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Dimensional crossovers and anomalous scaling of single and reacting random walkers
in baguettelike lattices: Monte Carlo simulations of the number of distinct sites visited
and of bimolecular A+ A and A+B reactions
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We performed Monte Carlo simulations on baguettelike lattices of random-walk-based bimokeeutar
andA+ B reactions, and of the number of distinct sites visited. The emphasis is on the crossover times, from
high (two- or three} dimensional behavior to one-dimensional behavior, and their scaling laws with respect to
tube width. We find that these dimensional crossovers deviate significantly from a mean square displacement
law and are specific to both tube dimensiona(Ryor 3 and reaction typée.g.,A+ A or A+B), instead of an
expected power of 2, the exponents range between 1 and 4. Thus, the global information propagation is either
faster or slower than single particle diffusion. The fractional densities oAth® reactions at the dimensional
crossover are compared to the fractional densities at the segregation crossover in nonconfined media. The time
evolutions of theA + A reactions approximately mimic those of the average number of distinct sites visited. All
asymptotic time behaviors exhibit one-dimensional charafB063-651X96)50412-5

PACS numbeps): 05.40:+j

Nonclassical reaction kinetics in quasi-one-dimensionaWhile strictly one-dimensional reaction systems are hard to
systems with one-dimensional rate-law characteristics haveome by experimentally, it is much easier to find or to con-
been clearly demonstrated experimentally for several sysstruct systems that are effectively one-dimensional, such as
tems[1—3], including bimolecular reactions in solution filled Capillaries, pores, or tubules. Such systems are, or can be
pores[4,5] and binary exciton annihilation in crystalline me- Made to be, immune to convection currents that otherwise
dia embedded inside poré&—g, as well as for exciton an- might frustrate[18] the Ovchinnikov-Zeldovich effect. To-

S . o wards this goal, we performed here simulations of such tu-
nihilation on isolated guest chaif@] in polymer blends. The bular systems, using “baguettelike” lattices, with the aim of
dynam!cs of the d|ffus!on controlled photochemmgl and. pho- uantifying the conditions necessary for the experimental ob-
tophysical processes in most of these systems, including t

) rvation of the Ovchinnikov-Zeldovich effect. Since in the
well characterized nucleopore membrafizh revealed cy-  ghort time regime(too short to reach the Ovchinnikov-

lindrical pore structures. These cylindrical systems exhibited,q|qovich effect the A+ B reaction mimics the behavior of
crossover times dependent on width or, alternatively, crossme Ao+ A reaction[19], we have also simulated th&-+A
over widths for given experimental time scales. case. Also, as th&+ A reaction generally follows the scal-
The nonclassical, anomalous behavior of the A el-  jng of the number of distinct sites visited, we also simulated
ementary reactiol-12 has been showii3,8-12 to be this case. For completeness, we have simulated two-
caused by the anomalously large and continuosly growinglimensional “flat” tube reactions to compare with the three-
kinetic depletion zones, i.e., fluctuating mesoscopic domainsjimensional square tube results.
where the reactants have been depleted. Even more dramatic The dimensional sensitivity of nonclassical kinetics im-
nonclassical effects have been demonstrated for elementapyies crossover times that depend on tube diameter. Previous
A+ B reactiong3,13-15 where kinetic self-segregation be- work [14,19-2] has effectively used scaling arguments
tweenA and B, the Ovchinnikov-Zeldovich effedtl3], has based on the mean square displacement(Biwstein diffu-
been demonstrated for an initially random system, as well asion) to describe the time dependence of diffusion controlled
for steady state conditiorf46,17. This purely kinetic self- reaction kinetics. The latter law has also been folifs19
segregation of reactants in an elementary reaction has not yet describe correctly the crossover times for the onset of
been observed experimentally. The Ovchinnikov-Zeldovichfinite size effects in regular latticedD, 2D, and 3D. To
rate law deviates from classical kinetics only slightly in threedetermine if this law is also relevant to the crossover times
dimensions, more in two, and most prominently in one di-resulting from the finite width of the tube, Monte Carlo
mension. Searching for experimental realizations of this efsimulations were performed here for elementary A and
fect, one-dimensional cases should yield the clearest results.+ B irreversible reactions, and for the average number of
distinct sites visited, in two- and three-dimensional baguette-
like lattices. The boundary conditions for these lattices were

*Electronic address: alin@chem.lsa.umich.edu reflective in the shorter dimensi@) and cyclic in the long
"Electronic address: kopelman@umich.edu dimension. The simulation methods have been detailed be-
*Electronic address: argyrakis@physics.auth.gr fore [15,22.
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FIG. 1. Representative data plots for three procesSgs:the average number of distinct sites visit@®0 runs averagedand the

reaction progress of botA+A—0 (25 runs averaggdand A+B—0 (7 runs averaged as measured byp(t))"1—p,

1 vs time, all

occurring on a spatially anisotropic, “baguettelike” lattice of siz& 3X 10°. The initial density,p,, is 0.8 particle/sitefor the A+ A
simulations and 0.4 in each species for the¢ B simulations. The crossover tintg from 3D behavior at early times to 1D behavior at

asymptotic times is found from the intersection of the two solid lines, which are drawn as best straight line fits to the data at early and

asymptotic times.

Seen in Fig. 1 are data representing each of the thre@hereA andB in Eq. (2) are constants. The crossover time
processes which we discuss here: the number of distinct sites, defined as the point in time at which the system changes

visited, Sy ; the elementary reaction proceAs- A—0; and
the elementary reaction process-B— 0. The latter two are
both measured in terms of the
(p(t))"t=pot, wherepy is the initial A particle density. In
Fig. 1, the solid line fits to th& + A data represent how we
determined the crossover timg,, between the early time
and asypmtotic time behavior of the+A and theA+B
reactions. To determing for the single random walker, we

its effective behavior from that in 2D or 3D to that in 1D, is
calculated separately for every curve. We implement Egs.

reaction progress(l), (2), and(3) to compare the behavior & on isotropic

lattices to that observed on our anisotropic, baguettelike lat-
tices. We also use these expressions to determine the cross-
over timet, of Sy from 3D or 2D behavior into 1D behavior,

by fitting Egs. (2) and (3) to the early time region of the

Sy vs N curves in 2D and 3D, respectively, while fitting Eq.

utilized analytical expressions to fit the data before and aftefl) to the asymptotic region of those curves. The time axis

the dimensional crossover.

The analytical expressions for the behaviorSyf in the
asymptotic limit ofN—, whereN is the number of steps,
have been given by Montroll and Wei$&3]. In 1D, Sy
follows at2 power law.

For 1D,

SN"‘ (

Correction terms to the asymptotic solutions, which add ac
curacy to the early time behavi¢23,24, have also been
determined. In 2D and 3D these analytical expressions are

follows.
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For 3D (Ref.[23)),

value corresponding to the intersection of these two curve
fits is defined as.. The other method, which we employ to
determine the crossover timg, for the A+A—0 and
A+B—0 processes, involves drawing “best” linear fits to
both the early time and the asymptotic time portions of the
curve. Again, the corresponding time axis value where these
two straight lines intersect is defined &as(see Fig. 1 Uti-
lizing both methods to determirtg for the Sy or the A+ A
data results in different absolute values tgffor a given
process. However, if each method is applied in a self-
consistent manner, the resulting scaling relations agree
within the associated errors given in Table I. The single ran-
dom walker simulations were done on baguettelike lattices

3ith ample lengths, such that site revisitations, due to finite

size effects, did not occur in the length direction.
In Fig. 2, the crossover times for Sy and for the reac-
tion progress of theA+A—0 andA+B—0 reactions are

TABLE I. Dimensional scaling exponents for the relation be-
tweent, andW (= designates estimated accuragies

For 2D (Ref.[24)),
Sy=0.659 462 6K +0.573 92N?+0.449 530

Sy A+A A+B
2D 2.6£0.4 2.8:0.8 1.0£0.2
3D 4.0-0.4 4.2¢1 1.4+0.3

+0.407 3N~ Y24 ... ©)
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FIG. 2. The plot oft, vs W for Sy and for the
progress of the two reactionA+A—0 and
3 A+B—0, on spatially anisotropic, “Baguette-
] like” lattices, showing the scaling relation be-
tween the widthw and the timet. at which the
process exhibits a crossover from its behavior in
2D or 3D lattices to that in a 1D lattice.
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plotted as a function of tube widiv, revealing the existence emphasize that the powers §f and of the 3DA+ A reac-
of scaling relations between these two parameters. The contion are significantlylarger than two. On the other hand, the
plex pattern of these scaling relations is possibly the mostrossover powers for thd+B—0 processes are signifi-
interesting behavior exhibited in these two- and threecantly smallerthan two in both 2D and 3D baguettelike lat-
dimensional tubelike lattices. We write this scaling relationtices. We also note that while the precision of scaling expo-
in the form nents is very high, the accuracy of the values ligtEable )

is less certain. Still, all but one of the values of these scaling

te~ WX, (4)  exponents are well away from two.
In Fig. 3, we plot vsW the ratiop./py which is the den-

wherex is the crossover time scaling exponent. Table | listsSity Of A particles remaining on the lattice &f, normalized
these exponents. We see a dependence on both the dimédl.po. for theA+ B process occurring in 2D and 3D, respec-
sionality of the problem and the specific nature of the reaclively. We note that, in generap(t)/p, is the “survival
tion. (Note thatSy represents directly some trapping reac- Probability,” at timet, of the original particles. For compari-

n

tions [25,26].) son, we plot another “survival probability,p./po, namely,

Based on an analogy to the finite size effect crossoverthe normalized densities at=t; wheret, is the crossover
found for isotropic lattice$19], one might have expected a time to the segregateg@vchinnikov-Zeldovich time regime
universal crossover power of 2 in E@), i.e., x=2 or inisotropig linear, square, and cubic lattices, found in earlier
t.~W?2, in analogy to the Einstein mean-square displacemenrivork [15,19, where this ratio was calledy (d=1,2,3.
diffusion law. Indeed, current arguments concerning both

depletion zone growth in timéor trapping andA+ A reac- 1 —

tions) and aggregate size growth in tirffer A+ B reaction$ A

are usually based on this mean-square scaling|ledy19— i £

21,27. Furthermore, we note that in classical chemical reac- | . 5

tion kinetics there is o dependence of any elementary reac- o1 3 ° o E

tion progress on dimensionality. The reaction progress, M. e . R £

measured by p(t)) "1—py* is simply linear in time at all T » o TR

timesand thus no crossover time can be defiiach scaling o 001 . ¢

sense ; TR T S L
In contrast to the above expectations, we see from Table | { o 2p

that even the simplest cas®y, does not scale as the mean- | ¢ 3D ¢

square displacement la=2) but rather exhibits anoma- 000t T, T

lous scalings on these 2D and 3D spatially anisotropic lat- W

tices. Within the associated errors, the crossover times of the

A+A—0 reaction process follovat least roughl)/those of FIG. 3. The density of particles remaining on the baguettelike
Sn- The A+A data are found only over a relatively narrow |aice at the dimensional crossover time normalized by the initial
range of widths because the+ A reaction process 0CCUIS particle densityp./p, as a function of lattice widthW. For com-
quickly in these Baguette-like lattices and finite size effectsparison, the horizontal lines represent the normalized density of
set in (the particle density becomes too diluteefore the particles,f,, remaining on a regular, isotropic lattice at the cross-
dimensional crossover can be reached for lattices witlyver to the Ovchinnikov-Zeldovich regime. The values fof,
W=>20 in 2D and withWw=10 in 3D, approximately. We whered is the dimension 1, 2, or 3, are taken fr¢a5,19.
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These values are, of course, unrelated to the “baguette’A+ B reaction, at early times, on isotropic latticekb,19.
width, W, in our baguettelike lattices, and are represented ifFurthermore, the scaling ¢f with W appears to be universal
Fig. 3 by horizontal W independent lines, fat=1, 2, and 3.  on the length scales we studied — for both the snvsll
From this plot one can observe that, #< 10, the density |attices, wherep./po,>f4, and the largeV lattices, where
ratios p./po at the times of the dimensional crossovetg ( p /p,<f,.

in the 2D and 3D baguettelike lattices occur well above the |, summary, we find that the crossover tintesio scale

density ratios needed for crossover into the Ovchinnikovyith |attice width, but with unexpected powers. Their values
Zeldovich regime, given byq=p./po, Whered is the di-  range from one to four, compared to the expected value of
mension of the isotropic latticgld], i.e., tc<t¢ for “thin  two, Thus, the global information propagation is either faster
baguettes.” This implies that aggregates of like particles beyy sjower than single particle diffusion. At times well beyond
gin to form within the first few time steps on our Narrow he crossover time, the number of distinct sites visi®g,
Baguette-like lattices. This can be seen visually in our simuz ¢ \well as both th&+ A and theA+ B reactions, display the

Iatlpn ,r’nowes Of theﬂt’and'B partlclles “d|ﬁu5|ng” and “re- characteristic, asymptotic, nonclassical behavior of a one-
acting” on 2D “tube” lattices. This aggregation also Seems i onsional system

to result in a slowing down of the reaction process and the
deviation from theA+ A type behavior(see Fig. 1in these This project was supported by NSF Grant No.
Baguettes, in contrast to the behavior observed for th®©®MR9410709 and by NATO Grant No. CRG9200&2A.).
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