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The dynamic behavior of neural nets with different patterns of interneuronal 
synaptic connectivity is investigated. Our method is based on probabilistic 
neural nets for the net structure and dynamics. Each net is divided into several 
different subsystems, which are characterized by different distribution laws for 
the number of connections that the neurons make. We start from the binomial 
distribution, which, under appropriate conditions, reduces to the Poisson and 
Gaussian distributions. The overall net now acquires a hybrid character. The 
expression for the neural activity is generalized to include this effect, and 
new expressions are derived, based on the isolated single-net equations. The 
dynamics of nets with sustained external inputs is also studied. The results 
obtained by this approach also show multiple stability and multiple hysteresis 
effects, as in the case of single nets. The differences between pure Poisson, 
Gaussian, and hybrid nets are explained in terms of the structural properties of 
the model. As expected, the hybrid case falls in between the two other distribu- 
tions. Finally, we performed Monte Carlo computer calculations for the hybrid 
nets. For the range of parameters examined we find very good agreement with 
the developed formalism. 
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1. I N T R O D U C T I O N  

Over the past three decades neural nets have been a subject of intensive 
studies from several points of view. An area with considerable importance 
is that of biological nets, i.e., models of nets that try to imitate the human 
or other living brain structure and functions in an effort to understand such 
vital processes as learning, memory, understanding, feeling, etc. Widely 
used models (not an exhaustive list) include the early pioneer work of 
McCulloch and Pitts of assemblies of neurons as logical decision 
elements, {l} the mathematical formalism of Caianiello of the "neuronic 
equation, ''{2} and the probabilistic neural structures {3-6} that monitor the 
net activity, i.e., the fraction of neurons that become active per unit time. 
All these models have been somewhat successful in the improvement of 
our understanding of the above mentioned functions. In these models a 
network is made of a large number of neurons, which are interconnected 
according to some rules. As each unit has several connections, and there is 
a large number of units, it is quickly realized that the number of connec- 
tions grows very fast, making the task of calculations quite difficult. But it 
should be realized that it is exactly this complicated connectivity structure 
that produces the collective properties that neural nets possess. 

The effect of the structure on the function and on the dynamic 
behavior in neural nets has been also a subject of considerable interest in 
recent years. In the so called probabilistic nets we have an assembly of a 
large number of neurons, randomly positioned in space, that have only 
partial connectivity, i.e., each neuron is connected to only a very small frac- 
tion of the total number of neurons in the system, randomly chosen. The 
accepting neurons are also chosen at random, so that one ends up with a 
complex looking, albeit fixed pattern, but somewhat difficult to draw. More 
details for typical parameter values are given later in the simulation section. 
The principal idea is that this connectivity is given by the binomial dis- 
tribution. Since here we deal with a very large number of units (neurons), 
the binomial distribution is customarily reduced to the Poisson distribu- 
tion. In early work, quite simple probabilistic isolated neural nets were 
investigated with Poisson or Gaussian distribution of interneuronal con- 
nectivity. ~7) The main conclusion of the past work was that when a neuron 
was connected to a relatively small number of units, only a Poisson dis- 
tribution law was appropriate, while if it were connected to a large number 
of units, also a Gaussian law was a fairly good approximation. 

More complex characteristics were later included with the concept of 
chemical markers. {6' s. 9) A neural net with chemical markers is divided in 
several subpopulations, each one characterized by its own chemical marker. 
The idea of a different marker for each subpopulation of the net is that, 
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even though there are structural connections between any neurons of the 
net (say, at random), only these connections are active (i.e., carry signal) 
for which the initial and final neurons belong to the same marker. If they 
belong to different markers then the connection exists but it is inactive. The 
implication is that a neuron makes active synaptic connections only with those 
neurons in the net which carry markers with the highest chemical affinity 
to its own. This idea is according to the theory of neural specificity, t~~ 

The average number of synaptic connections turns out to be the main 
structural parameter of significant interest for the dynamic behavior of the 
model, and therefore, the distribution law for the connectivities plays an 
important role. The behavior of a net can be monitored through its activity 
(a~), which is defined as the fraction of neurons out of the total number 
(0 ~< a~ ~ 1 ) that become active in one unit of time. Initially the net at time 
t = 0 is at rest, and carries no signal. At a given time an initial stimulus is 

~" o 

supplied that acUvates a small fraction of neurons. This small fraction is a, .  
Subsequently, this activity is propagated throughout the net (for details see 
the model description), in such a way that a, becomes time dependent. 
It is of interest to follow the time course of such a net. In the past, ~5) 
depending on the progress of the initial activity, it was found that a net 
may belong to one of three classes: A (if it sustains a finite non-zero 
activity for any input over the course of time), B (if it sustains an activity 
only for inputs above a certain threshold), or C (if it can never sustain an 
activity, regardless of the initial input). In the present study we also use 
these criteria to investigate how a net is affected by the interplay of the 
distribution laws of the neuron connectivities. 

The theoretical basis in the probabilistic nets is to derive expressions 
for the probability that a neuron is active (i.e., firing). This is done through 
basic principles starting with the binomial distribution, as one tries to 
attribute some specific properties to a fraction of units out of the total 
population. The mathematical formalism is quite involved, but it is 
straightforward. ~5) We also propose and use Computer simulations of the 
dynamics described here, using typical values of the parameters that make 
up this problem. Specifically, we use a Monte Carlo technique that 
generates nets by making specific connections between a large number of 
neurons. These connections stay frozen for the entire duration of the 
calculation. Then, the net is divided in several markers which also stay 
frozen in the entire calculation. The net activity is calculated numerically. 
By this method we try to imitate all the conditions and dynamics described 
in the formalism, and it is interesting to find out if the results from the two 
techniques agree for the range of parameters studied. 

In the present work we investigate the possibility that different 
subsystems of a neural net have different connectivity patterns, given by 

8 2 2 / 8 9 / 3 - 4 - 2 4  
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different distribution laws. Some may be Poissonian, and some Gaussian. 
The different connectivities are assigned to sections with different markers. 
Thus, each marker is characterized by either one of these distributions 
according to the magnitude of the connections that its neurons make, as 
described above. We consider nets with various differences in their struc- 
tural parameters among their subsystems, such as nets with some sub- 
systems having large number of synaptic connections and some subsystems 
having small number of connections. Isolated as well as non-isolated neural 
nets are used. In Section 2 we describe the general assumptions of the 
model, as previously used, and include a glossary of the symbols used. In 
Section 3 we present the development of the formalism that incorporates 
the two different distributions. In Section 4 we present details of the simula- 
tion method used. In Section 5 we give some numerical examples and 
results of the formalism developed here, and finally in Section 6 the conclu- 
sions of this work. In the appendix we give details of the proof of Eq. (17), 
which gives the slope of the curve a, +~ vs a,  as a, --. 0, in the general case 
of isolated hybrid neural nets with chemical markers. 

2. THE NEURAL MODEL 

2.1. List of Symbols 

The subscript j is a marker label and indicates the properties of a 
subpopulation in the network characterized by the j th  marker. 

Structural parameters of the neural net 
A 
N 
n~ 

ho 

+- 

Total number of neurons in the net 
Number of markers (subsystems) 
Fraction of neurons carrying the j th  marker in the net 
Fraction of inhibitory neurons 
Fraction of external inhibitory neurons (fibers) 
The average number of neurons receiving excitatory postsynaptir 
potentials (EPSPs) from one excitatory neuron 
The average number of neurons receiving inhibitory postsynaptic 
potentials (IPSPs) from one inhibitory neuron 
The average number ,of neurons in each subsystem with which an 
external excitatory/inhibitory neuron (fiber) makes its synaptic con- 
tacts (receiving external excitatory/inhibitory PSPs from one external 
fiber) 
The size of PSP produced by an excitatory neuron of the net 
The size of PSP produced by an inhibitory neuron of the net 
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Ko �9 The average PSP produced by external excitatory/inhibitory fibers in 
the net 
Firing threshold of neurons of the j t h  marker 

Dynamical parameters 
n An integer giving the number of elapsed synaptic delays 
r Synaptic delay 
r Refractoriness 
a.  The activity, i.e., the fractional number of active neurons in the net 

at time t = nv 
a The fractional number of external active fibers (carrying action 

potentials at a particular instant) 

2.2. Description of the Model 

Neural nets are assumed to be constructed of discrete sets of randomly 
interconnected neurons of similar structure and function. The neural 
connections are set up by means of chemical markers carried by the indivi- 
dual cells. Thus, the neural population of the net is treated as a set of sub- 
populations of neurons, each of them characterized by a specific chemical 
marker. At each subsystem we attribute the appropriate, Poissonian or 
Gaussian, distribution law for their connectivities. 

The elementary unit, the neuron, is a bistable element. It can be either 
in a resting or in an active (firing) state. The transition from the resting to 
the firing state of the neuron occurs when the sum ofpostsynaptic potentials 
(PSPs) arriving at the cell exceeds the firing threshold ~ of the neuron. 
PSPs may be either excitatory (EPSPs) or inhibitory (IPSPs), shifting the 
membrane potential closer to or further away from ~9, respectively. Each 
neuron at some instance may carry an electrical potential of a few 
millivolts, which it passes on to the neurons that it is connected to. 

In this model, a net with N markers is assumed to be constructed of 
A formal neurons. A fraction h (0 < h < 1) of them are inhibitory with all 
of their axon branches generating IPSPs, while the rest are excitatory with 
all of their axon branches generating EPSPs. Each neuron receives, on the 
average,/~ + EPSPs a n d / ~ -  IPSPs. The size of the PSP produced by an 
excitatory (inhibitory) unit is K + ( K - ) .  In addition to the net constructed, 
we assume that there also exists some other external net, which is connec- 
ted to it by a cable of afferent fibers. The regular net is considered to 
receive sustained inputs from this external net. This external net has A o 
neurons with the same structure as the regular net. A fraction h o 
(0 <ho < 1) of them are inhibitory. A parameter tr (0 < tr < 1) is used to 
describe the external sustained input, and denotes the fraction of external 
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active fibers, carrying action potentials at a particular instant from outside. 
With/~o* (/~o) we denote the average number of neurons in each subsystem 
with which an external excitatory (inhibitory) neuron makes its synaptic 
connections in the regular net, while K f ( K o )  are the corresponding 
strengths of the synaptic coupling coefficients. Other than the parameter 
values of the external net we are not interested in the details of its structure 
and functions, except that it provides an input of additional signals to our 
normal net. 

The dynamics of the net is monitored by inputting a certain initial 
signal at time t = 0 to some units in the net, and observing its propagation 
throughout the net and the results it produces. The neurons are also 
characterized by the absolute refractory period and the synaptic delay 3. If 
a neuron fires at time t, it produces the appropriate PSPs after a fixed time 
interval 3, the synaptic delay. PSPs arriving at a neuron are summed 
instantly, and if this sum is greater or equal to 0, then the neuron will fire 
immediately, otherwise, it will be idle. PSPs (if below ~9) will persist with 
or without decrement for a period of time called the summation time, which 
is assumed to be less than the synaptic delay. Firing is momentary and 
causes the neuron to be insensitive to further stimulation for a time interval 
called the (absolute) refractory period. Here, it is assumed that the refrac- 
tory period is greater than the synaptic delay, but less than twice the syn- 
aptic delay. A parameter r for the refractory period may be used, taking, 
in general, any integer value. For our purposes r was given the value r = 1 
when refractoriness is assumed, or r = 0 otherwise. From these assumptions 
it follows that if a number of neurons fire simultaneously at time t, then all 
neural activity resulting from this initial activity will be restricted to times 
t + 3, t + 2~,... 

3. D Y N A M I C S  OF HYBRID NEURAL NETS 

Consider a net of .4 neurons and N markers. Due to the presence of 
markers the net is divided to N subpopulations. If m~, m2,... , m N are the 
fractions of neurons out of the total, corresponding to each subpopulation, 
then m~ + m E d- . . .  + raN= 1. Such a net may be isolated or non-isolated. 
In the later case the net is attached to a cable of afferent fibers receiving 
through it sustained inputs from another net of .40 neurons with the same 
structure, a fraction ho (0 <'ho < 1 ) of which are inhibitory. A fraction a are 
active fibers, i.e., they carry action potentials at a particular instant from 
outside. It is assumed that a is constant or slowly changing, and the 
number aAo of active fibers is chosen randomly at each time interval 3. The 
average number of neurons in each subsystem with which an external 
excitatory (inhibitory) neuron makes its synaptic connections in the net is 
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denoted by #o+(Po), and the corresponding strength of the synaptic 
coupling coefficient by Ko + (K o). 

The dynamic variable of interest is as usual the neural activity a,, 
which is the fraction of neurons in the net (out of the total) that are 
active at time t = nr. This quantity is a scalar and does not specify which 
particular neurons are firing in the net. The quantity a, at time t = nz 
depends exclusively on the firing record of the net at time t = ( n -  1 )1:, i.e., 
the previous time unit. Therefore, the dynamics of the net is a Markov 
process. The activity, a, +~, will depend on whether there is refractoriness 
or not (r = 0 or r = 1). 

For the case of no refractoriness in any subsystem (r = 0 for all sub- 
systems), the number of neurons in the j t h  marker available for triggering 
at t = m: is Amj. If Pj is the probability of triggering a particular neuron of 
the j t h  marker,, then AmjPj will be the number of firing neurons of this 
marker at the next time step t = ( n  + 1)r. Thus the expression for the 
neural activity a.+~ is: 

N 

a . + , =  ~, mjPj (1) 
j = l  

For the case of refractoriness (r = 1) the neurons which are active at 
t = nr will be inactive at the next time step t = (n + 1)r, so there will be 
exactly (1 - a , )  Amj neurons in the j t h  marker that will not be in refractory 
state at this time step. Thus, the activity a, +~ is now: 

N 

a,+~=(1-a,) ~ mjPj (2) 
j = i  

Let us look in detail at the nature of Pj, the probability of triggering 
a particular neuron of the j t h  marker. Pj is obtained by adding the 
probabilities of all combinations of excitatory and inhibitory inputs to that 
neuron, which give a total PSP exceeding the threshold, ~9, at t = (n + 1)r. 
In the j t h  marker a fraction (1 - h i )  of neurons out of Amj are excitatory, 
and each of them has, on the average, p j+ afferent connections. If a, is 
the fraction of active neurons in the net at t =m:, then a number of 
Aa,#f-(1-hj)mj EPSP's will appear in the j t h  marker, at t = ( n +  1)z. 
Since the connections are random, each of these has a probability 1/.4 of 
landing on a particular neuron, and the average number of EPSP's per 
neuron will be a,ktf~(1- hi)mj. Thus, the probability PL. j that a neuron 
receives L EPSP's is given by the binomial distribution: 

Pz"J= (Aa"lt~(1-hj) mJ)(A)Z" 1 - -  1) Aanla;(l-hj)mJ-L (3) 
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which can be approximated by the Poisson distribution: 

PL. j = [ a . / t f  ( 1 - hi) mj] L exp[ -a,,IZT( 1 - hi) mj]/Lt (4) 

because (l/A) ,~ 1 and Aa./~f(1 - h i )  mj >> 1. 
Similar expressions are obtained for the probabilities QI, j and RM, j 

that a neuron receives I IPSP's and M external PSP's, respectively. These 
quantities are given below. 

Since the purpose of this paper is to investigate further the effect of 
different distributions laws iT) and different combinations of these laws, we 
have to generalize Eqs. (1) or (2). In the present model we further assume 
that N,(N, < N )  subpopulations are characterized by low intemeuronal 
connectivity, i.e., the parameter /t+(/~ - )  is relatively small so that the 
Poisson approximation is valid, whereas the remaining N2(N2 = N - N ~ )  
are charaeter~ed by high connectivity, i.e., the parameter/z + (/z-) is large 
and the Gaussian approximation is valid. For a net with strong differentia- 
tion in the intemeuronal connectivity among its subsystems, the a.+~ 
quantity can be expressed both by Poisson and Gaussian terms. In this 
case Eq. (2) takes the following form 

a,,+l =(1 -a,,) mjeej+ ~ mjP~j , (5) 
\j----I j==NI + 1 

where we now have two sums instead of one, the first describing the 
Poisson contribution, and the second the Gaussian contribution. 

In Eq. (5) Pej=Pej(a,, mj, a, Oj) is the probability that a neuron of 
the j th  marker receives a total PSP which exceeds its threshold ,gj, for the 
Poisson approximation, and it is given by r 

gmax, j lmax, j ( q j - - 1 )  
Pej(a,,,mj, a, Oy)= E ~ 1 -  ~ PL, j Q,,,jRM, y (6) 

M--O I=0 L--O 

where P t, j is given by Eq. (4) and: 

Qt, j= (antZj- hjrnj)' exp(-a,,@- hjmj)/I! 

Ru, j=  (aao ~ mj) ~ e x p ( - a ~  mj)lM! 

/max, j -  Aa,,l.tj-- hjmj 

Mm~x, j= Aoalto~ mj 

and 

(7) 

(8) 

(9) 

(lO) 

rfj- u[ ( Oj + IKj- T- MKo ~ )/K f ] (11) 
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The function u[x]  is defined as the smallest integer which is equal to 
or greater than x. 

If the average number of active inputs per neuron becomes sufficiently 
large, as in the N2 markers, the number of PSPs per neuron will follow a 
Gaussian distribution. In this case, the quantity Poj= Poj(a,, mj, or, ,gj) is 
calculated in analogy to our previous studies (Fournou, Argyrakis and 
Anninos, 1993). If lj and ij are the numbers of EPSPs and IPSPs, respec- 
tively, that are inputs to a given neuron of the j th  marker emanating from 
the net itself, and if lj., i~. are the numbers of External EPSPs and IPSPs, 
respectively, that are inputs to this neuron emanating from the axons, then 
the total PSP input to a given neuron of the j th  marker at time t = (n + 1 )r 
will be given by 

- -  p + - r  - -  

ej,. +t = IjK + + ilK + IjK o + t jK o (12) 

If all the quantities lj, 6, lj. and i) are sufficiently large, their distribu- 
tions may be approximated by normal distributions about their average 

" 7  values / j = a , / t f ( 1 - h i )  mj, ~.=a,,l.t 7 hjmj, I j=(Ao/A)  a/t,,+(1-ho) mj and 
i " j=(Ao/A)a l tohom j. Thus, the distribution of ej.,,+~ will be also a 
Gaussian distribution with average value: 

gj. ,, +, = a,,mj[lt~ (1 -- hj) K + + It f- h jK-  ] 

Ao 
+--~ amj[lu,+, ( 1 -  ho) K, + + luo hoKo ] (13) 

and variance: 

~2 = .+, a .mj[ l t f (1  h j ) ( K + ) Z + l t f t b ( K - )  z] 

Ao 
+ --~ amj[/~,+( 1 - ho)(K, +, )2 + ~o ho(K# )'-] (14) 

since the probabilities of lj, ij, l'j and i) are independent of each other. 
The probability Pcj= Pcj(a,, mj, a, ,gj) that a neuron of thej th  marker 

receives a total PSP which exceeds its threshold 0j is now 

eGj(an, mg,.a, Oj)= 1 fo~ 
Xj, n +  i 

e -' '/2 dx (15) 

where 

tgJ - -  ~'J" n + l (16)  x j . + ,  = a j . + ,  



856 Fournou et  ai. 

We can use the above equations for the case of isolated neural nets if 
we put t r=0,  which would reduce them to those derived in previous 
work.(8) 

The slope at the point a,  = 0 of Eq. (5) is easily taken by combining 
the relevant results with Poisson and Gaussian approximations (for the 
details see the appendix). Thus, we have: 

t3a,,+ l I = fY'.N~ 1 m2/~j+(1-hj) (r/j= 1) 
Oan ,,~=o 0 (r/j ~> 2) (17) 

where the parameter t b is defined as the minimum number of EPSPs 
necessary to trigger a neuron of the j th  marker in absence of inhibitory 
inputs, and it is given by r/j= u[,gj/K~ ]. In this equation, as expected, 
there is no contribution of the N2 Gaussian subpopulations to the slope of 
an+t at a , , - 0 ,  since the Gaussian distribution slope is always zero at the 
origin. This results in the absence of class A from the Gaussian nets. ~s~ 
However, Eq. (17) suggests that in neural nets with hybrid interneuronal 
connectivity, due to the Poisson components, all three classes, A, B and C 
will exist in their classification. 

4. S IMULATION MODEL 

We developed a simulation algorithm to calculate the quantities of 
Eq. (5) directly. Typically, a net contains A = 1000 neurons, which are sub- 
divided into N markers, usually N = 2, 3, or 4. By use of a random number 
generator we determine the connectivities that are to be realized, following 
the prevailing law, i.e., Poisson, Gaussian, or hybrid. Thus, the appropriate 
neuronal connectivity matrix {ku. } is first constructed. Each element k 0 
denotes the synaptic strength of the connection from j to i neuron 
(coupling coefficient). This may take either positive or negative values 
depending on the type of the synaptic neuron (excitatory or inhibitory, 
respectively). The macroscopic parameters K +, K-, /~ +, /z-  are considered 
to vary randomly between a maximum and a minimum value, and their 
specific values are again determined by use of a random number generator. 
Thus, for the same structural parameters, we can obtain a different 
microscopical structure of the net, by using a different seed for the random 
number generator. Once constructed a net remains "frozen" regarding its 
connections for the entire duration of calculations. 

The net is activated by specifying randomly a set of neurons which are 
taken to be active at time t = 0. One synaptic delay later all neurons linked 
to them will receive the appropriate inputs. The inputs arriving at a neuron 
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are summed instantly, and if the sum exceeds the neuron threshold then the 
neuron will fire. At the next time step all active neurons are specified. The 
firing neurons for the time step t = mr define the state vector a..  Refractori- 
ness of neurons is taken into account by imposing that a neuron that has 
fired at some moment t = nr cannot fire at t = (n + 1)r. The dynamics of 
the net is followed for n time units, by monitoring the net activity, which 
is the fraction of active neurons out of the total number of neurons. 

Eventually, for a set of parameters we perform typically 100 different 
realizations, and average the resulting data. The reason of this averaging is 
that we found that a single run contains inherently some statistical fluctua- 
tions, which are thus averaged out. Each realization is performed on a new 
microstate of the system, prepared with the same parameter values, but 
different initial random number generator seed. Thus, these results are to 
be interpreted as Monte Carlo simulation results. 

5. RESULTS AND EXAMPLES 

In this section we present solutions (representations) of the above 
equations and some numerical examples that exemplify the combinations 
of the two distributions. The basic equation is Eq. (5) with the corre- 
sponding expressions for the Poisson (Pej) and Gaussian (Pcj) terms. We 
first examine the case of isolated nets with refractoriness (r = 1), and r /= 1 
(see Eq. (17)), in order to see the effect of one subsystem with Poisson 
characteristics on the configuration of the class of a net, since class A may 
exist only in Poisson nets. We used nets with four markers, m,,=0.4, 
m b =0.3, mc=0.2  and m,i=0.1, with q =  1, h = 0  a n d / t  + =20,  which is 
relatively small (not adequate) for the Gaussian approximation, and 
/~ + = 200, which is relatively large. For each one of these two values of the 

zp+(1 - h )  and the Slope at a ,=0  of the Activity for Table 1. The Values of mi 
Each Subpopulation of Fig. 1 with Four Markers and p+ =20, h=0,  rl= 1" 

1 i 

Slope at a .  = 0 

mj m2/t+(1 - h )  P P=G PbG PeG PdG G 

a 0.4 
b 0.3 
c 0.2 
d 0.1 

3.2 3.2 3.2 0 0 0 0 
1.8 1.8 0 1.8 0 0 0 
0.8 0.8 0 0 0.8 0 0 
0.2 0.2 0 0 0 -0.2 0 
Net 6 3.2 1.8 0.8 0.2 0 

Class A A A B B B 

i 

"The slope of the curve of total activity and the class of the corresponding net. 
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2 Table 2. The Values of mip+(1 - h )  and the Slope at an=O of the Activity for 
Each Subpopulation of Fig. 2 with Four Markers and p+ =200, h=0,  rl= 1" 

Slope at a .  = 0 

a 0.4 
b 0.3 
c 0.2 
d 0.1 

mj m2/t+(1 - h )  P P~G PbG PeG PdG G 

32 32 32 0 0 0 0 
18 18 0 18 0 0 0 
8 8 0 0 8 0 0 
2 2 0 0 0 2 0 

Net 6 32 18 8 2 0 
Class A A A A A B 

"The slope of the curve of total activity and the class of the corresponding net. 

parameter/a +, we obtained plots of an+~ vs a, for the following six cases 
of nets: Net P, with all its subpopulations having Poisson characteristics; 
nets P~G, PbG, PeG and P dG with only one subpopulation (indicated by 
the corresponding subscript) being a Poisson subsystem while the other 
three being Gaussian subsystems, and net G, with all its subpopulations 
having Gaussian characteristics. The values of 2 § m)/t ( 1 - h) and the slope 
of the partial activity of each subpopulation for the above six nets with four 
markers with/t + =  20 and 200, are given in Tables 1 and 2, respectively. 
The slope of the neural activity and the class of the corresponding net are 
also given in the last two rows of these tables, in each case. 

The activity a ,+l  as a function of the preceding activity a, for each 
one of the above six nets with/~ + = 20 is given in Fig. 1. In the inset we 
show a magnification of the origin. The curves are numbered from 1 to 6 
corresponding to the six nets. Analogous results for a second group of nets 
with the same parameters but with relatively large connectivity,/~ + = 200, 
are given in Fig. 2. 

The results shown in Table 1 refer to nets with relatively low connec- 
tivity. We observe in this table that since the value of the parameter/t + is 
relatively small (/~ + = 20), the terms m 2/~ + ( 1 - h) take small values and 
only in the two large subpopulations a and b they exceed the critical value 
of unity. Thus, apart from the Poisson P net of class A, for which the slope 
of the curve of the neural activity at a,  = 0 is equal to 6, only the nets P~ G 
with slope 3.2 and PbG with slope 1.8 (in which the corresponding 
subpopulation 0c or b is a Poisson subpopulation) belong to class A. The 
remaining nets PeG with slope 0.8, PdG with slope 0.2 and the Gaussian 
G net with slope zero belong to class B. The classes of these nets are also 
seen in the corresponding Fig. 1, where we further observe that for the nets 
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Fig. 1. The total neural activity a ,+ l  vs preceding activity a ,  for six isolated nets of four 
chemical markers, m~ = 0.4, mb =0.3, mc = 0.2, md=0.1;  with ,9= 1, 1/= 1, h = 0 ,  K § = 1, r - -  1 
and / t  + =20.  (1) P net, (2) P~G net, (3) PbG net, (4) PeG net, (5) PdG net and (6) G net. 
In the upper right corner, a magnified plot of the same curves at the origin is shown. 

P~G and PbG with the large Poisson subpopulations 0c and b, respectively, 
the curves of neural activity have been considerably shifted toward the 
corresponding curve of the Poisson P net, in spite of the fact that only one 
Gaussian subpopulation has been substituted by a Poisson one in each 
case. A noticeable but smaller displacement of the curves toward the 
corresponding curve of the Poisson P net is also observed for the other nets 
PeG and PdG. 

In Table 2, for the nets with relatively high connectivity (/z § = 200), 
the values of m}lt § 1 -h)  are larger than unity and the corresponding nets 
with Poisson or hybrid interconnections are of class A. The class of the nets 
is also seen in Fig. 2, where furthermore we can see the corresponding 
displacements of the curves of neural activity toward the pure Poisson one. 
These differences are small since the Gaussian approximation is very good 
for nets with high connectivity as in the present case. 

The time evolution of the neural activity can be seen in Fig. 3, where 
we plot the activity a, as a function of time, for the net with p + = 20. Again 
we used Eq. (5) with the subsequent development with several different 
initial values. Notice that there are four P curves with an(t_o)=0.015, 0.2, 
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Fig. 2. a,+~ vs a,  for six isolated nets of four chemical markers, m~=0.4, m b =0.3, m, =0.2, 
m a = O . l ;  wi th  S =  l, t l=  l, h = O ,  K + = l, r =  l and  /t + = 2 0 0 . ( 1 ) P n e t , ( 2 ) P ~ G n e t , ( 3 ) P h G  
net, (4) PeG net, (5) PdG net and (6) G net. In the upper right comer, a magnified plot of 
the same curves at the origin is shown. 

0.47 and 0.8. Similarly for the other two cases of PeG and G nets, as shown 
in the figure. We observe that for the Poisson net the activities always 
converge to a constant value, about 0.45, while for the two other nets, 
Gaussian and hybrid, the long-time activity depends on the initial values. 
This makes net P to belong to class A, while nets P~G and G are of 
class B. 

Next, on the basis of the same formalism, we examined non-isolated 
neural nets, i.e., nets which receive steady or slowly varying external 
sustained inputs. We used nets of A neurons and two markers, ~ and b, 
with m~=0.35 and m b =0.65, attached to a cable of afferent fibers which 
may be axons of A o = A  neurons of another net. The strengths of the 
synaptic coupling coefficients Ko + and K o were chosen arbitrarily to be 
half of the internal coupling coefficients which is taken to be K § = K - =  1. 
The appropriate values of parameters # § and 8 are selected for each sub- 
system in such a way that the hybrid character of the network is clearly shown. 

Applying the steady-state condition a , + l =  a,,, we obtained the phase 
diagrams and multihysteresis loops shown in Fig. 4, for all three models, 
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Fig. 3. Time dependence of the total activity a, for three isolated nets, P, PeG and G net 
of four markers, m~=0.4, mb =0.3, m,.-0.2, ma=0.1, with 3 =  1, h=0 ,  K § = 1, r =  1 and 
g+ =20. Initial activities: ao=0.015, 0.2, 0.47, 0.8 for the P net, ao =0.015, 0.017, 0.47, 0.8 for 
the PeG net, and ao =0.025, 0.029, 0.47, 0.8 for the G net. 

Poissonian (P net), Gaussian (G net) and hybrid (P~ G net), for the above 
nets of two markers 0c and b, but, for the sake of simplicity, multihysteresis 
loops are shown only for the hybrid case. Computer simulation results are 
also depicted in these plots. This diagram combines the data for a purely 
excitatory input (ho = 0), which is labeled a § and plotted to the right of the 
origin, with data for a purely inhibitory input (ho = 1 ), which is labeled a -  
and plotted to the left of the origin. In the non-isolated neural nets, i.e., 
neural nets receiving external sustained inputs described by the parameter 
a, a common property is the appearance of such hysteresis loops. As 
illustrated here, a slow change of the level of afferent inputs leads to 
irreversible change in the steady state activity of the net. The parameter ass 
is the steady state value of the net activity obtained by requiring that 
a,,+~=a,,. The arrows in the diagram indicate the direction of activity 
change following a fluctuation of activity away from the condition 
a,, +~= a,,. The curve is divided into stable and unstable portions (e.g., for 
the hybrid case, the solid lines indicate the stable portions while the dashed 
lines the unstable ones). The resulting hysteresis loops have certain 
reversible portions, linked to each other by irreversible upward transitions 
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at critical values of a(a =a~) ,  and downward transitions at other critical 
values of a(a=ao). In a network characterized by N markers 2N+ 1 
portions (or steady states) may  appear,  from which N +  1 are the stable 
ones and N are the unstable ones. Here, in the phase diagrams of Fig. 4 we 
observe three stable and two unstable steady state portions. 

The simple as well as the Multiple hysteresis curves, from a functional 
point of view, may be considered to represent the basis for short term 
memory since any input will cause the activity in the neural population to 
go from the lowest stable into a higher stable state and the activity will 
remain in this state after the input ceases. Thus, the hysteresis loops may 
be considered as the basis for short- term memory. Furthermore,  since a 
network may go from a stable state to another due to a change of the 
external inputs and/or the initial activity, this behavior may be considered 
as a simple explanation of the sequential thoughts, t~3) 

In Fig. 5 the neural activity a~ +t vs a ,  is given for all approximations,  
Poisson (P net), Gaussian (G net) and hybrid (P~G net), for nets of two 
markers ~ and b, with a = 0, as well as computer  simulation results. The 
contribution to the total activity of each marker  is also depicted in these 
plots. For  the chosen set of parameters  (~9~ = 2 , / ~  = 33, ~gb = 29,/t~" = 95) 
we obtained two-modal curves ~3) of the total neural activity for all cases, 
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Fig. 4. Phase diagrams and hysteresis curves for three nets (P, G and P~G) with two 
markers a and b, receiving sustained inputs. The steady-states of activity as~ for these have 
been plotted against tn Parameters: m~=0.35, rob=0.65" g~+ =56, /a~" =96; h=0; ~9~=3, 
~9b=31" r~=0, rb= 1" K + =1, Ko + =K~-=0.5" go + =g~-= 10. Doted lines are used for the 
Poisson approximation and dashed lines for the Gaussian one. In the hybrid approximation, 
solid lines are used for stable steady-states and dashed for unstable states. The solid dots are 
simulation results. 
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Fig. 5. a , + n  vs ~. for three nets (P, G and P=G) with two chemical markers, m==0.35 and 
mb=0.65, with a=0, / /~+ = 3 3 , / / ~  =95,  h = 0 "  8==2,  8b=29;  r==0,  r b =  1" K § = 1. The 
curves ~ and b represent the activities of the corresponding markers, whereas T gives the total 
activity of the net. The solid lines are used for the hybrid P~G net, the doted lines for the 
Poisson P net and the dashed lines for the Gaussian G net. The solid dots are simulation 
results. 

provided that the number of nonzero stable or unstable steady-states are 
the maximum possible, that is, equal to the number of markers. As a conse- 
quence of the large value of ,gb, the contribution to the total neural activity 
of the b marker is restricted to a region beyond the value a,, "~ 0.3 of the 
preceding activity. The differences between the two approximations, 
Poissonian and Gaussian, in the non saturated parts of b curves are vary 
small, due mainly to the high connectivity, (//2-= 95), whereas the corre- 
sponding differences in the a curves are large. The simulation results are in 
very good agreement with the hybrid model. 

6. CONCLUSIONS 

In this paper we investigated the effect of different neuron connec- 
tivities on the dynamical behavior of neural nets with chemical markers. 
We examined the significance and consequences of assigning different 
(Poisson or Gaussian) distributions of connectivities on the subnets of the 
total net, giving now a hybrid character to the overall net. The equation for 
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the net activity (Eq. (5)) was extended and generalized to include this com- 
bination. Our results for hybrid nets, as they are exhibited in Figs. (1) to 
(5), show a similar general dynamic behavior as in the cases of pure 
Poisson or Gaussian approximations, i.e., multiple steady states of the 
neural activity and multiple hysteresis loops in the phase diagrams. We see 
that when we have only partial substitution of the Poisson approximation 
with the Gaussian one in the appropriate subsystems, the resulting 
behavior is in-between these two distributions, as it is shown by the curves 
in Figs. (4) and (5). Additionally, we find that while a Gaussian net always 
belongs to class B or C (not guaranteed sustained activity), our new hybrid 
net may belong to any of the three classes: A (guaranteed sustained 
activity), B or C. The A class is provided by the newly derived Eq. (17), 
which gives the slope at the origin (a, = 0) of the neural activity curves 
(plots of a ,+ t  vs a,,), and has its origin on the Poisson terms of the basic 
Eq. (5). This'behavior was shown by nets P~G and PbG of Fig. 1 and by 
hybrid nets of Fig. 2. We conclude that the distribution laws used to deter- 
mine the connectivities between neurons in a neural net play an important 
role in the net behavior. 

Finally, as an additional verification, these ideas were analyzed by use 
of computer simulations. The computational model was designed so that it 
parallels the developed formalism. For the range of parameters examined 
we find excellent agreement between these two methods. We note that the 
analytical method has a probabilistic character and describes an annealed 
chemical kinetics approach. On the other hand, the simulation results 
describe a more direct quenched randomness with full specification of the 
system units. Nevertheless the results of the two methods practically coincide. 

APPENDIX 

We give here details of the proof of Eq. (17), which gives the slope of 
the curve a, +~ vs a,  as a,  ~ 0, in the general case of isolated hybrid neural 
nets with chemical markers; Thus, we take O/Oa,,(a,,+~)l,,=o from Eq. (5) 
for the case of isolated hybrid neural nets (a = 0). 

For the Poisson subsystems we start from the corresponding Poisson 
terms of Eq. (5), 

where 

N I 

(an+l)/, ( 1 - - a , )  ~ mjPpj(a, , ,mj,  Oj) (A-l) 
j ~ - I  

,max.+(,;--.) 
Pej(a,,, mj, Oj) = ~ 1 - ~ Pt.. j Qz, j (A-2) 

I = 0  L = 0  
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If we take O/Oa,,(a. + ~ ) ply. = o from Eq. (A- 1 ), we find that all terms in 
the summations over I vanish with the exception of I = 0 and for this value 
of I the parameter r/' is reduced to r/= u[Os/K f ]. The final result is 

{oZ7: + 0 ,ms/u J ( 1 - h j )  (rb= 1) 
(A-3) 

(rb>~ 2) 

For the Gaussian subsystems, we first write the Gaussian terms of 
Eq. (5), 

in the form 

N 

(a.+ l)~= (1 - a . )  ~ msPGj(a,,, mj, ~gs) (A-4) 
j - - N I  + 1 

f (  X l , Xz,..., X N) = (1-- a.) 
N 

mjPj(xj) (A-5) 
j----NI + 1 

where 

Oj - ~j (A-6) xj= 6j 

and then calculate the partial derivative o f f  with respect of a, at a,  -~ O, 
i.e., 

af 
Oa,, 

N ] 
,,. o=Oa,, ( 1 - a . ) E  msPj(xs) 

---- j = N i + I  a n = O  

(A-7) 

from which we have 

Of = -  y' mjPj(xj) + (1 -a , , )  Z mj Oxj aa. 
~ G  n an=O j - -  N I + I j--- N I + 1 a n = O  

(A-8) 

Using Eq. (15) with a = 0  and applying Leibnitz's theorem we get 

aPg(xj______~) = 1 
Oxj x ~  e-"~ /2 (A-9) 

822/89/34-25 
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Taking IK f  I = IKf  I = K, (0 < K < m) and r#= 0+/Kf it follows from 
Eq. (A-6) that 

rlj-- a,[ mjl~ f (1 - hj) + m/a f hi] 
, (A-IO) 

x/= ~/a.[ mjfl 2 ( 1 - hi) + mslt f hj ] 

Using qj = mfl~ f ( 1 - hj) and p/= mja f hj we get 

xj = rlj + a'(pj - qj) (A-11) 
x/a,,(Pj + qj) 

Differentiating this equation with respect to a,, we obtain 

dxz = - rl/ + a , , ( p / - , q / )  (A-12) 
da,, 2a,, ~/a,,(pj + q.i) 

Taking into account Eqs. (A-9) and (A-12), Eq. (A-8) can be written in the 
form 

i 
{ s 1 --a.  

Of = -  E m j P j ( x j ) - ~  

N 

• Z 
j - - N l + l  

mje-X~/2 -- rlJ + a,,(PJ-- qJ ) } 
2a,,.Ja,,(py + qy) a n - - O  

(A-13) 

from which, after some algebraic manipulation, we get 

0y E Q 

~an % = 0  j =  N I + 1 

m+P+(x+) 1 u a n  

x E mjxj e-x~/2 + a , , ~ j  +, x/a,,(pj + qJ) e 
j =  N I + 1 = a n = O  

(A-14) 

Since as a,  ~ 0 the xj ~ oo, then it can be easily seen by l'Hospital's rule 
that 

lim Of(x~) = 0 (A-15) 
a.--,O t~a n 

Thus, the final result for the whole network is the following: 

~an+ 1 
aa, 

an -~- O 
(oXT_, : + 

= 1 m)lzj ( 1 - h i )  (r/j= 1) 
(A-16) 

(r/j ~> 2) 
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