oscillator strength. The
energy and the oscillator strength are computed for the N-mer
on which the excitation was located at the time that it decayed.
The histogram is then built the same way as described for the
absorption spectrum.

Finally, we simulated the time-dependent fluorescence decays
of THIATS. Experimentally, this curve is acquired by a single-
photon counting technique. A monochromator window is placed
on the peak of maximum intensity. We use the exact same
algorithm for the transfer process as in the case of the emission
spectrum. However, we now construct a temporal histogram.
We monitor the time needed for an excitation to decay. When
it finally decays we store the “existence time”. Different
realizations of the system allow us to construct a histogram,
where the x-axis represents the time and they-axis the
percentage of excitations decaying at that particular time.
Finally, we perform a convolution of the derived function with
the instrumental response function. By varying the values of
the hopping time, i.e., the time which corresponds to one Monte
Carlo step, we can stretch or compress the curve along the
x-axis. In this way we can determine which values of the
hopping time yield a better description of the experimental
fluorescence spectrum. Note that an excitation which decays is
only recorded when its energy falls within the frequency interval
of the monochromator window. Otherwise, it is ignored because
it would not have been recorded experimentally.

IV. Results and Discussion

In our effort to construct the absorption spectrum of THIATS
aggregates we varied all of the relevant parameters and found
out that the parameters which yield the best fittings areN0 ) 8,
σE ) 60 cm-1 (disorder of the exciton band center position),
and the energy level of the monomer should be 17500 cm-1.
The absorption spectra (experimental and computed) are pre-
sented in Figure 4. We can see that the coincidence between
the two curves is indeed very good. There was no need to
introduce theø2 or any other statistical indicator because the
estimation of the fitting parameter within 10% is sufficient for
this qualitative work.

The result of the simulation of the emission spectrum is shown
in Figure 5. Ideally, one would like to calculate the emission

Figure 2. Mean squared displacement for the excitation random walk
on the disordered chain. Five different temperatureskT are presented,
as marked:kT ) 1, 5, 20, 200, 350 cm-1. The curves for the higher
temperatures are practically indistinguishable. We use an exponential
length distribution with a mean segment lengthN0 ) 10.

Figure 3. Evolution of 〈N〉 with time for three different temperatures
kT ) 20, 200, and 350 cm-1 for an exponential segment length
distribution with mean segment lengthN0 ) 10.

〈N〉t ) ∑
N

NP(N,t) (10)
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spectrum with the exact same parameters as for absorption.
However, we have found that the best fit corresponds toN0 )
9, σE ) 90 cm-1, andE0 ) 17600 cm-1. The decay constant is
equal to 5× 10-6. The main difference is in the width of the
two spectra, since experimentally it is found that the emission
spectrum is much wider than the absorption one.

The simulated decay curves are shown in Figure 6 in
comparison to the experimental decays. The best fit is found
when we consider a hopping time of 0.1 ps and a decay constant
d ) 5 × 10-6. This small hopping time correlates with the
extremely high mobility of excitons in such systems as it is
seen from the exciton-exciton annihilation experiments.35

Note that all results were obtained assuming that the excitation
is not producing more than one exciton per aggregate cluster,
meaning that only one segment of the aggregate chain is excited.
This means that the excitation intensity used in the experiments
related to the analogous simulations should be weak enough.
Otherwise, the model proposed should take into account the
more complex multiexciton processes such as exciton-exciton
annihilation.35 This latter process is under current investigation.

V. Conclusions

When exciting a mesoscopic36 J-aggregate consisting of a
large number of segments of exponentially distributed length,
a rapid (4 ps) redistribution of the excitation enegry over the
assembly occurs. This suggests that the nonexponential decays
occurring in a time range between 100 ps and 1 ns, observed

frequently in the analysis of J-aggregate fluorescence decays,32-34

are probably not related to this redistribution process.
Around room temperature, electronic factors appearing in the

expression for the rate of energy transfer determine the final
pseudostationary distribution, characterized by an average
coherence length approaching<1/N>-1. At low temperature,
energetic factors also become important.

Although the model used contains several simplifications
concerning both the calculation of the energy of the aggregates
and the simulation of the exciton hopping process, the results
of simulating the spectra are very satisfactory. As the parameter
V is not calculated a priori but used as an experimentally
determined (fitted) parameter, the simplifications used will have
no direct effect on the results presented here. Simulations using
either the point dipole or more extensive expressions show that,
except for H-aggregates, the nonnearest neighbor interactions
are generally more than five times smaller than the nearest
neighbor interactions.

In the simulations of the exciton transport we observed that
at room temperature, where energetic aspects are probably not
relevant, energy transfer results in a pseudostationary value of
〈N〉 , which is significantly smaller than the characteristic
aggregate sizeN0 (which is the average value of the exponential
distribution). The smaller lengths are preferred mainly because
of their much higher probability of occurrence, compared to
larger segments whose probability of occurrence decreases
exponentially. Additionally, in our model, the energy difference
between segments of similar lengths is not significant and
generally it is comparable to the thermal energy.

Although we have not attempted to perform a simulation of
the entire set of the luminescent properties of the molecular
aggregates of the THIATS dye, we have shown that some
information on the parameters of the luminescent states of such
systems can be obtained even by use of this simple model. The
actual nature of these states remains unknown, and the complete
details of the energy transport mechanism are still under
discussion.
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