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Purpose. A Monte-Carlo computer simulation technique was
employed to study the details of the small intestinal transit flow in the
gastrointestinal (GI) tract. :

Methods. A heterogeneous tube model was constructed using a numeri-
cal computer simulation technique. The model was built from first
principles and included several heterogeneous characteristics of the GI
tract structure. We used a random, dendritic-type internal Structure
representing the villi of the GI tract. The small intestinal transit flow
was simulated using two diffusion models, namely, the blind ant and
the myopic ant models, which are different models to account the
elapse of time, and which are both based on statistical properties of
random walks. For each one of the models we utilize two types of
biased random walk, placing different emphasis in the motion towards
the output of the tube. We monitored the flow of the drug in terms of
Monte-Carlo time steps (MCS) through the tube walls and dendritic
villi present.

Results. The frequency of the transit times was dependent on the
structure of the dendritic villi and on the type of biased random walk.
The small intestinal flow profile of literature data for a large number
of drugs was well characterized by the heterogeneous model using, as
parameters, a certain number of villi per unit length of the tube and
specific characteristics for both types of the biased random walk. A
correspondence between the MCS and real time units was achieved.
Conclusions. The transit process of the oral dosage forms in the GI
tract can be reproduced with the heterogeneous model developed. This
model can be used to study GI absorption phenomena.
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INTRODUCTION

The complexity of the gastrointestinal (GI) tract has led
to the use of simple models for the study of oral drug absorption.
Thus, compartmental models with one or more serial compart-
ments have been developed to study a variety of GI absorption
and relevant phenomena, such as dose-dependent absorption
(1), dissolution controlled absorption (2,3), effect of bile seques-
trants on bile salt excretion (4), double peak phenomenon (5),
and small intestinal transit flow (6). In addition, the tube model
in which physiological characteristics, such as the volume of
intestinal fluids and the volumetric flow rate have been incorpo-
rated, has been used for estimating the extent of the drug absorp-
tion (7.,8). In parallel, a dispersion model with constant input
rate has been utilized to simulate oral drug absorption (9) and
to analyze the small intestinal transit flow in humans (6).
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Undoubtedly, all these models accompanied with the
assumptions of perfect mixing and/or homogeneous flow repre-
sent oversimplifications of the reality given the enormous com-
plexity of the GI tract (10), both in terms of structure and
function, e.g., villi, microvilli, motility, as well as the variety
of dosing conditions, e.g., fed or fasted state, fluid volume
administered, etc. Since the fundamental process for all GI
absorption phenomena is the small intestinal transit flow, this
study utilizes a heterogeneous model to characterize the intesti-
nal transit process in humans. To this end, we use a tube model
in which several heterogeneous features of the GI wall structure
and of the drug flow in the intestine are introduced.

Since the structure of the GI tract is highly complicated
itis practically impossible to write down and solve the equations
of motion for the drug flow. We, therefore, resort to a numerical
computer simulation technique that incorporates the desired
features. We build a Monte-Carlo algorithm from first princi-
ples, in which we initially prepare the complicated system
structure, and subsequently perform the drug flow. This tech-
nique, based on principles of statistical physics, generates a
microscopic picture of the system, in our case of the GI tube.
The desired features of the complexity are built-in in a random
fashion. During the calculation all such features are kept frozen
in the computer memory (in the form of arrays), and are utilized
accordingly. The principal characteristic of the method is if a
very large number of such units is built, then the average
behavior of all these will approach the true system behavior.
Thus, we typically utilize a structure of several million units
in size. Such techniques have proven to be highly successful
in problems of a similar nature to the present one. Nevertheless,
we do not intend to give a universal solution to drug flow,
dissolution, and absorption with this model. Rather, our purpose
is to check if a proposed simple mechanism is in agreement with
the current experimental evidence available. It is understood that
this is the very first approximation, and further improvements:
are to follow. Any possible limitations that may appear on the
way will have to be adjusted accordingly.

METHODS

Construction of the Heterogeneous Tube

Our model is constructed by use of a cylinder whose length
is several orders of magnitude larger than the size of its radius.
Thus, we can ignore any entanglements present, as they do not
influence the dynamics taking place in it, while we consider
the structure to be mostly 1-dimensional. Initially we start with
a three dimensional parallelepiped with a square cross section,
of size x:y:z equal to 31:31:3000, Figure la. Inside it we build
a cylinder with a radius of 14 units, a cross-section of which
appears in Figure 1b. Hence, the quotient of (radius/length) =
14/3000 in our tube model is quite similar to the ratio of
physiological data 1.3 cm/3 m for the human small intestine.

All work can be performed in continuous space, but for
convenience in the calculations we use an underlying lattice of
discrete spacings, forming in effect a 3-dimensional grid. This
grid covers the entire cylinder, while for all spatial considera-
tions we utilize the grid sites. The interior of the cylinder has
a finite concentration of villi attached to the cylinder wall,
which possess the property to possibly absorb the dissolved
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(2) (b)
Fig. 1. (a) The cylinder used for the tube construction, and (b) cross-
section of the tube.

drug particles flowing through the cylinder. The villi have the
usual random dendritic structure and are formed by the diffusion
limited aggregation.(DLA) method (see below). The absorption
of the drug particles in the model takes place when a flowing
particle happens to have a position right next to the villi coordi-
nates, implying that when a particle comes in contact with a
villi structure it can be absorbed. The probability for absorption
by the villi or walls is k,. Since, in the present work, we
concentrate in the tube structure and on the characteristics of
the flow, we take k, = 0, while the case of k, # 0 will be
treated elsewhere.

The villi have a random dendritic-type structure and are
formed initially by use of an algorithm based on the well known
DLA (11) model from solid state physics. We place 2z seed
particles (z the cylinder length) on the cylinder surface by
positioning 2 particles on each z value at random positions.
Following the DLA model, another particle, starting at arandom
point of each cross-section, makes a three dimensional random
walk (diffusion) inside the cylinder. The walk stops when a
moving particle visits any of the neighbor sites of the original
seed particles. At this points it stops and gets attached to the
neighboring seed particle. The particle is confined to move
inside the cylinder. Then, a second particle starts a random
walk until it meets either one of the seeds or, the already
“frozen” particle. The process continues and, using a total of
N particles per length unit, we build the internal structure of
the tube, which can be of varying complexity. The size of each
villi cluster is limited to the value 1.5N. This is done in order
to achieve a uniform distribution of villi cluster sizes. The
higher the N value, the more ramified the ensuing stfucture. A
few examples of various values of N are shown in Figure 2.
This Figure shows typical 2-dimensional cross-sections of the
cylinder for four different N values, N = 50, 100, 150, and
200, at random places. We clearly see how the villi complexity
is built up with increasing N. We note here that there are some
squares that appear not to be connected to any others in these
pictures. In fact, these are indeed connected to adjacent (first
neighbor) squares in the next or previous cross-section of the
tube (i.e., withz' = z + 1 orz' = z — 1), which are not shown
in this figure.

Dynamics

The dynamics of the system is also followed by utilizing
the Monte-Carlo technique, as in the formation of the heteroge-
neous tube structure. This includes motion of the particles
through the tube, dissolution in the solvent flow, and absorption
by the villi or the tube walls. Time is incremented by arbitrary
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Fig. 2. Cross-sections of the tube for various concentrations of villi.
N = 50, 100, 150, 200 particles per length unit of the cylinder. The
positions where the cross-sections were taken are random. See text for
the explanation of how the villi structure was prepared using the N
parameter. In all cases the higher the N value the more ramified is the
ensuing structure.

time units, called Monte-Carlo steps (MCS), during which a
variety of events takes place. One MCS is the smallest time
unit in which an event can take place. This is typically defined
as the time it takes for a particle to move to one of its neighbor
positions. A pill can be inserted in one end of the tube (input
end) at predefined time increments expressed in MCS. A pill
is modeled as an aggregate of drug particles of mass M = 100.
This means that one pill can later be broken down successively
to 100 units which represent the solid drug particles. These can
be further dissolved in the encompassing solution. But as long
as the pill has a mass larger than one (1) it cannot be dissolved
in the solution. All pills and dissolved particles flow through
the cylinder from the input end towards the direction of the
other end (output end). This is done by using a diffusion model
of a biased random walk that simulates the fluid flow. A simple
random walk is the prototype model of the regular Brownian
motion. Such a model is modified here by including a bias
factor, which makes the motion ballistic rather than simply
stochastic. This bias factor, €, increases the probability for
motion in the z-direction, i.e., towards the output end, as com-
pared to the probabilities in all other directions. This makes
the flow of the particles and the dissolved drug molecules
possible. If € = 0, then there is a motion but it is rather stationery
and in all possible directions. If € > 0, then this makes the
flow possible. The rate of flow is also directly affected by the
numerical value of €, with increasing € values resulting in
increasing flow rates. With this statistical model the diffusing
species can momentarily go against the flow or sideways. This
is a realistic feature but, it occurs with reduced probability. We
are interested only in the motion of the drug species in the
medium and thus, we do not follow the motion of the solvent.

We use two different models of the biased random walk.
In model I the three directions of space, x, y, and z are all
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equally probable but in the z direction, the probability towards
the output end (z+) is now 1/z + €, while the corresponding
probability towards the input end (z—) is 1/z — € (where z is
the coordination number of the underlying space, e.g., z = 6
in a three dimensional space). This model has the characteristic
of diffusion being equally probable in all possible directions,
the species spending equal times in all of them but, due to the
€ factor, when the z direction is chosen a positive flow drives
the solution to the output end. In a second model, model II,
we give more emphasis to the motion towards the output and
less to the other directions. The probabilities for motion in the
different directions are now defined differently. While in the
simple random walk the probability for motion in a specific
direction is 1/z, here the probability for motion in the output
direction is 1/z + €, while the probability in any of the other
five directions is:

(H
Thus, the values that € can take is in the range
0<e<l—l, 2)
z

while the overall forward probability (fp), i.e., the probability
towards the output end, is in the range:

-;-<fp<] 3)

At each time step there is a probability (k,) for the pill to
dissolve, i.e. 0 < k; < 1. In the Monte-Carlo method every
pill is tested at every step to find out if a fragment (one new
particle) is to be released. When this happens a fragment of
the pill with mass m = | breaks off and gets separated from
the larger mass. It is understood that this m = 1 particle is
immediately dissolved, and it is never reattached to the original
mass. This dissolved particle now performs a random walk of
its own, with the same characteristics (bias) as the main pill.
The mass (M) of the pill is then reduced by m. When a pill
(or a fragment), reaches the end of the tube then it is discarded.

At the end of the simulation time we compute the mass
that has exited from the end of the tube. We also kéep track
of the time it took for the particles to reach the end of the tube,
$0 we can compute the mean transit time.

RESULTS AND DISCUSSION

In order to study the kinetic properties of the model we
use a large number of drug particles (10000) with mass m =
1 inserted simultaneously at time t = 0 in the tube and which
are allowed to diffuse. To concentrate on the transit process
we used kg = 1, so dissolution is instantaneous. The absorption
constant was set to zero (k, = 0), so as not to allow any particles
to be absorbed. The simulation continues until all the drug
fragments exit the tube.

While diffusion of particles in regular homogeneous space
is a tractable problem, even in certain cases of biased diffusion,
this is not so for diffusion in the presence of obstacles, traps,
fractal objects, etc. Some of these cases constitute well known
problems with no analytical solution, due to the complexity
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Fig. 3. Mean transit time (MCS) vs. the forward probability for various
concentrations of villi. One MCS is defined as the time it takes for a
particle to move to one of its neighbor positions. From top to bottom
N(vitliy = 200, 150, 100, 50, 0. (a) Blind ant model. (b) Myopic ant
model. See text for the explanation of how the villi structure was
prepared using the N parameter. In all cases the higher the N value
the more ramified is the ensuing structure.
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present and thus, only approximations and limiting cases can
be described. Although there is difficulty, these problems have
a continued interest because many technological aspects are
based on such a picture. The problem we have here is in this
class of situations. When the diffusing species come in contact
with a closed site (such as the villi sites in our case) there are
two options we can take. In the first option, the particle does
not “feel” the presence of the closed site, and it may attempt,
unsuccessfully, to go to it. This model is called the “blind ant”
model. In the second model, the particle feels the presence of
the closed site and thus, it never attempts to land on it. This
is called the “myopic ant” model. The difference between these
two models is the blind ant consumes a long amount of time
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Fig. 4. Frequency of mean transit times versus time (min) for various
different N (villi) and forward probability (fp) values, using diffusion
model I, for the blind ant model. The values are shown in the figure.
The experimental data were taken from Fig. 3 of Ref. 6.

in unsuccessful attempts and thus, its motion is slower than the
myopic ant case.

The details of the flow of particles in the heterogeneous
tube were studied using model II biased random walk. In Figure
3 we plot the mean transit time of the drug particles versus the
forward probability (i.e., the probability towards the output
along the z-axis), for various villi concentrations, for the two
cases of blind ant (part a), and the myopic ant (part b). For no
villi structures (N(villi) = 0) and for N(villi) = 50 we observe
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Fig. 5. Frequency of mean transit times versus time (min), using
diffusion model II for the blind ant model, for various different N (villi)
and forward probability (fp) values. The values are shown in the figure.
The experimental data were taken from Fig. 3 of Ref. 6.
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Fig. 6. Frequency of mean transit times versus time (min), using
diffusion model Il for the myopic ant model, for various different
N (villi) and forward probability (fp) values. The values are shown in
the figure. The experimental data were taken from Fig. 3 of Ref. 6.

that for larger forward probability values the transit time of the
particles were shorter, as one would expect. For larger villi
concentrations the transit time became longer as we increased
the forward probability. This behavior may seem inconsistent,
but can be easily explained if we consider that when a drug
fragment meets an obstacle (villi) then its forward motion is
hampered, and it must move in the x or y directions (sideways)
in order to circumvent it and continue moving towards the end
of the tube. It happens that when the forward probability valyes
are large then the probability for movement in the x or y axis
is reduced. This does not give the particle the freedom to easily
surpass the obstacle, so it wastes time trying to move in the z
direction. This explains the rise in the transit times which is
larger for larger villi concentrations. This qualitative picture is
valid for both models in parts (a) and (b} of Fig. 3. When we
compare the two figures we observe the transit times are always
longer in the blind ant case for any villi concentration. This is
so, because as expected and described above, the blind ant
wastes considerably more time in unsuccessful attempts, while
the myopic ant finds more easily and faster its way out of the
villi labyrinths resulting in a smaller mean transit time.

The system behavior as shown in Figure 3 implies the
interplay of these two factors, namely the villi structure and
the bias probability (flow rate) is important in determining the
dynamics of the flow. At this point, it is important to use
existing experimental data in order to determine a realistic set
of parameters to characterize the intestinal transit process in
humans. Additionally, this comparison will provide a direct
correspondence of time units, i.e., will give the length of 1
MCS in real time units. We compared the frequency of transit
times resulting from our simulations for various values of villi
and forward probability with experimental data (6), and some
of these results are shown in Figures 4—6. In Figure 4, we give
the results for model I of the biased diffusion together with the
experimental data. We varied the two parameters, i.e. the bias
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factor €, and the villi concentration N in a wide range. It is then
seen we do not achieve a good agreement for any combination of
parameters. In Figure 5 we use model II of biased diffusion,
again for a wide range of parameters, and observe that we
achieve a much better agreement. Actually the difference
between these two figures lies mainly in the width of the curves.
Model I consistently produces narrower frequencies than model
IT and the experiments. This is because in model I motion in
the preferred z direction occurs with the same frequency as
motion in the other directions. The effect of the flow along the
tube length is downplayed, as opposed to the other model (II),
in which it is emphasized. By occurring more often, motion
along the tube length covers a wider frequency of transit times
(i.e., both slower and faster) resulting in a wider overall fre-
quency curve. The best resemblance between simulation and
experimental data was achieved for the values of N(villi) =
190 and forward probability = 0.65. We clearly see the entire
frequency function is necessary in order to make a meaningful
comparison, while only the average value is not adequate. The
x-axis here is in units of minutes. This is done by establishing
a correspondence of 1 sec = 1.5 MCS, since this is the value
that produces the best possible fit. For these plots we again
used only the kinetic properties of the model, i.e., k, = 0.

Finally, in Figure 6 we give the results for the myopic ant
model, which are seen to be quite similar to the blind ant model
of the previous figure, and also, in good agreement with the
experimental data. This is expected because the transit times
in the two models of the blind and myopic ant are not very
different. As it was seen in Fig. 3, the difference between the
two models is typically a few percent points, and in the worst
case, it is a factor of 2, depending on the forward probability
chosen. This results in frequency curves which are shaped quite
similar, and which are in close agreement to the experimen-
tal data.

CONCLUSIONS

The heterogeneous tube model developed provides a new
tool for the study of the intestinal transit flow. It was shown,
that the biased random walk which places more emphasis in the
motion towards the output end and less to the other directions,
mimics more closely the transit profile of the experimental data.
Both diffusion models, i.e., the blind and the myopic ant models,
can reproduce the basic features of the real small intestinal
transit profile.
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It should be noted here, that the parameter values for the
villi structure and the diffusion rate that best fit the experimental
data should not be interpreted as the only and exact solution
for this problem. Our purpose has not been to accurately deter-
mine these values using a rather crude simulation model but
rather, to give a qualitative picture and explanation of how one
can assign a model with realistic features to current experimen-
tal data. Currently, the heterogeneous model is being utilized
to study dissolution and absorption phenomena in the GI tract.
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