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Diffusion studies in nonequilibrium systems with attractive interactions
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Diffraction experiments can be used easily to measure the time evolution of a system under nonequilibrium
conditions to attain a new equilibrium state and deduce ‘‘nonequilibrium’’ surface diffusion coefficients. It is
not clear how the ‘‘nonequilibrium’’ diffusion coefficients extracted from such diffraction experiments should
be interpreted. We study with Monte Carlo simulations the behavior of the ‘‘nonequilibrium’’ tracer and
collective diffusion coefficients in a lattice-gas model with attractive nearest-neighbor interactions, as the
system evolves in time from an initial random state to attain the (131) ordered state for temperaturesT/Tc

,1. We calculate the dependence of the mean-square displacement^R2& on time and the collective diffusion

from the relaxation of the nonequilibrium structure factorS(qW ,t) within time sub-intervals under the assump-
tion that quasiequilibrium holds. We determine the time-dependent ‘‘nonequilibrium’’ diffusion coefficients
and extract the time-dependent activation energies. For both diffusion coefficients the ‘‘nonequilibrium’’
values obtained at late times are compared to the corresponding values obtained at equilibrium.
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I. INTRODUCTION

The study of the time evolution of a system under no
equilibrium conditions has been of great interest, both th
retically and experimentally, to identify the growth laws th
apply. For example, systems initially in a disordered hig
temperature phase evolve in time and form domains of
ordered phase, if they are quenched to a temperatureT/Tc
,1 below the critical temperature. Previous work has
ready answered several important questions relevant to
problem: how does the average size of the domains of
ordered phase grow in time, what is the domain size dis
bution as the domain size increases, etc. Most of these t
retically predicted results have been confirmed experim
tally and are well documented in several reviews.1–3

Nonequilibrium experiments can be realized under diff
ent conditions, i.e., an arbitrary initial nonuniform concent
tion profile is set up, which smooths out with time as t
atoms diffuse away. The final state of the system is one
uniform concentration. In the current study we restrict ‘‘no
equilibrium’’ to the conditions defined above: the syste
evolves in time from an initial random configuration to atta
the ordered phase forT,Tc . Our goal is to relate result
obtained in this type of nonequilibrium experiment to resu
obtained in equilibrium experiments. This does not mean
the diffusion coefficients extracted from the two types
experiments will be identical, since the configurations we
probing~random versus ordered! are different. However, we
can determine how the measured activation energies ca
explained in terms of the adsorbate-adsorbate interacti
conversely, once this relation is understood, we can ans
one of the main practical questions in a diffusion experim
~i.e., how to deduce the potential energy surface and
adatom interactions!, either from an equilibrium or a non
equilibrium experiment. Although our study is carried out
a specific model~i.e., the lattice-gas model with neares
neighbor attractive interactions! and some of the results ar
specific to this model~as will be seen, there are some diffe
PRB 620163-1829/2000/62~12!/8286~9!/$15.00
-
-

t
-
e

l-
he
e

i-
o-

n-

-
-

of
-

s
at
f
e

be
s;
er
t
e

ences with a model which has competing, i.e., both attrac
and repulsive interactions!, the usefulness of the concept of
‘‘nonequilibrium’’ diffusion coefficient and how to deduc
the adatom interactions is a general one.

It has already been suggested that nonequilibrium exp
ments, carried out at different temperatures, can be use
extract information about the surface diffusion barriers4,5

This possibility is extremely appealing since such noneq
librium experiments are easily carried out with diffractio
@high-resolution low-energy electron diffraction~LEED!# in
surface overlayers. Diffraction can monitor changes in
ordering of atoms on the surface. Correspondingly, theor
cal studies of lattice-gas models have been the standard
to simulate the structure and dynamics of surface overlay
The occupation variableci51 ~occupied! and 0~empty! de-
notes whether the sitei is occupied by an overlayer atom o
not. The degree of order in the system is measured from
nonequilibrium structure factor defined by

S~qW ,t !5
1

~uN!2 U(i
ci~ t !eiqW •rWU2

5
1

~uN!2 S U(
i

ci~ t !cos~qW •rW !U2

1U(
i

ci~ t !sin~qW •rW !U2D ~1!

which is exactly what is measured in a LEED diffractio
experiment,N is the number of sites on the lattice, andu is
the coverage.

It has been suggested that the temperature-depen
prefactorA(T) appearing in the growth law for the averag
domain size

L5A~T!tx ~2!
8286 ©2000 The American Physical Society
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can be used to define a ‘‘nonequilibrium’’ diffusion coeffi
cient D;A(T)1/x, wherex is the growth exponent for the
time evolution. It is still not clear how this diffusion coeffi
cient is related to the diffusion coefficient at equilibrium, i.
when the ordered phase has been established in the sy
with the domains reaching the size expected thermodyna
cally. However, diffusion experiments at equilibrium are n
toriously difficult to perform and diffusion data at equilib
rium are rather scarce.6 Equilibrium measurements are bas
on the relaxation of small concentration fluctuations wh
are difficult to measure7; therefore, clarifying the relation
between ‘‘nonequilibrium’’ and equilibrium diffusion coeffi
cients is of high importance to legitimize the concept o
‘‘nonequilibrium’’ diffusion coefficient, so diffraction ex-
periments can be used as a substitute when results from
librium experiments are not available.

The standard definition of the collective diffusion coef
cient at equilibrium is in terms of the relaxation of sma
amplitude fluctuations ofS(qW ,t) in the long-wavelength limit
qW→0, which are expected to decay to zero with time,

S~qW ,t !5S~qW ,0!exp~2Dctq
2!, ~3!

or equivalently

Dc52
1

q2

d ln S~qW ,t !

dt
52

1

q2S~qW ,t !

dS~qW ,t !

dt
. ~4!

The definition can be extended in nonequilibrium system
we divide the evolution time into sufficiently small subinte
vals, and assume that within each subinterval the system
quasiequilibrium. This assumption is justified if the rela
ation of the low-amplitude concentration fluctuations
faster than the domain growth time. The evolution proc
can be thought of as a series of successive relaxation ex
ments, with the state of the system in each experiment@i.e.,
with the initial value ofS(qW ,t), in each subinterval#, defined
by the nonequilibrium configuration of the system that h
evolved according to the nonequilibrium growth laws a
not thermodynamically. Thermal fluctuations generate de
tions from the average domain morphology within each s
interval time. The system relaxes back to its average dom
morphology via diffusion. Clearly thermodynamic inform
tion is lost in this type of experiment and, as will be di
cussed below, the measured ‘‘nonequilibrium’’ diffusion c
efficient should be compared to the jump rate diffusi
coefficient@since the experiment is not sensitive to the th
modynamic contribution to the collective diffusion coef
cient, the thermodynamic factord(m/kT)/d ln u#. However,
the experiment is still sensitive to the hops of the individu
atoms~i.e., local hopping barriers!, so it is still possible to
relate the effective activation energies to the ones meas
at equilibrium.

The relaxation ofS(qW ,t) within each time subinterval is
governed by a relaxation expression as in Eq.~3!. Since the
average value ofS(qW ,t) and the domain morphology are di
ferent within each time subinterval and different atomic co
figurations are sampled in each time subinterval, this
sumption will lead to a time-dependent ‘‘nonequilibrium
diffusion coefficient. Similar assumptions have been use
determine the ‘‘nonequilibrium’’ diffusion coefficien
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changes in a model with effectively competing nearest a
next nearest neighbor interactions that describes
O/W~110! system.5

It is also of interest to measure the other key quantity
surface diffusion, namely the mean-square displacement

^R2&5
1

Nu (
i 51

uN

dRi
2 , ~5!

which defines the tracer diffusion coefficient. In systems
finite coverage with interactions between the atoms, the
diffusion coefficients measure totally different correlatio
and have a different dependence on the coverage and
temperature. We can define a ‘‘nonequilibrium’’ tracer d
fusion coefficient during the evolution of the ordered pha
domains to attain equilibrium in a similar way as in the de
nition of the ‘‘nonequilibrium’’ collective diffusion coeffi-
cient, by dividing the time evolution into subintervals an
assume that within each subinterval quasiequilibrium ho
We can address the question of how the ‘‘nonequilibrium
tracer diffusion coefficient is related to the equilibrium on

II. MODEL

We have studied anL03L0561361 lattice-gas mode
with attractive nearest-neighbor interactionsJ for u50.5, as
the lattice gas is quenched from a high to a low tempera
within the ordered phase 0.54<T/Tc<0.95. The critical
temperature is defined in terms of the interaction param
J/kTc51.76. The diffusion algorithm is based on the initi
site energy~instead of the alternatively used Metropolis a
gorithm, which uses the difference in the energy between
initial and the final state!: the probability of a randomly cho
sen atom to diffuse to a nearest-neighbor site~which is
empty! is given byp5exp(2zJ/kT), wherez is the number
of nearest neighbors. As discussed earlier,8 similar results for
the domain size evolution are obtained for the two types
algorithms, but the single site energy algorithm is a mo
realistic representation of the diffusive dynamics in expe
mental systems~although it is slower than the Metropoli
algorithm and results in smaller domain sizes, if the sa
number of MCS are used for the two algorithms!.

This model has been extensively studied earlier to de
mine the time-dependent growth laws. Initial conflicting r
sults about the value of the growth exponentx in Eq. ~2!
have been eventually settled in agreement with the expe
value x5 1

3 ~from the Lifhsitz Slyozov theory9!, if suffi-
ciently long times are used in the simulations to attain
asymptotic time regime.10 Growth is found to be self-similar
~i.e., the evolving domain morphology obeys the same
main size distribution at all times!, as evidenced from the
scaling of the structure factorS(qm ,t)5SmaxF(qm /qmax),
where Smax is the value of the structure factor at i
maximum9 max the corresponding wave vector andF(x) is
the characteristic scaling function.

In our simulations we have used times up to 105 MCS and
since the emphasis is on the temperature dependence
have covered a wide range of the quench temperature, d
within the ordered region. We have averaged 900 indep
dent configurations, so even for the 61361 lattice we have
used, the accuracy is better than 1%. First we study the
erage mean-square displacement^R2& of all the particles ac-
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cording to Eq.~5!, which is well-defined independently o
whether the system is at equilibrium or not. Although t
standard definition of the tracer diffusion assumes that
long time limit is attained, it is still meaningful to study ho
the mean-square displacement^R2& changes with time, even
for finite times, as the domains of the ordered phase evo
towards equilibrium.

We have divided the time over which the system evolv
to attain equilibrium into subintervals (tn21 ,tn) with n
51,2,3,4 defined by the timestn , and the constant values o
@^R(tn)2&5cn# with cn515,30,60,100. Both the choice o
the intervals~defined by the constant values of^R2&) and
their specific valuescn’s are rather arbitrary and are on
used to determine how the activation energy of tracer di
sion changes with time. The tracer diffusion coefficie
within each subinterval is defined by

Dn~T!5
1

4~ tn2tn21!
@^R~ tn!2&2^R~ tn21!2&#. ~6!

A practical advantage of this choice is that we use the sa
difference of displacements@^R(tn)2&2^R(tn21)2&# for all
temperatures. It is easier to implement this choice exp
mentally for methods that measure only^R2&. A different
definition of the selected timestn8 can be based on consta
values ofSmax ~to be discussed next!. This choice is equiva-
lent to measurements of the tracer diffusion within time s
intervals which have the same average domain sizeL(tn8)
~since, as will be discussed shortly, a constant value ofSmax
implies a constant value ofL). For this choice of times we
use different numerators in Eq.~6! for the different tempera-
tures ~i.e., mean-square displacement differences!, but with
this choice of timestn8’s, the system is at the same ‘‘dis
tance’’ in phase space from the final equilibrium state. Ho
ever, this construction is more difficult to implement in pra
tice, since it requires experimental methods that meas
Smax and ^R2& simultaneously during the evolution of th
system towards equilibrium. Since in the simulations
have this information~i.e., the time dependence of^R2& and
Smax at the same timet), it is easy to relate the activatio
energies of the tracer diffusion extracted by the two differ
selection methods of the time subintervals.

The structure factor was calculated from Eq.~1! for all
wave vectorsqx52hp/L0 andqy52kp/L0, whereh,k are
integers varying independently from 0,L021. SinceS(qW ,t)
has azimuthal symmetry, it only depends on the magnit
of qW , so it was circularly averaged for all the pairs of valu
(h,k) satisfying the conditionm21/2<Ah21k2,m11/2,
with m ranging from zero to the nearest integer toL0/2 and
qm52mp/L0.

The shape and evolution ofS(qm ,t) with time contain all
the information relevant to the evolving domain morpholog
Its shape fully determines the domain size distribution a
as stated before, it has been shown to be self-similar.
area under the S(qm ,t) is constant with time, A
5cSmaxqmax

2 @wherec is a proportionality constant that de
pends only on the shape ofS(qm ,t), Smax is the maximum of
the structure factor, andqmax is the wave vector correspond
ing to this maximum#, as a result of the sum rule, i.e., th
coverage is fixed atu50.5. This means no atoms are r
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moved or added to the system. The average domain sizeL is
the only necessary parameter to specify fully the dom
morphology at any timet, because of the scaling of the stru
ture factor. The time dependence ofL can be obtained from
different measures based onS(qm ,t) ~in addition to mea-
surements ofL from the mean chord intercepts in pictoria
such as the ones shown in Fig. 1!. For example,L is propor-
tional to 1/qmax or Smax

0.5 , or inversely proportional to thei th
root of the i th moment ofqm , with S(qm ,t) treated as a
probability distribution.

We have chosen to use the dependence ofSmax versust to
monitor the increase of the average domain size since,
ally, this is the easiest quantity to measure experimenta
We have determinedSmax by using two different methods
because of the discreteness of the wave-vector gridqm that
we have used. At a given time, most likely the exact va
qmax lies between the discrete values ofqm , so the correct
value can be found by interpolation. With the first meth
the full structure factorS(qm ,t) was calculated at a few fi
nite times (;10 times! and the position of the maximum wa
determined by completing the bell-shaped top segment of
curve. SinceS(qm ,t) was calculated at discrete times, th
provides only a finite set of the values ofSmax versust and it
is difficult to calculate the slopedSmax/dt according to Eq.
~4!. Alternatively we have calculated the time dependence
S(qm ,t) at fixed wave vectorqm for a larger number~closely
spaced! of times, since it is easier computationally. At an
given time the curve, corresponding to the value ofqm with
the largestS(qm ,t) value, was selected as an approximati
to Smax. With time the selected curve moves to the curve

FIG. 1. Snapshots of the evolution of the domain configurat
for different times after a quench of the system fromJ/kT50 to
J/kT53. A lattice of size 1013101 with u50.5 is used. The av-
erage domain size for the latest configuration of 40 000 MCS
measured from the linear domain chord, is 0.13 of the lattice s
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FIG. 2. Plot of ^R2& versust
for a lattice of size 61361 with
coverageu50.5, for different val-
ues of temperatures in the rang
0.54<J/kT<0.95. The horizontal
lines n51,2,3,4 correspond to the
lines described in text for the cal
culation of the ‘‘nonequilibrium’’
tracer diffusion coefficientDn ,
with timestn selected for constan
values of^R2&.
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smaller wave vectors. This choice always underestimates
correct value ofSmax, especially at the cusplike feature
formed at the point of intersection of theS(qm ,t) curves
corresponding to two successive wave vectors. By com
ing with the few discrete, more exact values that were in
polated from the full line shapes ofS(qm ,t), as discussed
before, the maximum difference between the two method
less than 10%~at the cusplike features! and becomes les
pronounced with time. From these approximateSmax versust
plots, a power law was used for the fit to testSmax
;A2(T)t2x ~which effectively corrects for the approximatio
described above, since a power law is a monotonic func
of time, with a smoothly varying derivative that smooth
out the cusplike features!. The slopesdSmax/dt can be deter-
mined according to Eq.~4! with a much finer time grid for
better accuracy.

Similar to the construction we have used to define
‘‘nonequilibrium’’ tracer diffusion coefficient, we have se
lected the subintervalstn8 from the constant values ofSmax

5cn8 to define the collective diffusion coefficient, wherecn8
50.002,0.004,0.008,0.012 forn51,2,3,4~the corresponding
values of the linear domain size as measured from the ch
intercept show a change from 7% to 18% of the size of
system!. Again this choice ofcn8’s is rather arbitrary, but
sufficient for the main interest of our study to show the tim
dependence of the ‘‘nonequilibrium’’ diffusion coefficien
Dc and the corresponding changes of the activation ene
with increasingn. As can be seen from Eq.~4!, we can
approximate Dc with simply the slope Dc
5(c/A)dSmax/dt, if we select as the wave vector of intere
the wave vector of the maximum of the structure factorqmax

@since the product in Eq.~4! qmax
2 Smax5A/c for any n is

constant, because of the sum rule satisfied by the integr
S(qm ,t) noted earlier, i.e., the number of atoms on the latt
is fixed#. The slopesdSmax/dt at fixedn are proportional to
the ‘‘nonequilibrium’’ collective diffusion coefficientDc
5(c/A)dSmax(T)/dt at the different temperaturesT we have
used. The constantc/A is independent of temperature an
he

r-
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simply depends on the sum rule obeyed byS(qm ,t). By
plotting dSmax/dt versus 1/T for fixed n, we extract the ac-
tivation energy of the ‘‘nonequilibrium’’Dc as a function
of n.

III. RESULTS

A typical picture of the domain evolution is shown in Fig
1 for J/kT53 and different times up to 40 000 MCS. W
observe the typical fractal-like domain structure with the d
mains reaching sizesL/L050.13 depending on the tempera
ture. ~The domain is measured from the linear chord len
of straight line intercepts through the domains.!

^R2& is shown in Fig. 2 for several temperatures 0.
<T/Tc<0.95. It is clear that the mean-square displacem
does not follow a linear dependence on time, but its rate
growth decreases with time. This is a characteristic
anomalous diffusion with a sublinear time dependence
^R2&;t12x with x.0. Earlier work8 has shown that, for
sufficiently low temperatures, the exponentx appearing in
^R2& is related to the growth exponent in Eq.~2! of L; so
^R2& can also be used to extract the growth laws of
nonequilibrium growth processes.

Figure 3 shows the Arrhenius plots for the ‘‘nonequili
rium’’ tracer diffusion coefficient as a function ofn, the pa-
rameter that indicates how far the system has progresse
wards the equilibrium state. These results are obtained w
times tn8 defined by constant values ofSmax. The results ob-
tained for timestn defined by constant values of^R2& are
similar. It is important to emphasize that the data cove
very wide temperature range, far wider than most experim
tal studies that usually span a temperature range of a s
percentage ofTc ~typically less than 20%!. The activation
energy shows an increase~from 1.45J to 1.9J) with n and is
close to the expected value 2J5zuJ ~with z54 the coordi-
nation number of the square lattice! for atoms with two near-
est neighbors~which is the average coordination of the atom
at the domain boundaries!. These are the only atoms tha
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contribute to the mean-square displacement in Eq.~5!, since
all the nearest-neighbor sites inside the domains are occu
and the inside atoms cannot diffuse.

Figure 4 shows the evolution of the circularly averag
structure factorS(qm ,t) versusqm for different times and
T/Tc50.7. It has the characteristic bell shape with the po
tion of the maximumqmax shifting to smaller wave vectors
while the area under the curve remains constant with tim

Figure 5 shows the plot ofSmax versust covering one
decade in the evolution ofSmax and more than 2.5 decades
the time variation. The measured exponent shown in the
ure increases slightly from 0.53~for T/Tc50.95) to as high
as 0.6 as the temperature decreases~for T/Tc50.66), ap-
proaching the asymptotic value 2x52/3 ~at even lower tem-
peratures the exponent seems to decrease again, becau
probability for an atom to diffuse decreases according to
initial energy expression, so the kinetics are much slow
and the domain sizes attained are smaller!. The results show
that we have not yet reached the truly asymptotic time
gime that, as mentioned earlier, was notoriously difficult

FIG. 3. Arrhenius plot of the ‘‘nonequilibrium’’ tracer diffusion
coefficientDn(T) obtained with times selected from constant valu
of Smax. The activation energies for the different time interva
corresponding ton51,2,3,4 are 1.45J,1.83J,1.87J, and 1.87J.

FIG. 4. Evolution of the circularly averaged structure fac
S(qm ,t) as a function ofqm , for three different values of time,t
5102,103, and 104 MC steps,u50.5, T/Tc50.7.
ied
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attain. In earlier Monte Carlo studies11 it was found that the
growth exponent isx50.2, smaller than the expecte
asymptotic value. Our study is beyond this regime, but s
short from the asymptotic limit.

From the power-law expression Eq.~2! ~and the relation
betweenSmax and L) we extract also the prefactorA2(T).
When A2(T) is plotted in an Arrhenius plot, we obtain th
activation energy ofA2(T), shown in Fig. 6, 2EA50.9J.
From this value and the conjectured expression relating
activation energy ofA2(T) to the activation energy of the
‘‘nonequilibrium’’ diffusion coefficientED52EA/2x ~where
2x is the measured exponent from the growth ofSmax versus
t), we obtain the ‘‘nonequilibrium’’ diffusion activation en
ergy ED51.58J ~using an average value of 2x50.57).

This value of the activation energy corresponds to
state of the system at the initial time of the evolution towa
equilibrium t50.1 As discussed earlier, it is possible to d

s

FIG. 5. Plot of Smax versus time for the temperature rang
0.54<T/Tc<0.95. The cusplike features are a result of the appro
mation used to determineSmax and are smoothed out with a powe
law fit ~which is expected to describe the evolution ofSmax). The
extracted growth exponents are shown for the different temp
tures and they approach the expected2

3 value.

FIG. 6. Arrhenius plot of the prefactorA2(T) extracted from the
power-law fits of Fig. 5. The extracted activation energy is 2EA

50.9J which, using the conjectured relation relating the ‘‘noneq
librium’’ diffusion activation energy to the growth rate activatio
energyED52EA/2x, results inED51.55J.
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fine the ‘‘nonequilibrium’’ collective diffusion coefficien
for different time intervals, as the system evolves in tim
from the initial random configuration towards the final o
dered configuration of (131) domains, with a similar con
struction to the one used to extract the ‘‘nonequilibrium
tracer diffusion. The constant values ofSmax we have chosen
are rather arbitrary, since we are primarily interested to
the time dependence ofDc(n). The ‘‘nonequilibrium’’ col-
lective coefficientDc(n) is proportional to the slope of th
dSmax/dt(n) defined at the same timetn8 based on Eq.~4!.

Figure 7 shows the corresponding Arrhenius plots of
‘‘nonequilibrium’’ collective diffusion coefficient for differ-
ent temperatures and fixedn. Although the data do not obe
an Arrhenius form over the entire temperature range we h
used, it is clear that if we concentrate at the temperatu
within the ordered region (0.77>T/Tc>0.54), an Arrhenius
form is a good fit. This is not surprising since, for tempe
tures close toTc ~and for longer time intervalsn.2), fluc-
tuations become more important. As the phase transitio
approaches the domain size is smaller than the domain
attained at lower temperatures. This decreases the colle
diffusion rate extracted fromSmax and causes the deviation
from the Arrhenius form at temperatures close toTc . The
extracted activation energy decreases fromE51.45J to E
51.03J asn increases fromn51 to n54.

IV. DISCUSSION

As noted earlier from Fig. 3, the activation energies
the tracer diffusion coefficient show a very weak increa
with n, as the system approaches equilibrium, with the va
E52J for the late time intervaln54. Monte Carlo studies
at equilibrium were studied in Ref. 13, but mostly at high
temperatures than the ones used in our work. They found
the Arrhenius plots of the tracer diffusion coefficient sho
two branches, one for the higher temperatures in the di

FIG. 7. ‘‘Nonequilibrium’’ collective diffusion coefficientDc

versusJ/kT, for the time regimes extracted from the conditio
Smax5const. The extracted activation energies are 1.45J for n51,
1.14J for n52, 1.15J for n53, and 1.03J for n54. The activation
energy extracted for the early time intervaln51 agrees well with
the one calculated in Fig. 6 from the growth rateA2(T), thus con-
firming the conjectured relation between the ‘‘nonequilibrium’’ a
growth rate activation energies.
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dered region and one for the lower temperatures withi
temperature range belowTc . Their lowest temperature wa
T/Tc50.73, while in our workT/Tc50.54. For the low-
temperature branch the activation energy is essenti
coverage-independent and for the coverage of interest of
study,u50.5, the two activation energies for the two tem
perature branches are similar,E51.7J.

This value is lower than the one we deduce from o
‘‘nonequilibrium’’ tracer diffusion simulations E52J.
There are several reasons for this discrepancy. In additio
the difference in the temperature range with Ref. 13,
checked whether the extracted activation energy withn de-
pends on the method by which the subintervals were defin
i.e., at constant values of^R2& or at constant values ofSmax.
The times tn8 defined by the constant values ofSmax will
define different values for̂R2& from the ones defined by th
use of the timestn . We have determined the correspondi
values of̂ R2& for the time intervals defined by the timestn8 ,
and ‘‘nonequilibrium’’ tracer diffusion coefficients were de
fined from the corresponding ratios in Eq.~6! ~i.e., with this
choice the nominators take different values for the differ
temperatures!. Physically, as indicated before, the use of t
times tn8 corresponds to configurations of the system, wh
have the same average domain sizeL ~and therefore the sys
tem is at same ‘‘distance’’ in configuration space from
final equilibrium configuration! for all temperatures. This
choice of subintervals corresponds to the use of much la
mean-square displacements than before~i.e., for example, for
J/kT51.86 thê R2& value forn54 increases to 400 from its
original value 100!, since at a fixed value ofSmax the corre-
sponding value of̂R2& is higher the higher the temperatu
is. The extracted values of the nonequilibrium tracer acti
tion energies with this method increase from 1.45J to 1.9J,
with n increasing from 1 to 4. What is surprising is that
both cases~for constant^R2& and Smax values!, the final
value of the activation energy is similar (2J versus 1.9J
correspondingly!. The new value 1.9J is closer to the value
1.7J obtained by Ref. 13 in their studies of the tracer diff
sion coefficient at equilibrium. Since at equilibrium the sy
tem has approached its final thermodynamically determi
state and it has the same domain size~for all temperatures
below Tc), the comparison with Ref. 13 is more meaningf
for the choice of the time intervals with a constant value
Smax than ^R2&.

The comparison of the ‘‘nonequilibrium’’ diffusion coef
ficient, extracted fromSmax obtained in our simulations fo
the latest time intervaln54, E51.03J, is better justified if
we compare with their results for the jump rate diffusio
coefficient. Their collective diffusion coefficient was ob
tained, from the well-known relation, as the product of t
jump diffusion coefficient and the thermodynamic fact
@d(m/kT)/d ln u#.12 The latter is purely an equilibrium quan
tity defined from the isotherm of the system, while the fi
quantity is defined in terms of the ratio of successf
attempted jumps averaged over all the atoms in the sys
For the thermodynamic factor there is no equivalent quan
in a ‘‘nonequilibrium’’ experiment, since the thermodynam
variables do not obey the relation specified by the minimi
tion of the free energy of the system, but are imposed by
initial disordered state the system is in. We do not expect
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‘‘nonequilibrium’’ collective diffusion to include any contri-
bution from the thermodynamic factor, since the fluctuatio
present in a ‘‘nonequilibrium’’ experiment are generated
the evolving state of the system. The activation energy of
jump rate diffusion coefficient in Ref. 13 is weakly depe
dent on coverage and atu50.5 it has a value ofE51.7J, but
for temperatures much higher than the ones we have use
our study. Reference 13 covers the range 0.9<T/Tc<7.0
while we cover the range 0.54<T/Tc<0.77, so a direct
comparison with the same temperature range is not poss
In their Arrhenius plot they have not included their lowe
temperature point (T/Tc50.73), because it has a valu
higher than the value expected from theE51.7J value of the
activation energy. Based on the value of this point it is p
sible to deduce that, for temperatures within the ordered
gion, the activation energy decreases, and since our temp
ture range is well within the ordered region, it is consiste
with the lower activation energyE51.03J we have mea-
sured from the dependence ofdSmax/dt for n54. It would
be useful to have equilibrium diffusion data at lower te
peratures to test if the lower value in our ‘‘nonequilibrium
simulations can be accounted for, since our ‘‘nonequilib
um’’ diffraction based method can only be used in the
dered region.

Even without the benefit of a full comparison with th
equilibrium results, we can address the question of why
the ‘‘nonequilibrium’’ tracer diffusion coefficient the activa
tion energy is almost constant with time and higher than
‘‘nonequilibrium’’ activation energy of the collective diffu
sion coefficient which decreases with time. A qualitative
gument can rationalize the result. For the ‘‘nonequilibrium
tracer diffusion coefficient, as discussed earlier, the temp
ture dependence of̂R2& is entirely determined by the de
tachment of atoms from the boundaries of the (131) or-
dered domains. These atoms diffuse in the empty reg
between the ordered domains, until they are captured
other domains present on the surface. This excitation
quires the break up, on the average, of two nearest-neig
bonds. For the ‘‘nonequilibrium’’ collective diffusion coef
ficient, it is also necessary to excite the same atoms at
domain boundaries to the empty region~but since the collec-
tive diffusion is measured fromdSmax/dt, the change of the
domain size depends on the net flow of the atoms in
growing domains, i.e., the difference in the number of ato
which attach to, minus the number of atoms which deta
from, the growing domains!. This difference becomes les
pronounced with time since, as the domains grow larger,
net fraction of atoms contributing todSmax/dt decreases
Since the fraction of atoms added to the net growth of
domains ~out of all the atoms excited from the doma
boundaries! decreases with time, this reduces the tempera
dependence of the number of atoms contributing todSmax/dt
and lowers the effective barrier measured in Fig. 7.

We can use our results to test the relation proposed for
‘‘nonequilibrium’’ collective diffusion defined in terms o
the prefactorA(T) in Eq. ~2! and the ‘‘nonequilibrium’’ col-
lective diffusion coefficient defined in Eq.~4!. As discussed
earlier, we obtain a valueED51.58J from the activation
energy of the growth rateA(T) (ED52EA/2x with devia-
tions from Arrhenius plots at lower temperatures for the ti
intervalsn.2), while the activation energy we obtain from
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the first time intervaln51 from Eq. ~4! is E51.45J. This
verifies the proposed relation defining the ‘‘nonequilibrium
diffusion coefficient in terms of the growth ratio.

Our analysis of the activation energies on the lattice-
model with attractive interactions has so far shown that
‘‘nonequilibrium’’ results we obtain for the tracer increas
weakly, while the collective diffusion decreases with t
evolution of time, and they confirm the conjectured relati
between the activation energy obtained from the collect
diffusion coefficient and the activation energy obtained fro
A(T).

‘‘Nonequilibrium’’ diffusion coefficients and activation
energies were obtained in an earlier study,5 on a lattice-gas
model with competing interactions@which result at low tem-
perature in the formation of ap(231) phase#; the phase
consists of a series of fully occupied rows every two latt
spacings~or columns! separated by empty rows~or columns!
in between. The lattice-gas model describes the well stud
experimentally O/W~110! ~Ref. 4! and reproduces most o
the known results about the ordered phases present for
ferent temperatures and coverages. The system
quenched from a high-temperature disordered phase to
peratures within the ordered region and the growth of
domains of thep(231) phase~which is fourfold degener-
ate! was monitored with time.5 ‘‘Nonequilibrium’’ tracer and
collective diffusion coefficients were determined from t
times that the extra energy of the system~i.e., which is con-
tained in the domain walls! decreases by a constant fractio
Since the extra energy in the system is inversely proportio
to the average domain size, this choice is equivalent to
choice of time intervals with the same domain size
equivalently with constant values ofSmax. In this study the
activation energies for both the ‘‘nonequilibrium’’ tracer an
collective diffusion coefficients follow similar trends wit
time. They increase by approximately 0.3 eV from the init
n51 to the final time subintervaln54 used. The increase o
the activation energy with time is consistent with the expe
mental results for the O/W~110!, which show that the ‘‘non-
equilibrium’’ activation energy obtained with LEED diffrac
tion experiments is lower by 0.4 eV from the activatio
energy obtained in equilibrium fluctuation experiments.
addition, the activation energy measured in the simulati
from the growth rateA(T) versus 1/T Arrhenius plots is in
good agreement with the value extracted from the relaxa
of theS(qW ,t) for the early time intervals (n52,3) that show
the growth exponent to have the expected valuex5 1

2 . This
again confirms the conjectured relationED5EA /x relating
the ‘‘nonequilibrium’’ to the growth rate diffusion activation
energies.

Comparison of our results to the ones of Ref. 5 show t
the type of structure formed~i.e., how many vacant sites ar
present in the unit cell of the structure! is essential to under
stand the behavior of the activation energy withn. For close
structures like (131) ~which has zero vacancy factor fo
atoms inside the domains!, the activation energy of the trace
diffusion does not change much, as we found in our stu
simply because diffusion is controlled by the atoms at
perimeter of the domains. These atoms have approxima
two nearest neighbors irrespectively of the size of the
mains. This can explain why the activation energy we ha
found does not change substantially during the evolution
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the domains and why it has a value close to 2J. For the
‘‘nonequilibrium’’ collective diffusion coefficient we have
suggested earlier that the decrease of the activation en
with n might be related to the long-range diffusion, nece
sary for the atoms to reach the domains, and generate a
tive flux to the growing domains.

On the other hand, for semiopen structures likep(2
31), the activation energy increases withn, since in this
case hops are possible either from atoms inside the dom
@i.e., atoms executing random walks in the 12d corridors of
the p(231) ordered phase# or from atoms at the domain
perimeter. Since with time the fraction of atoms at the p
rimeter decreases, hops at late times are predominantly
erated from the inside atoms. These atoms are formed f
atoms breaking the attractive bonds at the walls of the
dered chains of thep(231) structure, which increases th
activation energy.

The importance of the changing of local configuratio
with time and the role of atom hops from within the 12d
corridors of thep(231) ordered structure at late times we
demonstrated in an earlier Monte Carlo study on a lattice-
model that has a similar phase diagram to the O/W~110!
system@although repulsive~instead of competing! interac-
tions were used both for nearest- and next-nearest neig
interactions#.14 It was found that the major contribution t
the average hopping rate~i.e., averaged over all the loca
configurations that an atom experiences! was determined by
atoms performing random walks within the 12d corridors.
These atoms have six repulsive bonds~i.e., four bonds for
next nearest neighbors and two bonds for nearest neighb!.
Despite the steady decrease of the fraction of atoms with
particular configuration with time~and temperature!, these
atoms have the largest contribution to the average jump r
Additionally, an effective growth rateA(T) was defined
from the temperature dependence of the average dom
size, but contrary to the definition of Eq.~2!, the definition in
Ref. 14 emphasizes the late time growth of the system.
easy to see that this effective growth rate has higher act
tion energy than the activation energy obtained at early t
~a result similar to the one found in Ref. 5!. At late times the
excitations of the atoms out of the walls of thep(231)
structure are the main path for atoms to diffuse and cont
ute to the domain growth, while at early times their cont
bution is less important, since other atom configuratio
which have a weaker temperature dependence, can contr
to the diffusion current.

V. SUMMARY

We have studied the two types of surface diffusion co
ficients, the tracer and the collective diffusion under ‘‘no
equilibrium’’ conditions, while the system evolves in time
form domains of the (131) ordered structure. These tw
diffusion coefficients extend the usual definition of the c
responding coefficients at equilibrium by assuming that
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system is at ‘‘quasiequilibrium’’ within sufficiently shor
time intervals during the evolution, i.e., local concentrati
fluctuations decay with the usual diffusion mode over a ti
scale shorter than the typical growth time of the domai
For the model we have studied in this work@which is based
on nearest-neighbor attractive interactions and supports
formation of close (131) structures#, we find that the ‘‘non-
equilibrium’’ tracer diffusion activation energy depend
weakly on time and agrees with the tracer activation ene
results obtained at equilibrium. This results from the ‘‘clos
ness’’ of the ordered structure, so only atoms at the dom
boundaries contribute to diffusion~since the atoms inside th
domains cannot diffuse!. The activation energy for the ‘‘non
equilibrium’’ collective diffusion coefficient cannot be com
pared to the one obtained at equilibrium, since the temp
ture range used in the two simulations is different; based
the limited data, it seems that the activation energy in
ordered region is lower than the activation energy in
high-temperature disordered phase. This decrease and
corresponding decrease of the ‘‘nonequilibrium’’ collectiv
activation energy with time might be a result of the lon
range diffusion necessary for the domains to grow. For
‘‘nonequilibrium’’ diffusion coefficients obtained for the
open structures@p(231)# in a different model, the activa
tion energy increases with time because diffusion at l
times requires the breaking of the attractive bonds of th
2d chains of the (231) structure. The main conclusion o
our studies is that the concept of ‘‘nonequilibrium’’ diffusio
coefficient is well defined and is of practical value, sin
nonequilibrium experiments~with the use of diffraction! are
easier to implement experimentally than equilibrium expe
ments. In general, the nonequilibrium results will be tim
dependent and will approach in the long time limit the eq
librium results. For the specific model we have used~i.e., the
lattice-gas model with nearest-neighbor attractive inter
tions!, this approach happens relatively quickly, since t
atoms at the domain boundaries of the (131) phase~formed
as a result of the interactions! are the only ones which ca
diffuse. Even if the measured activation energies are dif
ent, especially at early times, they can be explained for
how the adsorbate-adsorbate interactions contribute to
different configurations. In practice, this means that one
the main goals of the diffusion experiments~i.e., to deduce
the potential energy surface and the adatom interactions! can
be carried out with the same success either with equilibri
or ‘‘nonequilibrium’’ experiments.

ACKNOWLEDGMENTS

Ames Laboratory is operated for the U.S. Department
Energy by Iowa State University under Contract N
W-7405-Eng-82. This work was supported by the Direc
for Energy Research, Office of Basic Energy Sciences.
also thank University of Paderborn~Germany! for a comput-
ing grant used to carry out part of the present calculation



nd
R

s

rf.

nd

s.:

8294 PRB 62E. ARAPAKI, P. ARGYRAKIS, AND M. C. TRINGIDES
1M. C. Tringides, inThe Chemical Physics of Solid Surfaces a
Heterogeneous Catalysis: Phase Transitions and Adsorbate
structuring at Metal Surfaces, edited by D. A. King and D. P.
Woodruff ~Elsevier, Amsterdam, 1994!, Vol. 7, Chap. 6.

2O. G. Mouritsen, inKinetics of Ordering and Growth at Surface,
edited by M. G. Lagally~Plenum, New York, 1990!.

3K. Heinz, inKinetics of Interface Reactions, edited by M. Grunze
and H. F. Kreuzer~Spinger Verlag, 1987!.

4M. G. Lagally and M. C. Tringides, inSolvay Conference on
Surface Science, edited by F. W. de Wette~Springer, Berlin,
1988!, p. 181.

5I. Vattulainen, J. Merikoski, T. Ala-Nissila, and S. C. Ying, Su
Sci. 366, L697 ~1996!.

6Surface Diffusion: Atomistic and Collective Processes, edited by
e-
M. C. Tringides~Plenum, New York, 1997!.

7D. Foster, Hydrodynamic Fluctuations, Broken Symmetry a
Correlation Functions~Addison Wesley, Reading, MA, 1990!.

8M. C. Tringides, C. M. Soukoulis, and P. Levenberg, J. Phy
Condens. Matter5, 4721~1993!.

9I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids19, 35
~1961!.

10J. G. Amar, F. E. Sullivan, and R. D. Mountain, Phys. Rev. B37,
196 ~1988!.

11G. S. Grest and P. S. Sahni, Phys. Rev. B30, 226 ~1984!.
12G. E. Murch, Philos. Mag. A43, 871 ~1981!.
13C. Uebing and R. Gomer, J. Chem. Phys.95, 7636~1991!.
14K. A. Fichthorn and W. H. Weinberg, Surf. Sci.286, 139~1993!.


