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E. Arapaki! P. Argyrakis! and M. C. Tringide$
Department of Physics, University of Thessaloniki, 54006 Thessaloniki, Greece
°Department of Physics and Astronomy and Ames Laboratory, lowa State University, Ames, lowa 50011
(Received 24 March 2000

Diffraction experiments can be used easily to measure the time evolution of a system under nonequilibrium
conditions to attain a new equilibrium state and deduce “nonequilibrium” surface diffusion coefficients. It is
not clear how the “nonequilibrium” diffusion coefficients extracted from such diffraction experiments should
be interpreted. We study with Monte Carlo simulations the behavior of the “nonequilibrium” tracer and
collective diffusion coefficients in a lattice-gas model with attractive nearest-neighbor interactions, as the
system evolves in time from an initial random state to attain the I} ordered state for temperatur€ar .
<1. We calculate the dependence of the mean-square displacéRfenin time and the collective diffusion
from the relaxation of the nonequilibrium structure facﬁéﬁ,t) within time sub-intervals under the assump-
tion that quasiequilibrium holds. We determine the time-dependent “nonequilibrium” diffusion coefficients
and extract the time-dependent activation energies. For both diffusion coefficients the “nonequilibrium”
values obtained at late times are compared to the corresponding values obtained at equilibrium.

[. INTRODUCTION ences with a model which has competing, i.e., both attractive
and repulsive interactiohsthe usefulness of the concept of a
The study of the time evolution of a system under non-“nonequilibrium™ diffusion coefficient and how to deduce
equilibrium conditions has been of great interest, both theothe adatom interactions is a general one.
retically and experimentally, to identify the growth laws that It has already been suggested that nonequilibrium experi-
apply. For example, systems initially in a disordered high-ments, carried out at different temperatures, can be used to
temperature phase evolve in time and form domains of thextract information about the surface diffusion barriets.
ordered phase, if they are quenched to a temperdilife  This possibility is extremely appealing since such nonequi-
<1 below the critical temperature. Previous work has al-librium experiments are easily carried out with diffraction
ready answered several important questions relevant to tHéigh-resolution low-energy electron diffracti¢dhEED)] in
problem: how does the average size of the domains of theurface overlayers. Diffraction can monitor changes in the
ordered phase grow in time, what is the domain size distriordering of atoms on the surface. Correspondingly, theoreti-
bution as the domain size increases, etc. Most of these theoal studies of lattice-gas models have been the standard way
retically predicted results have been confirmed experimento simulate the structure and dynamics of surface overlayers.
tally and are well documented in several reviéws. The occupation variable;=1 (occupied and O(empty) de-
Nonequilibrium experiments can be realized under differ-notes whether the siteis occupied by an overlayer atom or
ent conditions, i.e., an arbitrary initial nonuniform concentra-not. The degree of order in the system is measured from the
tion profile is set up, which smooths out with time as thenonequilibrium structure factor defined by
atoms diffuse away. The final state of the system is one of
uniform concentration. In the current study we restrict “non-

equilibrium” to the conditions defined above: the system S(q,t) = D c-(t)eid'Fz
evolves in time from an initial random configuration to attain ’ (oN)2 | T

the ordered phase foF<T.. Our goal is to relate results

obtained in this type of nonequilibrium experiment to results 1 Z - o7
obtained in equilibrium experiments. This does not mean that _(eN)z i ci(t)cosq-r)

the diffusion coefficients extracted from the two types of
experiments will be identical, since the configurations we are 2

probing (random versus ordergdre different. However, we ) (1)
can determine how the measured activation energies can be

explained in terms of the adsorbate-adsorbate interactions;, . | . . . . .
cogversely, once this relation is understood, we can answé’yh'Ch. IS exac_tly what is measu_red In-a LEEP difiraction
one of the main practical questions in a diffusion experimen xperimentN is the number of sites on the lattice, ads

: : e coverage.
(i.e., how to deduce the potential energy surface and th
adatom interactions either from an equilibrium or a non- It has been suggested that the temperaiure-dependent

equilibrium experiment. Although our study is carried out in grefac_:torA(T) appearing in the growth law for the average
a specific modeli.e., the lattice-gas model with nearest- omain size

neighbor attractive interactionsand some of the results are
specific to this modelas will be seen, there are some differ- L=A(T)t¥ 2

+

Ei ci(t)sin(g-r)
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can be used to define a “nonequilibrium” diffusion coeffi- changes in a model with effectively competing nearest and
cient D~A(T)Y*, wherex is the growth exponent for the next nearest neighbor interactions that describes the
time evolution. It is still not clear how this diffusion coeffi- O/W(110) systent.

cient is related to the diffusion coefficient at equilibrium, i.e., It is also of interest to measure the other key quantity in
when the ordered phase has been established in the systesnfface diffusion, namely the mean-square displacement
with the domains reaching the size expected thermodynami- N
cally. However, diffusion experiments at equilibrium are no- <R2>=i 2 SR? )
toriously difficult to perform and diffusion data at equilib- Noi<, "

rium are rather scarceEquilibrium measurements are based i e .

on the relaxation of small concentration fluctuations whichWhich defines the tracer diffusion coefficient. In systems at
are difficult to measure therefore, clarifying the relation [Inite coverage with interactions between the atoms, the two
between “nonequilibrium” and equilibrium diffusion coeffi- diffusion Coeff_|C|ents measure totally different correlations
cients is of high importance to legitimize the concept of a@"d have a different dependence on the coverage and the
“nonequilibrium” diffusion coefficient, so diffraction ex- temperature. We can define a “nonequilibrium” tracer dif-

periments can be used as a substitute when results from eqdSion coefficient during the evolution of the ordered phase
librium experiments are not available. domains to attain equilibrium in a similar way as in the defi-

The standard definition of the collective diffusion coeffi- Nition of the “nonequilibrium” collective diffusion coeffi-
cient at equilibrium is in terms of the relaxation of small- ¢ient. by dividing the time evolution into subintervals and

: . - .. assume that within each subinterval quasiequilibrium holds.
amplitude fluctuations d®(q,t) in the long-wavelength limit We can address the question of how the “nonequilibrium”

q—0, which are expected to decay to zero with time, tracer diffusion coefficient is related to the equilibrium one.
S(q,t)=5(q,0)exp — Dtg?), 3 Il. MODEL
or equivalently We have studied am X L,=61x61 lattice-gas model

- - with attractive nearest-neighbor interactioh®r 6=0.5, as
=_ i dinS(q.t) - 1 dS(a.t) (4) the lattice gas is quenched from a high to a low temperature
¢ g2 dt 9?S(q,t) dt - within the ordered phase 0.541/T.<0.95. The critical
TIemperature is defined in terms of the interaction parameter
J/IkT.=1.76. The diffusion algorithm is based on the initial
site energy(instead of the alternatively used Metropolis al-
8 rithm, which uses the difference in the energy between the
initial and the final stafe the probability of a randomly cho-

The definition can be extended in nonequilibrium systems i
we divide the evolution time into sufficiently small subinter-
vals, and assume that within each subinterval the system is
quasiequilibrium. This assumption is justified if the relax-

ation of the low-amplitude concentration fluctuations IScan atom to diffuse to a nearest-neighbor gisdich is

faster than the domain gr_owth time. Th_e evolutlon proces%mpty) is given byp=exp(~zJKT), wherez is the number
can be th_ought of as a series of successive relaxa_tlo_n EXPELt nearest neighbors. As discussed eafiligmilar results for
m.ents, V\,"t_h_ the state of tb € system n eth expenrffemt the domain size evolution are obtained for the two types of
with the initial value ofS(q,t), in each subinterval defined  ggorithms, but the single site energy algorithm is a more
by the nonequilibrium configuration of the system that haseajistic representation of the diffusive dynamics in experi-
evolved according to the nonequilibrium growth laws andmental systemgalthough it is slower than the Metropolis
not thermodynamically. Thermal fluctuations generate deviag|gorithm and results in smaller domain sizes, if the same
tions from the average domain morphology within each subnymper of MCS are used for the two algorithms
interval time. The system relaxes back to its average domain Thjs model has been extensively studied earlier to deter-
morphology via diffusion. Clearly thermodynamic informa- mine the time-dependent growth laws. Initial conflicting re-
tion is lost in this type of experiment and, as will be dis- gyjts about the value of the growth exponenin Eg. (2)
cussed below, the measured “nonequilibrium” diffusion co- have been eventually settled in agreement with the expected
efficient should be compared to the jump rate diffusionygiye x=1 (from the Lifhsitz Slyozov theo®), if suffi-
coefficient[since the experiment is not sensitive to the ther-ciently long times are used in the simulations to attain the
modynamic contribution to the collective diffusion coeffi- a5ymptotic time regim& Growth is found to be self-similar
cient, the thermodynamic factal(./kT)/dIn 6]. However, (i e, the evolving domain morphology obeys the same do-
the experiment is still sensitive to the hops of the individualmain size distribution at all timesas evidenced from the
atoms(i.e., local hopping barriefsso it is still possible to  gcaling of the structure factoB(d,t) = SmaF (Am/Ama),
relate the effective activation energies to the ones measurgghere S .. is the value of the structure factor at its
at equiliprium. . _ _ ~ maximun? max the corresponding wave vector aR(k) is

The relaxation o0fS(q,t) within each time subinterval is the characteristic scaling function.
governed by a relaxation expression as in & Since the In our simulations we have used times up t& MCS and
average value 08(q,t) and the domain morphology are dif- since the emphasis is on the temperature dependence, we
ferent within each time subinterval and different atomic con-have covered a wide range of the quench temperature, deep
figurations are sampled in each time subinterval, this aswithin the ordered region. We have averaged 900 indepen-
sumption will lead to a time-dependent “nonequilibrium” dent configurations, so even for the>6@1 lattice we have
diffusion coefficient. Similar assumptions have been used toased, the accuracy is better than 1%. First we study the av-
determine the ‘“nonequilibrium” diffusion coefficient erage mean-square displacem@rt) of all the particles ac-
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cording to Eq.(5), which is well-defined independently of
whether the system is at equilibrium or not. Although the gz;
standard definition of the tracer diffusion assumes that the
long time limit is attained, it is still meaningful to study how
the mean-square displaceméRf) changes with time, even
for finite times, as the domains of the ordered phase evolve
towards equilibrium. i
We have divided the time over which the system evolves
to attain equilibrium into subintervalst{ ;,t,) with n
=1,2,3,4 defined by the timeg, and the constant values of
[(R(t))?)=c,] with c,=15,30,60,100. Both the choice of
the intervals(defined by the constant values ¢R?)) and
their specific valuex,’s are rather arbitrary and are only
used to determine how the activation energy of tracer diffu-
sion changes with time. The tracer diffusion coefficient f=
within each subinterval is defined by

Dn(T)= (Rt —(Rta-1)?)]. ()

4(tn_tn71)

difference of displacemen{gR(t,)2) —(R(t,_1)?)] for all - _
temperatures. It is easier to implement this choice experi-‘:_l,-,-ﬂ!| “5’--.1.1.-% L
mentally for methods that measure or{lR?). A different e W Bk aB. 5 When TY

definition of the seleclted timet;, can b? basgd qn con§tant FIG. 1. Snapshots of the evolution of the domain configuration
values 0fSpgy (to be discussed nextT.h|s (.;hO'C(.a IS equIva- ¢4 gitferent times after a guench of the system frdhkT=0 to

!ent to measurements of the tracer diffusion Wlthln time SUD-j, T=3 A lattice of size 10% 101 with 6=0.5 is used. The av-
intervals which have the same average domain ii€)  erage domain size for the latest configuration of 40000 MCS, as

(since, as will be discussed shortly, a constant valug.Qf,  measured from the linear domain chord, is 0.13 of the lattice size.
implies a constant value df). For this choice of times we

use different numerators in E¢) for the different tempera-
tures(i.e., mean-square displacement differencésit with

moved or added to the system. The average domain_sige
this choice of timest”’s, the system is at the same “dis- the only necessary parameter to specify fully the domain

- . o morphology at any timg because of the scaling of the struc-
tance” in phase spgce_from the f|r_1al eqU|.I|br|um state. How’ture factor. The time dependencelotan be obtained from
ever, this construction is more difficult to implement in prac-

. . . . ; different measures based ,t) (in addition to mea-
tice, since it requires experimental methods that measu Sfam 1 (

e . L
. . . urements of. from the mean chord intercepts in pictorials
Smax and (R?) simultaneously during the evolution of the P P

o . . : . such as the ones shown in Fig. Eor examplel is propor-
system towards equilibrium. Since in the simulations we 05 9 plel.is prop

have this informatiorfi.e., the time dependence (R?) and ?(())(;]talo;otr%gin;?wx (r)nrosrgg);toorflnvervsvilg gzopo:t;otl::;:g dth:Sha
Shax at the same time), it is easy to relate the activation - A

energies of the tracer diffusion extracted by the two different’ robability distribution.
: . . We have chosen to use the dependenc®,gf versust to
selection methods of the time subintervals.

The structure factor was calculated from Ed) for all monitor the increase of the average domain size since, usu-

- - ally, this is the easiest quantity to measure experimentally.
wave vectors),=2hm/Lo andqy=2km/Lo, whereh k are o' 0 determine®,,, by using two different methods,

integers varying independently from Qo —1. SinceS(q,t)  pecause of the discreteness of the wave-vector ggidhat
has azimuthal symmetry, it only depends on the magnitudge have used. At a given time, most likely the exact value
of g, so it was circularly averaged for all the pairs of valuesq,,,, lies between the discrete values @f,, so the correct
(h,k) satisfying the conditiorm—1/2<\h?+k?<m+1/2,  value can be found by interpolation. With the first method
with m ranging from zero to the nearest integerlig2 and  the full structure factoS(q,,,t) was calculated at a few fi-
Om=2mar/L. nite times ¢ 10 timeg and the position of the maximum was
The shape and evolution & q,,,t) with time contain all  determined by completing the bell-shaped top segment of the
the information relevant to the evolving domain morphology.curve. SinceS(q,,,t) was calculated at discrete times, this
Its shape fully determines the domain size distribution andprovides only a finite set of the values 8., versust and it
as stated before, it has been shown to be self-similar. Thig difficult to calculate the slopdS,,,,/dt according to Eq.
area under theS(q,,t) is constant with time, A (4). Alternatively we have calculated the time dependence of
=cSmag§ax [wherec is a proportionality constant that de- S(g.,,t) at fixed wave vectoq,, for a larger numbe(closely
pends only on the shape 8(q,,,t), SnaxiS the maximum of  spaced of times, since it is easier computationally. At any
the structure factor, angl,,, is the wave vector correspond- given time the curve, corresponding to the valuggfwith
ing to this maximunp, as a result of the sum rule, i.e., the the largesiS(q,,,t) value, was selected as an approximation
coverage is fixed ab=0.5. This means no atoms are re- to S,,,,. With time the selected curve moves to the curve of
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smaller wave vectors. This choice always underestimates th&@mply depends on the sum rule obeyed $4q,,,t). By
correct value ofS,,,,, especially at the cusplike features plotting dS,,,,/dt versus 1T for fixed n, we extract the ac-
formed at the point of intersection of tH&(q,,,t) curves tivation energy of the “nonequilibrium”D. as a function
corresponding to two successive wave vectors. By compaiof n.

ing with the few discrete, more exact values that were inter-
polated from the full line shapes &(q,,,t), as discussed
before, the maximum difference between the two methods is
less than 10%at the cusplike featurg¢sand becomes less

pronounced with time. From these approxirr%wersust 1 for J/kT=3 and different times up to 40000 MCS. We
plots, a power law was used for the fit to teSt.,  gpserve the typical fractal-like domain structure with the do-
~A?(T)t* (which effectively corrects for the approximation mains reaching sizels/L,=0.13 depending on the tempera-
described above, since a power law is a monotonic functiofre. (The domain is measured from the linear chord length
of time, with a smoothly varying derivative that smoothes gy straight line intercepts through the domajns.
out the cusplike featuresThe slopesl S,,,,/dt can be deter- (R?) is shown in Fig. 2 for several temperatures 0.54
mined according to Eq(4) with a much finer time grid for  <T/T_<0.95. It is clear that the mean-square displacement
better accuracy. . . does not follow a linear dependence on time, but its rate of
Similar to the construction we have used to define theyrowth decreases with time. This is a characteristic of
“nonequilibrium” tracer diffusion coefficient, we have se- gnomalous diffusion with a sublinear time dependence of
lected the subinterval, from the constant values @&, (R?)~t17* with x>0. Earlier work has shown that, for
=c,, to define the collective diffusion coefficient, whecg sufficiently low temperatures, the exponentppearing in
=0.002,0.004,0.008,0.012 for=1,2,3,4(the corresponding (R?) is related to the growth exponent in E@) of L; so
values of the linear domain size as measured from the chor¢R?) can also be used to extract the growth laws of the
intercept show a change from 7% to 18% of the size of thexonequilibrium growth processes.
system. Again this choice ofc/’s is rather arbitrary, but Figure 3 shows the Arrhenius plots for the “nonequilib-
sufficient for the main interest of our study to show the timerium” tracer diffusion coefficient as a function af the pa-
dependence of the “nonequilibrium” diffusion coefficient rameter that indicates how far the system has progressed to-
D. and the corresponding changes of the activation energwards the equilibrium state. These results are obtained with
with increasingn. As can be seen from Ed4), we can timest, defined by constant values 8f,,.. The results ob-
approximate D, with simply the slope D. tained for timest, defined by constant values ¢R?) are
= (c/A)d S/ dt, if we select as the wave vector of interest similar. It is important to emphasize that the data cover a
the wave vector of the maximum of the structure faciQrx  very wide temperature range, far wider than most experimen-
[since the product in Eq4) q%aﬁmmz Alc for any n is  tal studies that usually span a temperature range of a small
constant, because of the sum rule satisfied by the integral gfercentage off; (typically less than 20% The activation
S(dm,,t) noted earlier, i.e., the number of atoms on the latticeenergy shows an increageom 1.45) to 1.9J) with nand is
is fixed]. The slopesl S,,,/dt at fixedn are proportional to  close to the expected valuel 2 zJ (with z=4 the coordi-
the “nonequilibrium™ collective diffusion coefficientD, nation number of the square latt)der atoms with two near-
=(c/A)dS,(T)/dt at the different temperaturdswe have est neighboréwhich is the average coordination of the atoms
used. The constart/A is independent of temperature and at the domain boundarigsThese are the only atoms that

Ill. RESULTS

A typical picture of the domain evolution is shown in Fig.
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FIG. 5. Plot of Sy, versus time for the temperature range
FIG. 3. Arrhenius plot of the “nonequilibrium” tracer diffusion 0.54<T/T.<0.95. The cusplike features are a result of the approxi-
coefficientD(T) obtained with times selected from constant valuesmation used to determir,,., and are smoothed out with a power-
of Spax- The activation energies for the different time intervals law fit (which is expected to describe the evolutionSf,). The
corresponding te=1,2,3,4 are 1.451.831,1.87J, and 1.83. extracted growth exponents are shown for the different tempera-
tures and they approach the expecﬁedalue.
contribute to the mean-square displacement in(Byg.since
all the nearest-neighbor sites inside the domains are occupiedtain. In earlier Monte Carlo studiést was found that the
and the inside atoms cannot diffuse. growth exponent isx=0.2, smaller than the expected
Figure 4 shows the evolution of the circularly averagedasymptotic value. Our study is beyond this regime, but still
structure factorS(q,,,t) versusq,, for different times and short from the asymptotic limit.
T/T.=0.7. It has the characteristic bell shape with the posi- From the power-law expression E@®) (and the relation
tion of the maximunmg,a, shifting to smaller wave vectors, betweenS,,,, andL) we extract also the prefactax®(T).
while the area under the curve remains constant with time.When A?(T) is plotted in an Arrhenius plot, we obtain the
Figure 5 shows the plot 08, versust covering one activation energy ofA’(T), shown in Fig. 6, E£,=0.9.
decade in the evolution &,,,, and more than 2.5 decades in From this value and the conjectured expression relating the
the time variation. The measured exponent shown in the figactivation energy ofA%(T) to the activation energy of the
ure increases slightly from 0.5%r T/T,=0.95) to as high “nonequilibrium” diffusion coefficientEp=2EA/2x (where
as 0.6 as the temperature decreades T/T.=0.66), ap- 2x is the measured exponent from the growtlSgf, versus
proaching the asymptotic value2 2/3 (at even lower tem- t), we obtain the “nonequilibrium” diffusion activation en-
peratures the exponent seems to decrease again, becauseetgy Ep=1.58] (using an average value ok2 0.57).
probability for an atom to diffuse decreases according to the This value of the activation energy corresponds to the
initial energy expression, so the kinetics are much slowestate of the system at the initial time of the evolution towards
and the domain sizes attained are small€he results show equilibriumt=0.! As discussed earlier, it is possible to de-
that we have not yet reached the truly asymptotic time re-

gime that, as mentioned earlier, was notoriously difficult to  10™
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a, FIG. 6. Arrhenius plot of the prefact@®(T) extracted from the

S(gm,t) as a function ofg,,, for three different values of time,

=10%,10°, and 16 MC steps,§=0.5, T/T,=0.7.

power-law fits of Fig. 5. The extracted activation energy E,2
FIG. 4. Evolution of the circularly averaged structure factor =0.9J which, using the conjectured relation relating the “nonequi-

energyEp=2E,/2x, results inEp=1.55].

librium” diffusion activation energy to the growth rate activation
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107 . . . dered region and one for the lower temperatures within a
temperature range beloW.. Their lowest temperature was
o © T/T,=0.73, while in our workT/T.=0.54. For the low-
- temperature branch the activation energy is essentially

3

coverage-independent and for the coverage of interest of our

o study, 6=0.5, the two activation energies for the two tem-
D, 107 | ] perature branches are simil&=1.7J.

. This value is lower than the one we deduce from our
* “nonequilibrium” tracer diffusion simulations E=2J.

on-t There are several reasons for this discrepancy. In addition to
o ¥nd the difference in the temperature range with Ref. 13, we

checked whether the extracted activation energy witte-
pends on the method by which the subintervals were defined,
15 20 25 3.0 a5 e, at constant values ¢R?) or at constant values &

JKT The timest, defined by the constant values 8, will
define different values fofR?) from the ones defined by the
versusJ/KT, for the time regimes extracted from the condition use of the times, . We have determined the corresponding

Smax=const. The extracted activation energies are 1#6 n=1, values of R2> for the time intervals defined by the timgfs
1.14) for n=2, 1.1% for n=3, and 1.03 for n=4. The activation and “nonequilibrium” tracer diffusion coefficients were de-
energy extracted for the early time interva1 agrees well with ~ fined from the corresponding ratios in E) (i.e., with this
the one calculated in Fig. 6 from the growth r&#&T), thus con-  choice the nominators take different values for the different
firming the conjectured relation between the “nonequilibrium” and temperatures Physically, as indicated before, the use of the
growth rate activation energies. timest,, corresponds to configurations of the system, which
have the same average domain diz@nd therefore the sys-
fine the “nonequilibrium” collective diffusion coefficient tem is at same “distance” in configuration space from its
for different time intervals, as the system evolves in timefinal equilibrium configuration for all temperatures. This
from the initial random configuration towards the final or- choice of subintervals corresponds to the use of much larger
dered configuration of (¥1) domains, with a similar con- mean-square displacements than befoee, for example, for
struction to the one used to extract the “nonequilibrium” J/kT=1.86 the(R?) value forn=4 increases to 400 from its
tracer diffusion. The constant values$f,, we have chosen original value 100 since at a fixed value d&,,,, the corre-
are rather arbitrary, since we are primarily interested to segponding value o(R2> is higher the higher the temperature
the time dependence @f.(n). The “nonequilibrium” col-  is. The extracted values of the nonequilibrium tracer activa-
lective coefficientD (n) is proportional to the slope of the tion energies with this method increase from 1.46 1.9J,
dSha/dt(n) defined at the same tinté based on Eq(4). with n increasing from 1 to 4. What is surprising is that in
Figure 7 shows the corresponding Arrhenius plots of theboth cases(for constant(R?) and S, values, the final
“nonequilibrium” collective diffusion coefficient for differ- value of the activation energy is similar {2versus 1.9
ent temperatures and fixed Although the data do not obey correspondingly The new value 1.is closer to the value
an Arrhenius form over the entire temperature range we have.7] obtained by Ref. 13 in their studies of the tracer diffu-
used, it is clear that if we concentrate at the temperaturesion coefficient at equilibrium. Since at equilibrium the sys-
within the ordered region (0.ZT/T.=0.54), an Arrhenius tem has approached its final thermodynamically determined
form is a good fit. This is not surprising since, for tempera-state and it has the same domain it all temperatures
tures close tdT. (and for longer time intervalea>2), fluc-  belowT.), the comparison with Ref. 13 is more meaningful
tuations become more important. As the phase transition ifor the choice of the time intervals with a constant value of
approaches the domain size is smaller than the domain siz,,, than(R?).
attained at lower temperatures. This decreases the collective The comparison of the “nonequilibrium” diffusion coef-
diffusion rate extracted frors,,, and causes the deviations ficient, extracted fron5,,,, obtained in our simulations for
from the Arrhenius form at temperatures closeTio. The  the latest time intervah=4, E=1.03], is better justified if
extracted activation energy decreases frem1.45] to E =~ we compare with their results for the jump rate diffusion

10°

FIG. 7. “Nonequilibrium” collective diffusion coefficienD,

=1.03] asn increases froom=1 ton=4. coefficient. Their collective diffusion coefficient was ob-
tained, from the well-known relation, as the product of the
IV. DISCUSSION jump diffusion coefficient and the thermodynamic factor

[d(u/kT)/d In 6].12 The latter is purely an equilibrium quan-
As noted earlier from Fig. 3, the activation energies fortity defined from the isotherm of the system, while the first
the tracer diffusion coefficient show a very weak increaseguantity is defined in terms of the ratio of successful/
with n, as the system approaches equilibrium, with the valuattempted jumps averaged over all the atoms in the system.
E=2J for the late time intervah=4. Monte Carlo studies For the thermodynamic factor there is no equivalent quantity
at equilibrium were studied in Ref. 13, but mostly at higherin a “nonequilibrium” experiment, since the thermodynamic
temperatures than the ones used in our work. They found thatariables do not obey the relation specified by the minimiza-
the Arrhenius plots of the tracer diffusion coefficient showtion of the free energy of the system, but are imposed by the
two branches, one for the higher temperatures in the disoiinitial disordered state the system is in. We do not expect our
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“nonequilibrium” collective diffusion to include any contri- the first time intervain=1 from Eq.(4) is E=1.45]. This
bution from the thermodynamic factor, since the fluctuationsverifies the proposed relation defining the “nonequilibrium”
present in a “nonequilibrium” experiment are generated bydiffusion coefficient in terms of the growth ratio.
the evolving state of the system. The activation energy of the Our analysis of the activation energies on the lattice-gas
jump rate diffusion coefficient in Ref. 13 is weakly depen- model with attractive interactions has so far shown that the
dent on coverage and 6 0.5 it has a value dE=1.7J, but ~ “nonequilibrium” results we obtain for the tracer increase
for temperatures much higher than the ones we have used eakly, while the collective diffusion decreases with the
our study. Reference 13 covers the range<OI9T,<7.0  evolution of time, and they confirm the conjectured relation
while we cover the range 0.54T/T,<0.77, so a direct between the activation energy obtained from the collective
comparison with the same temperature range is not possibléiffusion coefficient and the activation energy obtained from
In their Arrhenius plot they have not included their lowest A(T).
temperature point T/T,=0.73), because it has a value “Nonequilibrium” diffusion coefficients and activation
higher than the value expected from e 1.7J value of the ~ €nergies were obtained in an earlier stddy a lattice-gas
activation energy. Based on the value of this point it is posmodel with competing interactiorjsvhich result at low tem-
sible to deduce that, for temperatures within the ordered reperature in the formation of @(2x1) phasg the phase
gion, the activation energy decreases, and since our temperéPnsists of a series of fully occupied rows every two lattice
ture range is well within the ordered region, it is consistentspacinggor columng separated by empty rowsr columng
with the lower activation energf=1.03) we have mea- in between. The lattice-gas model describes the well studied
sured from the dependence ©8,,,/dt for n=4. It would ~ experimentally O/W110 (Ref. 4 and reproduces most of
be useful to have equilibrium diffusion data at lower tem-the known results about the ordered phases present for dif-
peratures to test if the lower value in our “nonequilibrium” ferent temperatures and coverages. The system was
simulations can be accounted for, since our “nonequilibri-quenched from a high-temperature disordered phase to tem-
um” diffraction based method can only be used in the or-Peratures within the ordered region and the growth of the
dered region. domains of thep(2x1) phase(which is fourfold degener-
Even without the benefit of a full comparison with the ate was monitored with timé.“Nonequilibrium” tracer and
equilibrium results, we can address the question of why fo€ollective diffusion coefficients were determined from the
the “nonequilibrium™ tracer diffusion coefficient the activa- times that the extra energy of the systére., which is con-
tion energy is almost constant with time and higher than thdéained in the domain wallslecreases by a constant fraction.
“nonequilibrium” activation energy of the collective diffu- Since the extra energy in the system is inversely proportional
sion coefficient which decreases with time. A qualitative ar-t0 the average domain size, this choice is equivalent to the
gument can rationalize the result. For the “nonequilibrium” choice of time intervals with the same domain size or
tracer diffusion coefficient, as discussed earlier, the tempereggquivalently with constant values &ay. In this study the
ture dependence dfR?) is entirely determined by the de- activation energies for both the “nonequilibrium” tracer and
tachment of atoms from the boundaries of th@((]j_) or- collective diffusion coefficients follow similar trends with
dered domains. These atoms diffuse in the empty regiofime. They increase by approximately 0.3 eV from the initial
between the ordered domains, until they are captured b§=1 to the final time subintervai=4 used. The increase of
other domains present on the surface. This excitation rethe activation energy with time is consistent with the experi-
quires the break up, on the average, of two nearest-neighbdtental results for the O/\¢10), which show that the “non-
bonds. For the “nonequilibrium” collective diffusion coef- €quilibrium” activation energy obtained with LEED diffrac-
ficient, it is also necessary to excite the same atoms at théon experiments is lower by 0.4 eV from the activation
domain boundaries to the empty regidut since the collec- €nergy obtained in equilibrium fluctuation experiments. In
tive diffusion is measured from S, /dt, the change of the addition, the activation energy measured in the simulations
domain size depends on the net flow of the atoms in thérom the growth rateA(T) versus IT' Arrhenius plots is in
growing domains, i.e., the difference in the number of atomgood agreement with the value extracted from the relaxation
which attach to, minus the number of atoms which detactof the S(q,t) for the early time intervalsr(=2,3) that show
from, the growing domains This difference becomes less the growth exponent to have the expected vadaes. This
pronounced with time since, as the domains grow larger, thagain confirms the conjectured relatiiy=E,/x relating
net fraction of atoms contributing tdS;,,/dt decreases. the “nonequilibrium” to the growth rate diffusion activation
Since the fraction of atoms added to the net growth of theenergies.
domains (out of all the atoms excited from the domain  Comparison of our results to the ones of Ref. 5 show that
boundariesdecreases with time, this reduces the temperaturéhe type of structure formed.e., how many vacant sites are
dependence of the number of atoms contributind $g,,,/dt present in the unit cell of the structyns essential to under-
and lowers the effective barrier measured in Fig. 7. stand the behavior of the activation energy with-or close
We can use our results to test the relation proposed for thstructures like (X 1) (which has zero vacancy factor for
“nonequilibrium” collective diffusion defined in terms of atoms inside the domainghe activation energy of the tracer
the prefactolA(T) in Eqg. (2) and the “nonequilibrium” col-  diffusion does not change much, as we found in our study,
lective diffusion coefficient defined in E@4). As discussed simply because diffusion is controlled by the atoms at the
earlier, we obtain a valu&p=1.58 from the activation perimeter of the domains. These atoms have approximately
energy of the growth rat&(T) (Ep=2EA/2x with devia- two nearest neighbors irrespectively of the size of the do-
tions from Arrhenius plots at lower temperatures for the timemains. This can explain why the activation energy we have
intervalsn>2), while the activation energy we obtain from found does not change substantially during the evolution of
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the domains and why it has a value close th For the system is at “quasiequilibrium” within sufficiently short
“nonequilibrium™ collective diffusion coefficient we have time intervals during the evolution, i.e., local concentration
suggested earlier that the decrease of the activation enerdiyctuations decay with the usual diffusion mode over a time
with n might be related to the long-range diffusion, neces-scale shorter than the typical growth time of the domains.
sary for the atoms to reach the domains, and generate a posier the model we have studied in this wdskhich is based
tive flux to the growing domains. on nearest-neighbor attractive interactions and supports the
On the other hand, for semiopen structures Il  formation of close (X 1) structure§ we find that the “non-
x 1), the activation energy increases with since in this equilibrium” tracer diffusion activation energy depends
case hops are possible either from atoms inside the domaimgeakly on time and agrees with the tracer activation energy
[i.e., atoms executing random walks in the d corridors of  results obtained at equilibrium. This results from the “close-
the p(2x1) ordered phadeor from atoms at the domain ness” of the ordered structure, so only atoms at the domain
perimeter. Since with time the fraction of atoms at the pe-boundaries contribute to diffusidsince the atoms inside the
rimeter decreases, hops at late times are predominantly gedlomains cannot diffugeThe activation energy for the “non-
erated from the inside atoms. These atoms are formed fromquilibrium” collective diffusion coefficient cannot be com-
atoms breaking the attractive bonds at the walls of the orpared to the one obtained at equilibrium, since the tempera-
dered chains of th@(2x 1) structure, which increases the ture range used in the two simulations is different; based on
activation energy. the limited data, it seems that the activation energy in the
The importance of the changing of local configurationsordered region is lower than the activation energy in the
with time and the role of atom hops from within the-d high-temperature disordered phase. This decrease and the
corridors of thep(2x 1) ordered structure at late times were corresponding decrease of the “nonequilibrium” collective
demonstrated in an earlier Monte Carlo study on a lattice-ga8ctivation energy with time might be a result of the long-
model that has a similar phase diagram to the QA  range diffusion necessary for the domains to grow. For the
system[although repulsiveinstead of competinginterac-  “nonequilibrium” diffusion coefficients obtained for the
tions were used both for nearest- and next-nearest neighbopen structure§p(2x1)] in a different model, the activa-
interaction.!* It was found that the major contribution to tion energy increases with time because diffusion at late
the average hopping rat@e., averaged over all the local times requires the breaking of the attractive bonds of the 1
configurations that an atom experiencess determined by —d chains of the (X'1) structure. The main conclusion of
atoms performing random walks within the-H corridors.  our studies is that the concept of “nonequilibrium” diffusion
These atoms have six repulsive bor(@s., four bonds for coefficient is well defined and is of practical value, since
next nearest neighbors and two bonds for nearest neighborgionequilibrium experimentévith the use of diffractionare
Despite the steady decrease of the fraction of atoms with thigasier to implement experimentally than equilibrium experi-
particular configuration with timgéand temperatude these ments. In general, the nonequilibrium results will be time-
atoms have the largest contribution to the average jump ratelependent and will approach in the long time limit the equi-
Additionally, an effective growth ratéd(T) was defined librium results. For the specific model we have u§eel, the
from the temperature dependence of the average domalattice-gas model with nearest-neighbor attractive interac-
size, but contrary to the definition of E(), the definition in  tions), this approach happens relatively quickly, since the
Ref. 14 emphasizes the late time growth of the system. It isttoms at the domain boundaries of the<(1) phasgformed
easy to see that this effective growth rate has higher activaas a result of the interactionare the only ones which can
tion energy than the activation energy obtained at early tim@liffuse. Even if the measured activation energies are differ-
(a result similar to the one found in Refl.. At late times the  ent, especially at early times, they can be explained for by
excitations of the atoms out of the walls of tipg2x 1)  how the adsorbate-adsorbate interactions contribute to the
structure are the main path for atoms to diffuse and contribdifferent configurations. In practice, this means that one of
ute to the domain growth, while at early times their contri-the main goals of the diffusion experimerite., to deduce
bution is less important, since other atom configurationsthe potential energy surface and the adatom interagtcars
which have a weaker temperature dependence, can contribude carried out with the same success either with equilibrium
to the diffusion current. or “nonequilibrium” experiments.
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