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RESEARCH NOTE

A Gaussian Approach to Neural Nets with Multiple

Memory Domains

E. FOURNOU, P. ARGYRAKIS, B. KARGAS & P. A. ANNINOS

(Received for publication November 1993; revised paper accepted April 1995)

Non-isola ted randomly interconnected neural nets with chemical markers are investigated,

which receive steady or slowly varying excitatory or inhibitory inputs. We extend here our

previous studies to include nets of Poisson and Gaussian connectivities. Our results show

that the multi-hysteresis loops obtained by applying the steady-state condition for the

Gaussian approximation are wider than the corresponding ones of the Poisson case, and

they have been slightly shifted to larger values of the parameter s 1
(which is the fraction

of external active ® bres). Also, in the Gaussian nets, the stable steady states are lower

than the corresponding ones of the Poisson nets, whereas the unstable states are higher.
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1. Introduction

In previous studies (Fournou et al., 1993), we investigated the dynamical behav-

iour of isolated neural nets with chemical markers and high interneuronal connec-

tivities and the relationship between structure, as expressed in patterns of

interneuronal synaptic connectivity, and `spontaneous’ activity. We extend here

this investigation to non-isolated netlets with markers. It is assumed that the netlet

under consideration is attached to a cable of afferent ® bres receiving through it

sustained inputs from another netlet with the same structure.

In constructing models of such neuron assemblies, connectivity among individ-

ual elements may be speci® ed to follow a given probability law, maintaining all

other parameters constant (Anninos & Elul, 1974). The formalism for non-isolated

neural nets with markers characterized by high interneuronal connectivity is

introduced and we investigate the steady-state activities and hysteresis effects in

relation to the interneuronal connectivities.
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2. The Neural Net Model

2.1. Assumptions and De® nitions

The basic assumptions of the model are the same as in previous work (Anninos et

al., 1970); Anninos & Kokkinidis, 1984). Neural nets are assumed to be con-

structed of discrete sets of randomly interconnected neurons of similar structure

and function, but the neural connections are set up by means of chemical markers

carried by the individual cells, according to the theory of neural speci® city (Sperry,

1943, 1963; Prestige & Willshaw, 1975). They are established only if both pre-

and postsynaptic neurons carry the same marker. Thus, the neural population of

the netlet is treated as a set of subpopulations of neurons, each of them character-

ized by a speci® c chemical marker. The neurons are bistable elements, as was

postulated by McCullogh and Pitts (1943), and operate synchronously at discrete

times.

In this model, a neural net with N markers is assumed to be constructed of A

formal neurons. A fraction h (0 , h , 1) of them are inhibitory neurons while the

rest are excitatory. Each neuron receives, on average, m 1 EPSPs (excitatory

postsynaptic potentials) and m 2 IPSPs (inhibitory postsynaptic potentials). The

size of the PSP produced by an excitatory (inhibitory) unit is K
1 (K

2 ). The netlet

is attached to a cable of afferent ® bres receiving through it sustained inputs from

another netlet of A0 neurons with the same structure. A fraction h0 (0 , h0 , 1) of

them are inhibitory. With m 1
0 ( m 2

0), we denote the average number of neurons in

each subsystem with which an external excitatory (inhibitory) neuron makes its

synaptic connections in the netlet, while K
1
0 (K

2
0) are the corresponding strengths

of the synaptic coupling coef® cients.

The neurons are characterized by the absolute refractory period, the ® ring

threshold v and the synaptic delay t . It is assumed here that the refractory period

is greater than the synaptic delay, but less than twice the synaptic delay. A

parameter r for the refractory period may be used, taking, in general, any integer

value. For our purposes, r was given the value r 5 1 when refractoriness was

assumed, and r 5 0 otherwise. The neural activity is restricted to discrete times, i.e.

if a number of neurons ® re simultaneously at time t, then all neural activity

resulting from this initial activity will be restricted to times t 1 t , t 1 2 t ,¼ .

2.2. Mathematical Formalism

The dynamic variable of interest is the level of activity an, i.e. the fractional number

of neurons in the netlet that are active at time t 5 n t . The expectation value of

activity k an 1 1 l for a netlet of A neurons with N markers with or without sustained

inputs is given by the equation

, an 1 1 . 5 (1 2 an) O N
j 5 1

m jP j (1)

where m j (j 5 1, 2,¼ , N) is the fraction of neurons out of the total carrying the jth

marker in the netlet. Obviously, m1 1 m2 1 ¼ 1 mN 5 1. P j is the probability that a

neuron of the jth marker receives a total PSP which exceeds its threshold v j. With

the term total PSPs, we mean the total algebraic sum of PSPs which arrive at the

neuron coming both from the netlet itself and from the ® bres attached to the netlet

which carry sustained inputs. This probability, P j, is given as a function of an, m j,

s (which is the fraction of external active ® bres) and v j, i.e. P j 5 P j(an, m j, s , v j). It
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may be expressed in terms of Poisson distribution law or any other distribution law

(Anninos & Elul, 1974). The factor (1 2 an) in this equation is neglected if no

refractoriness is assumed.

For the Poisson approximation, the quantity P j is given (Anninos & Kokkinidis,

1984) by

P j(an, m j, s , t j) 5 OM max, j

M 5 0
OImax, j

I 5 0
S 1 2 Oh j 9 2 1

L 5 0

PL, j D Q I,jRM , j (2)

where PL,j, Q I,j and RM ,j are the probabilities that a neuron of the jth marker will

receive L-PSPs, I-PSPs and M -PSPs, respectively, at time t 5 (n 1 1) t . The upper

limits M max,j, Imax,j and h 9j are the total numbers of the external inputs, of the

inhibitory inputs and the minimum number of excitatory inputs necessary to

trigger a neuron, respectively. Equation (2) results by adding all probabilities for

all combinations of thresholds and PSPs that produce ® ring.

If the average number of active inputs per neuron becomes suf® ciently large,

the number of PSPs per neuron will follow a Gaussian distribution. In this case,

the quantity P j 5 P j(an, m j, s , v j) is calculated in analogy to our previous studies

(Fournou et al., 1993) for isolated neural nets taking into account the external

sustained inputs. If lj and ij are the numbers of EPSPs and IPSPs, respectively, that

are inputs to a given neuron of the jth marker emanating from the netlet itself, and

if l 9 j, i 9 j are the numbers of external EPSPs and IPSPs, respectively, that are inputs

to this neuron emanating from the axons, then the total PSP input to a given

neuron of the jth marker at time t 5 (n 1 1) t , will be given by

e j, n 1 1 5 l j K
1 1 ijK

2 1 l
9
j K

1
0 1 i

9
j K

2
0 (3)

If all the quantities lj, i j, l 9j and i 9j are suf® ciently large, their distributions may be

approximated by normal distributions about their average values lÅ j 5 an m j
1 (1 2 h j)

m j, õÅ j 5 an m y
2 h jm j, lÅ j 9 5 (A0/A) s m 0

1 (1 2 h0) m j and õÅ j 9 5 (A0/A) s m 0
2 h0m j. Thus, the

distribution of ej,n 1 1 will be also a Gaussian distribution with average value

eÅ j, n 1 1 5 anm j{m j
1 (1 2 h j)K

1 1 m j
2

jh jK
2 } 1

A0

A
s m j {m 0

1 (1 2 h0)K0
1 1 m 0

2
0h0K

2
0 } (4)

and variance

d 2
j,n 1 1 5 anm j{m j

1 (1 2 h j)(K 1 )2 1 m j
2 h j(K 2 )2}

1
A0

A
s m j{m 0

1 (1 2 h0)(K0
1 )2 1 m 0

2 h0(K
2
0 )2} (5)

since the probabilities of lj, i j, l 9j and i 9j are independent of each other.

The probability P j 5 P j(an,m j, s , v j) that the PSP exceeds a threshold v j for the jth

marker is now

P j(an, m j, s , v j) 5
1

Ï 2 p
E
`

x j, n 1 1

e 2 x2

2 dx (6)

where

x j, n 1 1 5
v j 2 eÅ j, n 1 1

d j, n 1 1

(7)

Equations (4)± (7) with s 5 0 are reduced to those derived for isolated netlets in

previous work (Fournou et al., 1993).
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Figure 1. Phase diagrams and hysteresis curves for a netlet with two markers, a and

b, receiving sustained inputs, with ma 5 0.7, m b 5 0.3; m a
1 5 70, m b

1 5 80; h 5 0;

v a 5 23, v b 5 3; ra 5 1, rb 5 0; K
1 5 1, K

1
0 5 K

2
0 5 0.5; m 0

1 5 m 0
2 5 10. The steady states

of activity (ass 5 aPss for the Poisson approximation and ass 5 aGss for the Gaussian

one) against s have been plotted. In Poisson curves, the solid lines represent stable

steady states and the dashed lines unstable steady states. In Gaussian curves, dashed

lines are used for stable steady states and dotted for unstable states. The solid dots

are simulation results.

2.3. Computer Simulation Model

The theoretical predictions based on the above mathematical formalism may be

veri® ed by Monte Carlo computer simulations. With these models, we can

produce pictorials of the micro-states of the system at any time, giving us useful

insight at the intermediate excitation structures.

The simulation algorithm contains two parts. The ® rst part is concerned with

the structure of the network, while the second is devoted to the dynamics of the

system. Given the structural parameters of a network of A neurons and N markers,

the appropriate neuronal connectivity matrix [k ij] is ® rst constructed. Each el-

ement k ij denotes the synaptic strength of the connection from j to i neuron

(coupling coef® cient). This may take either positive or negative values depending

on the type of the synaptic neuron (excitatory or inhibitory, respectively). The

threshold v and the other macroscopic parameters (K
1 , K

2 , or m 1 , m 2 ) are

considered to vary randomly between a maximum and a minimum value in order

to produce more realistic behaviour.

In the second part, the network is activated by specifying the set of neurons

which are randomly taken to be active at time t 5 0. One synaptic delay later all

neurons linked to them will receive the appropriate inputs. The inputs arriving at

a neuron are summed instantly and if the sum exceeds the neuron threshold then

the neuron will ® re. At the next time step, all active neurons are speci® ed. The
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® ring neurons for the time step t 5 n t de® ne the state vector an. Refractoriness of

neurons is taken into account by imposing that a neuron that has ® red at some

moment t 5 n t cannot ® re at t 5 (n 1 1) t .

3. Results

Equation (1) with the appropriate expressions of P j for each approximation

has been used to compute the dynamical properties of netlets with sustained

external inputs, for a wide variety of parameters. Some typical results are shown

here.

Applying the condition k an 1 1 l 5 an for steady states of activity (Anninos et al.,

1970), we obtained the phase diagrams with two hysteresis loops shown in Figure

1 for a netlet with two markers m a 5 0.7 mb 5 0.3, attached to a cable of afferent

® bres which may be axons of A0 5 A neurons of another netlet. Results for both

approximations, Poisson and Gaussian, as well as computer simulation results are

depicted in this ® gure for the sake of comparison. We observe in these plots that

the phase diagrams for the Gaussian case is shifted to the right while the Gaussian

loops become wider than the Poisson ones. A plausible explanation for this

behaviour of the Gaussian nets may be that the larger the value of m 1 (making the

Gaussian approximation more valid), the larger get to be the memory domains, as

it is expected (Anninos & Argyrakis, 1983).

Plots of k an 1 1 l vs an, for the same netlets as in Figure 1 with s 5 0, are shown

in Figure 2. The contribution to the total activity of each one of the two markers

is also depicted here. For the chosen set of parameters, we obtain two-modal

curves (Adamopoulos & Anninos, 1989) of the total activity, resulting in three

stable steady states (the zero level state a
0
Pss 5 a

0
Gss 5 0, and two no-zero states), and

two unstable states.

The computer simulation data in Figures 1 and 2 are in good agreement with

the predicted curves. In particular, they are in very good agreement with those of

the Gaussian approximation for the region an < 0.4± 0.7, where there is consider-

able contribution to the total activity of marker a with v a 5 23 and m a
1 5 70, which

is relatively large.

In Figure 3, we monitor the time course of the total neural activity for the

netlet of Figure 1 for several time units (here t 5 30). Several initial activities are

chosen to exhibit as clearly as possible the stable and unstable steady-state levels.

We notice in these plots that the Gaussian stable states are always lower than the

Poisson ones, while the corresponding Gaussian unstable steady states are higher

than those of the Poisson case.

The corresponding time-delay diagrams for the above netlets with the same set

of parameters are shown in Figure 4. These diagrams give the time it takes for a

netlet to reach a stable steady state as a function of the initial activity. Here,

unstable states are represented as `peaks’ and stable steady states as `wells’ , but the

peak at a0 < 0.88 for the Poisson net (or at a0 < 0.82 for the Gaussian net) is a

critical point which controls the time-course behaviour of the netlet for high-level

initial activities. If the activity at t 5 0 is larger than 0.88 (see Figure 3), then the

net will end up in the lower stable steady state, ass < 0.31, instead of the highest,

ass 5 0.56.
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Figure 2. k an 1 1 l vs an for netlet with two chemical markers a and b, with s 5 0;

ma 5 0.7, m b 5 0.3; m a
1 5 70, m b

1 5 80; h 5 0; v a 5 23, v b 5 3; ra 5 1, rb 5 0; K 1 5 1.

The curves a and b represent the activities of each marker whereas T gives the total

activity of the netlet. Solid lines are used for the Poisson approximation and dashed

for the Gaussian one. The solid dots are simulation results.

4. Conclusions

In this paper, we have investigated the effect of the neuronal connectivity on the

dynamical behaviour of non-isolated neural nets with chemical markers which

receive sustained inputs. We examined the signi® cance and consequences of the

replacement of the Poisson by a Gaussian distribution law for the interneuronal

connectivity. The calculations in this work, as shown by the analytical formulae

(4)± (7) and by the simulation data, provide the opportunity to compare the

Gaussian networks with the corresponding Poisson ones. We observed, in general,

similar dynamical behaviour in the two approximations, and good agreement

between these data and the simulation ones. However, the obtained multiple

hysteresis loops were wider for the Gaussian nets than the corresponding Poisson

ones, and they had been slightly shifted to larger values of the parameter s 1 , which

means more external excitatory sustained inputs. This may be important, as the

simple or multiple hysteresis curves (from a functional point of view) may be

considered to represent the basis for short-term memory (Harth et al., 1970;

Anninos et al., 1970). This trend is justi® ed because nets with large neural
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Figure 3. Time dependence of total activity an for the netlet of Figure 1 with two

markers a and b, and s 5 0. Initial activities for Poisson net: aP0 5 0.065, 0.07, 0.38,

0.39, 0.58, 0.85, 0.9 and 1.0; initial activities for Gaussian net: aG 0 5 0.09, 0.1, 0.42,

0.43, 0.59, 0.85, 0.9 and 1.0. The solid lines are used for the Poisson approximation

and the dashed for the Gaussian one.

connectivities follow a Gaussian distribution law for the interneuronal connec-

tivity, whereas nets with small neural connectivities follow the Poisson distribution

law (Fournou et al., 1993). Furthermore, in our previous studies, it was stated that

the size of the connectivities (value of m ) plays an important role in the width of

the hysteresis loops (Anninos & Argyrakis, 1983). In fact it was stated that the

larger the value of m the larger is the hysteresis loop, and vice versa. One possible

physiological consequence of this is the decay of short-term memory with age.

Since old people lose some of their neurons (John, 1967) this implies that some

pathways are to be removed. Thus the value of m becomes lower, and the hysteresis

loops become narrower. The opposite is true for a young person where the value

of m is large, and therefore the hysteresis loops are wider, as in the case of Gaussian

neural nets.

Moreover, in the Gaussian nets the stable steady states are lower than the

corresponding ones of the Poisson nets, while the unstable states are higher than

the corresponding ones of the Poisson nets. These differences depend also on the

size of certain structural parameters, mainly the value of m . This parameter must

be large enough for the Gaussian approximation to be valid, having as a conse-

quence that the average number of connections (which is the Poisson parameter l )

is also large (above 50, Cox & Lewis, 1966, p. 21).
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Figure 4. Time delay for the netlet of Figure 1 with two markers a and b, and s 5 0

against the initial activity to reach a stable steady state. The solid lines are used for

the Poisson approximation and the dashed for the Gaussian one.
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