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We performed Monte Carlo simulations on baguettelike lattices of random-walk-based bimolecularA1A
andA1B reactions, and of the number of distinct sites visited. The emphasis is on the crossover times, from
high ~two- or three-! dimensional behavior to one-dimensional behavior, and their scaling laws with respect to
tube width. We find that these dimensional crossovers deviate significantly from a mean square displacement
law and are specific to both tube dimensionality~2 or 3! and reaction type~e.g.,A1A or A1B), instead of an
expected power of 2, the exponents range between 1 and 4. Thus, the global information propagation is either
faster or slower than single particle diffusion. The fractional densities of theA1B reactions at the dimensional
crossover are compared to the fractional densities at the segregation crossover in nonconfined media. The time
evolutions of theA1A reactions approximately mimic those of the average number of distinct sites visited. All
asymptotic time behaviors exhibit one-dimensional character.@S1063-651X~96!50412-5#

PACS number~s!: 05.40.1j

Nonclassical reaction kinetics in quasi-one-dimensional
systems with one-dimensional rate-law characteristics have
been clearly demonstrated experimentally for several sys-
tems@1–3#, including bimolecular reactions in solution filled
pores@4,5# and binary exciton annihilation in crystalline me-
dia embedded inside pores@6–8#, as well as for exciton an-
nihilation on isolated guest chains@9# in polymer blends. The
dynamics of the diffusion controlled photochemical and pho-
tophysical processes in most of these systems, including the
well characterized nucleopore membranes@2#, revealed cy-
lindrical pore structures. These cylindrical systems exhibited
crossover times dependent on width or, alternatively, cross-
over widths for given experimental time scales.

The nonclassical, anomalous behavior of theA1A el-
ementary reaction@1–12# has been shown@3,8–12# to be
caused by the anomalously large and continuosly growing
kinetic depletion zones, i.e., fluctuating mesoscopic domains,
where the reactants have been depleted. Even more dramatic
nonclassical effects have been demonstrated for elementary
A1B reactions@3,13–15# where kinetic self-segregation be-
tweenA andB, the Ovchinnikov-Zeldovich effect@13#, has
been demonstrated for an initially random system, as well as
for steady state conditions@16,17#. This purely kinetic self-
segregation of reactants in an elementary reaction has not yet
been observed experimentally. The Ovchinnikov-Zeldovich
rate law deviates from classical kinetics only slightly in three
dimensions, more in two, and most prominently in one di-
mension. Searching for experimental realizations of this ef-
fect, one-dimensional cases should yield the clearest results.

While strictly one-dimensional reaction systems are hard to
come by experimentally, it is much easier to find or to con-
struct systems that are effectively one-dimensional, such as
capillaries, pores, or tubules. Such systems are, or can be
made to be, immune to convection currents that otherwise
might frustrate@18# the Ovchinnikov-Zeldovich effect. To-
wards this goal, we performed here simulations of such tu-
bular systems, using ‘‘baguettelike’’ lattices, with the aim of
quantifying the conditions necessary for the experimental ob-
servation of the Ovchinnikov-Zeldovich effect. Since in the
short time regime~too short to reach the Ovchinnikov-
Zeldovich effect! theA1B reaction mimics the behavior of
the A1A reaction@19#, we have also simulated theA1A
case. Also, as theA1A reaction generally follows the scal-
ing of the number of distinct sites visited, we also simulated
this case. For completeness, we have simulated two-
dimensional ‘‘flat’’ tube reactions to compare with the three-
dimensional square tube results.

The dimensional sensitivity of nonclassical kinetics im-
plies crossover times that depend on tube diameter. Previous
work @14,19–21# has effectively used scaling arguments
based on the mean square displacement law~Einstein diffu-
sion! to describe the time dependence of diffusion controlled
reaction kinetics. The latter law has also been found@15,19#
to describe correctly the crossover times for the onset of
finite size effects in regular lattices~1D, 2D, and 3D!. To
determine if this law is also relevant to the crossover times
resulting from the finite width of the tube, Monte Carlo
simulations were performed here for elementaryA1A and
A1B irreversible reactions, and for the average number of
distinct sites visited, in two- and three-dimensional baguette-
like lattices. The boundary conditions for these lattices were
reflective in the shorter dimension~s! and cyclic in the long
dimension. The simulation methods have been detailed be-
fore @15,22#.

*Electronic address: alin@chem.lsa.umich.edu
†Electronic address: kopelman@umich.edu
‡Electronic address: argyrakis@physics.auth.gr

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/5893~4!/$10.00 R5893 © 1996 The American Physical Society



Seen in Fig. 1 are data representing each of the three
processes which we discuss here: the number of distinct sites
visited,SN ; the elementary reaction processA1A→0; and
the elementary reaction processA1B→0. The latter two are
both measured in terms of the reaction progress,
^r(t)&212r0

21 , wherer0 is the initialA particle density. In
Fig. 1, the solid line fits to theA1A data represent how we
determined the crossover time,tc , between the early time
and asypmtotic time behavior of theA1A and theA1B
reactions. To determinetc for the single random walker, we
utilized analytical expressions to fit the data before and after
the dimensional crossover.

The analytical expressions for the behavior ofSN in the
asymptotic limit ofN→`, whereN is the number of steps,
have been given by Montroll and Weiss@23#. In 1D, SN
follows a t1/2 power law.

For 1D,

SN;S 8Np D 1/2, N→`. ~1!

Correction terms to the asymptotic solutions, which add ac-
curacy to the early time behavior@23,24#, have also been
determined. In 2D and 3D these analytical expressions are as
follows.

For 2D ~Ref. @24#!,
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For 3D ~Ref. @23#!,

SN50.659 462 67N10.573 921N1/210.449 530

10.407 32N21/21•••, ~3!

whereA andB in Eq. ~2! are constants. The crossover time
tc , defined as the point in time at which the system changes
its effective behavior from that in 2D or 3D to that in 1D, is
calculated separately for every curve. We implement Eqs.
~1!, ~2!, and~3! to compare the behavior ofSN on isotropic
lattices to that observed on our anisotropic, baguettelike lat-
tices. We also use these expressions to determine the cross-
over timetc of SN from 3D or 2D behavior into 1D behavior,
by fitting Eqs. ~2! and ~3! to the early time region of the
SN vsN curves in 2D and 3D, respectively, while fitting Eq.
~1! to the asymptotic region of those curves. The time axis
value corresponding to the intersection of these two curve
fits is defined astc . The other method, which we employ to
determine the crossover timetc for the A1A→0 and
A1B→0 processes, involves drawing ‘‘best’’ linear fits to
both the early time and the asymptotic time portions of the
curve. Again, the corresponding time axis value where these
two straight lines intersect is defined astc ~see Fig. 1!. Uti-
lizing both methods to determinetc for theSN or theA1A
data results in different absolute values oftc for a given
process. However, if each method is applied in a self-
consistent manner, the resulting scaling relations agree
within the associated errors given in Table I. The single ran-
dom walker simulations were done on baguettelike lattices
with ample lengths, such that site revisitations, due to finite
size effects, did not occur in the length direction.

In Fig. 2, the crossover timestc for SN and for the reac-
tion progress of theA1A→0 andA1B→0 reactions are

FIG. 1. Representative data plots for three processes:SN , the average number of distinct sites visited~200 runs averaged!, and the
reaction progress of bothA1A→0 ~25 runs averaged! and A1B→0 ~7 runs averaged!, as measured bŷr(t)&212r0

21 vs time, all
occurring on a spatially anisotropic, ‘‘baguettelike’’ lattice of size 3333105. The initial density,r0 , is 0.8 particle/site for the A1A
simulations and 0.4 in each species for theA1B simulations. The crossover timetc from 3D behavior at early times to 1D behavior at
asymptotic times is found from the intersection of the two solid lines, which are drawn as best straight line fits to the data at early and
asymptotic times.

TABLE I. Dimensional scaling exponents for the relation be-
tweentc andW (6 designates estimated accuracies!.

SN A1A A1B

2D 2.660.4 2.860.8 1.060.2
3D 4.060.4 4.261 1.460.3
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plotted as a function of tube widthW, revealing the existence
of scaling relations between these two parameters. The com-
plex pattern of these scaling relations is possibly the most
interesting behavior exhibited in these two- and three-
dimensional tubelike lattices. We write this scaling relation
in the form

tc;Wx, ~4!

wherex is the crossover time scaling exponent. Table I lists
these exponents. We see a dependence on both the dimen-
sionality of the problem and the specific nature of the reac-
tion. ~Note thatSN represents directly some trapping reac-
tions @25,26#.!

Based on an analogy to the finite size effect crossovers
found for isotropic lattices@19#, one might have expected a
universal crossover power of 2 in Eq.~4!, i.e., x52 or
tc;W2, in analogy to the Einstein mean-square displacement
diffusion law. Indeed, current arguments concerning both
depletion zone growth in time~for trapping andA1A reac-
tions! and aggregate size growth in time~for A1B reactions!
are usually based on this mean-square scaling law@14,19–
21,27#. Furthermore, we note that in classical chemical reac-
tion kinetics there isno dependence of any elementary reac-
tion progress on dimensionality. The reaction progress,
measured bŷr(t)&212r0

21 is simply linear in timeat all
timesand thus no crossover time can be defined~in a scaling
sense!.

In contrast to the above expectations, we see from Table I
that even the simplest case,SN , does not scale as the mean-
square displacement law~x52! but rather exhibits anoma-
lous scalings on these 2D and 3D spatially anisotropic lat-
tices. Within the associated errors, the crossover times of the
A1A→0 reaction process follow~at least roughly! those of
SN . TheA1A data are found only over a relatively narrow
range of widths because theA1A reaction process occurs
quickly in these Baguette-like lattices and finite size effects
set in ~the particle density becomes too dilute! before the
dimensional crossover can be reached for lattices with
W.20 in 2D and withW>10 in 3D, approximately. We

emphasize that the powers ofSN and of the 3DA1A reac-
tion are significantlylarger than two. On the other hand, the
crossover powers for theA1B→0 processes are signifi-
cantly smaller than two in both 2D and 3D baguettelike lat-
tices. We also note that while the precision of scaling expo-
nents is very high, the accuracy of the values listed~Table I!
is less certain. Still, all but one of the values of these scaling
exponents are well away from two.

In Fig. 3, we plot vsW the ratiorc/r0 which is the den-
sity of A particles remaining on the lattice attc , normalized
by r0 , for theA1B process occurring in 2D and 3D, respec-
tively. We note that, in general,r(t)/r0 is the ‘‘survival
probability,’’ at timet, of the original particles. For compari-
son, we plot another ‘‘survival probability,’’rc8/r0, namely,
the normalized densities att5tc8 where tc8 is the crossover
time to the segregated~Ovchinnikov-Zeldovich! time regime
in isotropic, linear, square, and cubic lattices, found in earlier
work @15,19#, where this ratio was calledf d ~d51,2,3!.

FIG. 2. The plot oftc vsW for SN and for the
progress of the two reactions,A1A→0 and
A1B→0, on spatially anisotropic, ‘‘Baguette-
like’’ lattices, showing the scaling relation be-
tween the widthW and the timetc at which the
process exhibits a crossover from its behavior in
2D or 3D lattices to that in a 1D lattice.

FIG. 3. The density of particles remaining on the baguettelike
lattice at the dimensional crossover time normalized by the initial
particle densityrc/r0 as a function of lattice widthW. For com-
parison, the horizontal lines represent the normalized density of
particles,f d , remaining on a regular, isotropic lattice at the cross-
over to the Ovchinnikov-Zeldovich regime. The values off d ,
whered is the dimension 1, 2, or 3, are taken from@15,19#.
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These values are, of course, unrelated to the ‘‘baguette’’
width,W, in our baguettelike lattices, and are represented in
Fig. 3 by horizontal,W independent lines, ford51, 2, and 3.
From this plot one can observe that, forW<10, the density
ratiosrc/r0 at the times of the dimensional crossovers (tc)
in the 2D and 3D baguettelike lattices occur well above the
density ratios needed for crossover into the Ovchinnikov-
Zeldovich regime, given byf d5rc8/r0, whered is the di-
mension of the isotropic lattice@19#, i.e., tc,tc8 for ‘‘thin
baguettes.’’ This implies that aggregates of like particles be-
gin to form within the first few time steps on our narrow
Baguette-like lattices. This can be seen visually in our simu-
lation movies of theA andB particles ‘‘diffusing’’ and ‘‘re-
acting’’ on 2D ‘‘tube’’ lattices. This aggregation also seems
to result in a slowing down of the reaction process and the
deviation from theA1A type behavior~see Fig. 1! in these
Baguettes, in contrast to the behavior observed for the

A1B reaction, at early times, on isotropic lattices@15,19#.
Furthermore, the scaling oftc withW appears to be universal
on the length scales we studied — for both the smallW
lattices, whererc/r0. f d , and the largeW lattices, where
rc/r0, f d .

In summary, we find that the crossover timestc do scale
with lattice width, but with unexpected powers. Their values
range from one to four, compared to the expected value of
two. Thus, the global information propagation is either faster
or slower than single particle diffusion. At times well beyond
the crossover time, the number of distinct sites visited,SN ,
as well as both theA1A and theA1B reactions, display the
characteristic, asymptotic, nonclassical behavior of a one-
dimensional system.
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