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We study hopping transport of particles in the presence of randomly distributed energy bar-
riers for diffusion. Exponential, Gaussian, and uniform distributions of barrier heights on square
and simple-cubic lattices are investigated to uncover the influence of the form and width of the
distributions. The temperature dependence of the characteristic time separating the initial regime
of anomalous diffusion from the long-time normal diffusion is of Arrhenius form with an effective
activation energy determined by the percolation threshold of the corresponding lattice. Our analytic
results, derived within the framework of effective medium approximation, show that the asymptotic
diffusion coefficient does not depend on the degree of disorder on a square lattice whereas on a
cubic lattice it does. These predictions are confirmed by numerical simulations. The temperature
dependence of the diffusion coefficient is also determined by the coordination number z of the lattice
for “static” barrier disorder. On a square lattice it is of Arrhenius form and for z # 4 it deviates
from it with increasing degree of disorder. It is always non-Arrhenian in the case of dynamically
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changing disorder.

PACS number(s): 05.40.+j

I. INTRODUCTION

Diffusion and conductivity in random media, such as
amorphous solids and liquids, have received wide atten-
tion in recent years [1,2]. In particular, transport prop-
erties of test particles can be so strongly affected by ran-
domness that the mean-square displacement (MSQD),
(R(t)?), loses its usual linear dependence on time ¢ and
an anomalous diffusion law, (R(t)?) =~ t¥, with v # 1
observed. Even if the randomness is not strong enough
to lead to anomalous diffusion, interesting phenomena
appear such as long crossover times to normal diffusion
and considerable reductions of the asymptotic diffusion
coefficients.

In a first-order description of particle transport in .

amorphous materials, randomness is usually introduced
in terms of energetic rather than positional or geomet-
ric disorder. The basic models studied in this context
fall into two classes, that of the randomly distributed
site energies, i.e., the random trap model (RTM), or that
of random barriers, the random barrier model (RBM).
These two classes of randomness appear to have deeply
different properties, most notably due to the total lack
of correlated jumps of the particles in the former where
each jump is independent of the preceding one. The dif-
ferences also affect the theoretical methods of analysis of
both models — in the RTM there exists an exact analyt-
ical result for the MSQD, whereas in the RBM as a rule
no closed-form results are available, except in one dimen-
sion. A detailed presentation of most classic and recent
studies and results may be found in the comprehensive
review articles of Haus and Kehr [3] and Bouchaud and
Georges [4].
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In a recent work [5] we studied the RBM with a uni-
form distribution of barrier heights by means of Monte
Carlo (MC) simulation in two (2D) and three (3D) di-
mensions, and we observed a transition from anomalous
to regular diffusion of the particles at some (temperature-
dependent) crossover time 7.. With the crossover time
T, versus temperature T relationship being of the Arrhe-
nius type, it was suggested that the effective activation
energy barrier is solely determined by the critical (thresh-
old) concentration of easy barriers for particle transitions,
which is given by the well known value for bond perco-
lation. The barrier with the largest activation energy
within this set of easy barriers then gives the effective
activation energy for 7.

In the present work we corroborate this finding by in-
vestigating the RBM with three different probability dis-
tribution functions (PDF’s), namely, an exponential, a
Gaussian, and a uniform PDF for the barrier heights, and
various degrees of disorder, o, determined by the vari-
ance of the respective PDF. In all cases, one observes an
initial regime of anomalous diffusion which becomes in-
creasingly pronounced with decreasing temperature and
growing o. After a characteristic time 7. diffusion turns
to normal whereby we observe 7. exp(—i‘g%) with E,
determined by the percolation threshold of the respective
lattice.

One aim of this paper is to study the dependence of
the asymptotic diffusion coefficient D, on the form and,
in particular, on the variance o of the PDF. One of the
approximate descriptions of the asymptotic diffusion co-
efficient is provided by the critical-path approach of Am-
begaokar, Halperin, and Langer [6]. They pointed out
that the asymptotic diffusion coefficient D, is deter-
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mined by the effective activation energy that was char-
acterized above.

In the simple version of the critical-path approach,
solely the effective activation energy fixes D, indepen-
dent of the form of the PDF. Corrections to the simple
version have been derived [7,8], but they do not allow one
to see directly the influence of the variance o of the prob-
ability distribution. Here we study directly the influence
of o, for the Gaussian and for the uniform PDF. We will
see that no such influence exists for D=2 (coordination
number 4), but it is present in D=3 (coordination num-
ber 6). This result is in contradiction to recent work of
Limoge and Bocquet [9], who predicted such an influence,
independent of the dimensionality.

Recently the numerical data for Dy .of the RBM
were compared with the predictions of the critical-path
approach and of the effective-medium approximation
(EMA) [10]. It turned out that for distributions of the
barrier heights that are not too broad the simple critical-
path approach does not describe well the simulation re-
sults for D,. A much better approximate description is
provided by the EMA, for the uniform distribution of the
activation energies and not too low temperatures, com-
pared to the maximal energy of the PDF. Hence, we will
also use the EMA in this paper to derive theoretical pre-
dictions for the asymptotic diffusion coefficients.

II. MODEL

As the model and the computational procedure have
been described before [5] we shall sketch them here only
briefly. Calculations are performed on a 2D square lat-
tice and a 3D simple-cubic lattice where only jumps be-
tween adjacent sites are allowed. Since in this work we
are mainly concerned with the case of static disorder, all
barrier energies (saddle points) between neighboring sites
are assigned values E;; at random subject to a specific
PDF at time t = 0, and they remain unchanged for the
duration of the simulation.

The transition rates I';; from site ¢ to site j are given

by the Arrhenius law,
1 -
I‘ij = Po; exp(—E,-_,-/kBT), (1)

where 2z denotes the coordination number of the lattice.
Jumps that are made between two specific sites have ex-
actly the same transition rate at any time during the
calculation. Thus if a forward jump is made in a partic-
ular direction, then the backward jump (back to original
position) should have the same rate as the forward jump.
If the transition rates are converted into probabilities by
dividing them by I'o, the difference of the sum over all
. neighbor sites from 1 gives the probability for the particle
to make no jump whatsoever and remain on spot:

T _ T
T =1 Z = (2)
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The following probability distributions for the activa-
tion energies were investigated:
(i) Exponential PDF,

1 E )
——exp | —7=v |- 3)
e (@ (
The relevant parameter is then a = kgT'/{E) and there

is no additional dispersion parameter.
(ii) Gaussian PDF,

L [EEr]

When combined with the Arrhenius law (1), there are
now two parameters, namely o = kgT/(E) and the ratio
between the dispersion parameter ¢ and the mean barrier
height (E). The mean barrier energy is always kept con-
stant at the value (F) = 0.5. o has been chosen such that
values of E < 0 should occur with vanishing probability.
We take 0.02659 as the smallest admissible probability.
The largest possible o equals thus 0.1667 and Gaussian
PDF's with o = 0.0833,0.0416, 0.0167 have been studied.
(iii) Uniform PDF, '

W(E) = { E%_ET (1-oc){EY<E<(1+0){E)

0 otherwise,

v(E) =

B =

(5)

where F is a random number between 0 and 1. Also,
the mean barrier energy is kept constant at the value
(E) = 0.5 and o ranges in the interval 0 to 1. The dis-
persion parameter o serves to control the width of the
distribution, similar to the Gaussian case.

For the numerical simulation we build lattices of size
600 x 600. During the simulations we take care that the
particle does not reach the boundary, provided it has
been placed in the middle of the lattice at ¢ = 0. We
use the so called lattice growth technique. This implies
that only the bonds of the lattice that are to be visited
by the particle are asigned random energies according to
the PDF [Egs. (3)-(5)], and by drawing on a random
number it is decided what step will be taken. Once these
bond energies are defined they stay constant during the
calculation. In subsequent steps we first ask if the four
neighbors have been determined earlier or not. If they
have been defined their values are directly used. If not,
they are assigned energy values at that time, just like the
previously visited bonds. We keep track of the particle
coordinates as a function of time, from which the MSQD
is calculated. The average values of the data are cal-
culated from a large number of realizations. Depending
on the inherent noise present the number of realizations
utilized may vary from 1000 to 10000 different ones.

IIl. EFFECTIVE-MEDIUM APPROXIMATION

Another approach for the calculation of the mean
square displacement of a particle on a lattice with static
random barriers is provided by the effective-medium ap-
proximation (EMA) [3]. The EMA for hopping transport
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of particles was developed by Summerfield [11], Odagaki
and Lax [12], and Webman [13]; for a review see [3]. The
scheme followed by EMA. is the following: One starts
with the master equation for the probability P(r;,t) of
finding the particle at site r; at time £,

%P (rit) = D [L3iP(rjyt) — Ty P(ri, t))- (6)
JeEi o o :

In the effective medium, the set of static jump frequences
I';; is replaced by a single, position-independent, but
frequency-dependent, effective jump frequency I'ess(s).
The master equation reads then in the Laplace domain:

8P(ri,8) — 80 = Tess(s) Y [(Blrj,8)) — (Plri, 5))).
jEt
(7)
From the solution of this equation the Laplace trans-

formed MSQD is obtained as

(r2)(s) = za®Tes4(s) /5" (8)

whereby a denotes the lattice constant and cubic lattices
are assumed. If the effective transition rate approaches
a constant value in the limit s — 0, the resulting MSQD
is linear in time for large times,

(r3(8)) —ts00 za’f‘eff(s — 0)t, 9)

and the asymptotic diffusion coefficient is given by D, =
Tess(s — 0). Time-dependent MSQD in the RB model
were investigated in the frame of the EMA in a recent
paper [14].

The effective jump frequency, f‘eff(s), has to be de-
termined from a self-consistency condition. Within the
simplest approximation suitable for the random-barrier
model, the so-called single-bond EMA, a single jump fre-
quency I' between a pair of neighboring sites (i.e., a single
barrier height) is allowed to fluctuate and it is embed-
ded into the effective medium [11-13]. In this case the
corresponding master equation yields the self-consistency
condition :

{ _ r— f‘ef{(s) _ } =0
1-2[sG(0,5) — UL — Tesp()|/[eTess () f iy

(10)

where the brackets denote the average over the distri-

bution of jump frequencies I' (which corresponds to a
distribution of barrier heights).

The initial site occupation probability é(O, ) depends
on the Jattice type and it has been extensively studied in
the literature [3]. In the present consideration its explicit
form will not be needed since we focus on the long-time
behavior s — 0 of the MSQD, Eq. (8). In the limit s — 0
one has lim,_, 3G(0, s) = 0, which holds for all types of
lattices and in arbitrary dimensions. This largely simpli-
fies the analytical treatment of Eq. (10), which reduces
to
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dl'p(T) I

(z - Z)Fcff +2r =

0, (11)

Cmin

where otz = Tozz(s — 0) and p(T') is the distribution
density of the jump rate I'. It should be noted that in
the EMA result for the effective transition rate in the
long-time limit, only the coordination number remains,
and any direct influence of the dimensionality and the
geometrical structure of the lattice is lost. This is typ-
ical of mean-field theories which become exact in high
dimensionalities (say, d > 4). A special case is the re-
sult for the square lattice, see the discussion below. The
self-consistency condition Eq. (11) was already derived
by Kirkpatrick [15] in the context of the random-resistor
network. The distribution p(T') is derived from the PDF
of the energy levels Eq. (1) by the transformation

p(r) = v{E () |5 (12

For the uniform PDF of energy levels, the self-
consistency condition can be explicitly evaluated. The

distribution of the transition rates follows from (12) and
(1); it is given by

Pmin S r S. ]-—‘maa:

(23
— 20T
p(T) = { 8 otherwise. (13)

The parameter a = %%—% measures the relative ther-
mal energy of the particle, and I'yyi = I'o exp(——l—‘gi),

Linae = Lo exp(—21=2) are the limiting jump rates in the
case of uniformly distributed barrier heights. The param-
eter a used in this paper is twice the one used in Refs.
[5,10]. Note that o is restricted to the interval (0,1). Us-
ing (13) the integral in Eq. (11) can be evaluated analyt-
ically, and the resulting self-consistency conditon solved
with respect to Iess. The result is

( 1) sinh(&227)
Toexp | ——

a/ sinh(22) ’

2
Lest =75 - (14)

where it was assumed that z > 2 [for z = 2 by applying
the 1’'Hospital rule to Eq. (14) one easily derives the one-
dimensional result for I'eys — see below].

The influence of dimensionality on the transport prop-
erties of the random medium can now be studied explic-
itly. For the coordination number z = 4, the effective
rate is

1
Leys =Toexp (—E) ; (15)

i.e., it is independent of o. Thus it turns out that the
asymptotic diffusion coefficient on a 2D square lattice,
where z=4, is completely insensitive with respect to the
degree of disorder in the barrier heights distribution and
is equal to that in the perfect lattice with a single barrier
height E = (E).

This finding deserves further comment. In the
square lattice the prediction of the critical-path ap-
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proach for the asymptotic diffusion coefficient is Do, =
Toexp(—(E)/kgT), since the percolation threshold for
bond percolation is exactly p. = 0.5 in this lattice. Hence
the result of the critical-path approach coincides with
the EMA result. Gartner [16] could show that the result
Do, =Toexp(—{E)/kpT) is exact for the 2D square lat-
tice, as a consequence of the property of self-duality, and
of the form (13) of the distribution of transition rates.
For z = 6 in 3D, however, the result is qualitatively dif-
ferent. For the uniform PDF one obtains from Eq. (11)

I‘Oe(_‘a]?) elg) _ (%)
Lets = = [ —

2 (35 1 ‘] ’ (16)

so that the effective jump rate I'cyy now becomes o de-
pendent. In the case of vanishing degree of disorder,
o —+ 0, Eq. (16) yields the old result sy = I'g exp(—2)
whereas for 0 — 1 (maximal disorder)

T 7 1— 6_5‘5
Tess = —2—[;%?] . (17)
At low temperatures, o — 0, Eq. (17) then yields
_To [ 2
Les = = exp ( 3a) ) (18)

reflecting an increased mobility of the tracer because of
disorder. At high temperature, on the contrary, Eq. (17)
yields I'cs s = I'g, as one should expect. In one dimension
one has Ieyy =T exp(—é);ﬁl(—h% so that with growing
o the diffusion coefficient decre;,ses, i.e., large barriers
cause many more delays than what is gained by the par-
ticle at the low barriers.

For the case of the Gaussian or the exponential PDF of
the energies, the self-consistency condition Eq. (11) can
only be evaluated by numerical integration. In the case of
the Gaussian distribution one obtains for the distribution
of the transition rates

and for the exponential distribution (which in the present
work does not depend on ¢) one has

p() = % (i%)a

In the latter case it is expedient to decompose the frac-
tion in Eq. (11) into two parts and to perform an in-
tegral over (I'/T'g)* explicitly; the remaining integrand
then contains the power (I'/T'9)**! and no convergence
problems appear during numerical integration. The in-
tegration can be done by standard routines. The results
of the numerically determined effective transition rates
I'.fs will be presented together with the results of the
simulations.

(20)
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IV. NUMERICAL RESULTS

Figure 1 displays the behavior of the MSQD (R(t)?)
as a function of time for several different o values. In
this, and in subsequent figures, we plot the data with the
temperature T as the explicit parameter, implying that
kg =1, and that T is measured in units of (E) As given
after Eq. (3), @ = kgT/(E). The heights of the barriers
are chosen at random according to the exponential PDF
[Eq. (3), Fig. 1(a)], the Gaussian [Eq. (4), Fig. 1(b)],
and the uniform PDF [Eq. (5), Fig. 1(c)]. We present
data for the range of up to 107 MC steps, and in one case
up to 108 MCS. For the Gaussian and the uniform PDF
we choose here the case of maximal degree of disorder,
o = 0.1667 and o = 1.0, respectively. For the exponential
distribution the degree of disorder is fixed by the width of
the distribution which is given by (E). In all three cases
one observes very similar behavior. At early times and at
small temperatures, T' < 0.115, there is a distinct regime,
different from the diffusive (B2?) o« Duot, in agreement
with earlier results [5]. At a crossover time 7., depending
on the temperature 7', one goes over to the classical diffu-
sion regime, manifested by a slope 1 in the log-log plots of

- Fig. 1. For the case of the exponential PDF and square

lattices this is qualitatively different from the case of ex-
ponentially distributed stte disorder where the diffusion
coefficient goes to zero in all dimensions and only subd-
iffusive behavior may exist at temperatures, lower than
a critical temperature, kgT. = (E) [17]. Evidently, as
the temperature is decreased, linearity is achieved after
longer and longer times.

In Figs. 2(a)-2(c) we show in semi-log scale the re-
spective plots of the crossover times 7. versus inverse
temperature. Although the exact position of 7. could
be determined only graphically as an intersection of the
tangents to the (R?) curves in the early-time subdiffusive
and the long-time diffusive regimes which may give rise
to errors, the Arrhenian nature of the 7. vs T relation-
ship is clearly evident from the plots. While the slopes
for the Gaussian and the uniform distributions are very
nearly equal to 0.5, for the exponential PDF we obtain a
slope of =~ 0.3453.

All these data strongly support a picture, put for-
ward in a previous work [5], which relates the effective
activation energy, derived from the Arrhenius plots of
the crossover times, to the critical concentration of low
enough barriers (percolating channels) on the lattice in
concern. It may be conceived that, as the particle starts
at some random position, it is localized at low tempera-
tures in some valley of low-energy barriers, surrounded by
high boundary barriers, which acts as an effective trap.
As long as the temperature is low most of the jumps are
consumed for visiting the same sites in the valley again
and again. The probability for escape from this local-
ized region, however, albeit very small, is realized after
a period 7. and a measurement of the MSQD in time
units, larger than 7., would produce the expected linear
dependence on time.

An effective energy barrier, E,, may be determined
such that the concentration of all barriers with height
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FIG. 1. Log-log plot of the mean-square
displacement (R?) as a function of time (mea-
sured in MC steps) for several different tem-
peratures on a square lattice with frozen-in
1 disorder with (a) exponential PDF of the bar-
rier heights, (b) a Gaussian distribution of
barriers and o = 0.1667, and (c) uniform
PDF and o = 1.0. Symbols denote simula-
i tional data, full lines correspond to the EMA
results according to Eq. (9). The parameter
T plotted here corresponds to the parameter
a via a = kgT/(E), implying that we use
kp =1, and that T is measured in units of
10* (E).
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E < E, is p.. As shown previously [18], E, is simply
given by

By
/0 v(E)dE = p., (21)

where v(F) is the PDF of the energy barriers and p. de-
pends on the coordination number of the lattice z and
on the space dimension. On a square lattice p. = 0.5 for
the case of bond percolation [19]. Inserting Eq. (3) with
(E) = 0.5 into Eq. (21) one obtains E, = 0.5In(2) ~
0.3466 which nearly coincides with the value of the slope
in Fig. 2(a). For the other two PDF’s one has, similarly,
E, = 0.5 which agrees favorably with the slopes mea-
sured from the respective Arrhenius curves for 7. [Figs.
2(b) and 2(c)]. In a recent paper [14] the crossover be-
tween anomalous and normal diffusion was investigated
by a time-dependent EMA for the uniform PDF of en-
ergies. The analytic results derived from the EMA were
in agreement with the previous numerical results [5]. At
temperatures when the thermal energy of the particle is
high enough [cf. the (R(t)%) curves for T = 0.25 and
T = 0.5 in Fig. 1], all bonds (channels) are practically
conducting and the regular diffusion relationship is re-
covered.

It is to be expected that this picture will be afected
by the degree of disorder present in the random medium.
Increasing dispersion o enhances the differences in the en-
ergetic landscape with deeper valleys and higher ridges
present which will be experienced by the tracer particle
at low temperature. In Fig. 3 we present MSQD vs ¢
data at @ = 0.1 and for various o in the Gaussian (a)
and uniform (b) PDF. Qualitatively both plots look very
similar. With increasing degree of disorder o the subdif-
fusive regime is progressively more pronounced whereas
at sufficiently long times all curves merge to a single curve
with slope one. -

It is interesting to note also that the early-time regime
of anomalous diffusion in Fig. 3 may be subdivided into

an initial period when the slope of the MSQD is nearly
unity, and a subsequent interval which is marked by a
reduced slope of the (R(t)?) vs t relationship. This lat-
ter slope is seen from Fig. 3(b) to decrease steadily
with increasing degree of disorder . While the onset of
this subsequent period of highly correlated and localized
movement seems to coincide roughly with the number of
time units (MC steps) needed for a particle to perform
a nonzero MSQD on a regular lattice (cf. the cases with
lowest ¢ in Fig. 3), the crossover times 7. from anoma-
lous to normal diffusion appear to be independent of the
degree of disorder o whatsoever. Indeed, since both the
Gaussian and uniform PDF are symmetrical, at any o
there will be a concentration of low barriers with height
E < (FE) equal to the percolation threshold p. and the
effective stay time in a valley of low energy barriers will
be determined by the largest barrier height among the
low ones, 7, « ej&p(;éf—%).

We now turn to the discussion of how the asymptotic
diffusion coefficient Do, depends on the degree of disor-
der, i.e., on the form and the width of the PDF of the
barrier heights. The EMA results for D, were utilized
to insert straight lines of slope 1 into Figs. 1(a)-1(c),
3(a) and 3(b), and 4. In almost all cases one observes
very good agreement between the EMA predictions and
the simulation results for long times.

Figures 1(b) and 1(c) show that the asymptotic behav-
ior of the MSQD of particles is identical for the Gaussian
and uniform distribution of barriers on square lattices.
The asymptotic diffusion coefficient is simply given by

- 4l exp(—(E)/kBT), cf. Eq. (15). It was already pointed

out in Sec. III that for square lattices and symmetric
PDF of the energy the EMA result coincides with the
critical-path result.

As Fig. 1(a) shows, D, depends less strongly on « for
the exponential PDF than in the other two cases. When
the critical-path approach is applied to predict Do, for
this case, one expects a critical energy of E, = —(E)In?2,




as derived for the crossover behavior, cf. Eq. (21). The
expression Do, = 4T'gexp(—E,/kpT) does not agree
with the EMA and the simulation results. The critical-
path prediction is 30-20 % larger than the EMA results,
with a reduced difference at smaller o values. We con-
clude that for this PDF the critical-path prediction is not
exact, except perhaps in the limit a — 0.

The dependence of the MSQD on the width o of the
Gaussian and the uniform distribution was examined in
Figs. 3(a) and 3(b) for square lattices. One observes
that the asymptotic diffusion coeflicient does not depend
on ¢, in agreement with the EMA results. See also the
discussion in Sec. III. Figure 4 demonstrates that Dy
does depend on o in d=3 and for the uniform distribu-
tion of barrier heights, again in agreement with the EMA
predictions. It is interesting to note that the diffusivity
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is enhanced by increasing the width of the distribution.
The qualitative reason for this behavior is discussed in
Sec. V. In the case of the full width ¢ = 1 of the distri-
bution of activation energies there appears a difference
between the EMA prediction and the simulation results.
Luck [20] has calculated the difference between the EMA
and an exact perturbation expansion. For the small value
of the parameter o used, this difference becomes visible
in the simulation data, see also [10].

The results for the dependence of the asymptotic dif-
fusion coefficient D, on the width of the distribution are
at variance with the predictions of Limoge and Bocquet
[9]. Comments on this disagreement are also made in
Sec. V.

Eventually in Fig. 5 we compare the temperature de-
pendence of the asymptotic diffusion coefficient Do, for

10 T T T —
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FIG. 4. The same as in Fig. 3 with uni-
- form PDF for the cubic lattice.
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the cases of static (frozen-in) and dynamic disorder. As
an example, we choose the uniform PDF for which also
our previous data [5] in the case of dynamic disorder,
i.e., the barrier height changes at random upon each at-
tempted jump of the particle, are shown. Evidently, on
the square lattice 2 = 4 in 2D the Do, vs T relation-
ship for static disorder is of purely Arrhenius type with a
single effective activation energy = 0.49, which coincides
within the error limits with the average barrier height
(E) = 0.5. An upward curvature of Do, (T for the RBM
is observed if the barrier heights change at the same rate
as jumps of the particle are performed. We believe that
this is an important finding which distinguishes qualita-
tively static from dynamic disorder. It may be related to
the numerous experiments on viscosity in glass-forming
melts where the well known non-Arrhenian curve of the

viscosity vs temperature dependence changes abruptly
to an Arrhenian-like with the onset of vitrification in the
undercooled melt [18].

V. CONCLUDING REMARKS

We have used MC simulational technique to study the
diffusion properties of particles in a random environ-
ment modeled within the framework of the random bar-
rier model. A general feature of diffusion in amorphous
media, namely, the transition from subdiffusive to nor-
mal diffusive regime at crossover times, which reveal an
Arrhenian dependence on temperature, has been inter-
preted in terms of percolation theory. Consistent results

:FIG. 5. Arrhenius plot of the diffusion co-
efficient Do, for the case of static disorder

__ (full circles) and dynamic disorder (empty
" squares) of barriers on a square lattice. The
slope of the dashed line is ~ 0.49. Full tri-

" angles denote the case of static disorder on a
cubic lattice.
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have been obtained for different PDF of the energy bar-
rier heights which separate adjacent sites. In all cases a
single effective energy barrier governs the transition to
normal diffusion, and this barrier is directly related to
the percolation threshold p. of bond percolation.

We have studied the influence of the distribution of en-
ergy barriers on the asymptotic diffusion coefficient Do
Does the form or the width of the distribution influence
this coefficient? We have derived Dy, by the effective-

medium approximation and have estimated it by long--

time MC simulations. The theoretical predictions were
in very satisfactory agreement with the simulation re-
sults. We found that the answer to the above question
depends on the coordination number z, or on the dimen-
sionality of the lattice. In square lattices with z2=4, D
is given by the median barrier height, if the distribution
is symmetric about it. It is independent of the degree of
disorder, i.e., it does not depend on the width of the dis-
tribution in the two cases where the width can be varied.
In the simple-cubic lattices where z = 6, the asymptotic
- diffusion coefficient does depend on the degree of disor-
der. In this case D, is enhanced by increasing disorder.
This is in qualitative agreement with the prediction of
the critical-path approach. Namely, for z > 4 the bond
percolation threshold yields values of the critical barrier
that are below the median value. In these lattices, where
there exist easy paths extending over the infinite lattice,
the critical barriers are lowered when the width of the
distribution is increased. In contrast, in d = 1 diffusion
is progressively hindered by increasing the width of the
energy barrier distributions.

3631

The qualitative behavior of the temperature depen-
dence of D, depends both on z and on whether the ran-

"dom environment changes with time or not. For static

disorder on a lattice with 2z = 4 we observe an Arrhenian
dependence of the diffusion coefficient on temperature in
sharp contrast to the case of dynamic disorder where a
non-Arrhenian relationship is found. Limoge and Boc-
quet [9] postulated compensatory effects between the in-
fluence of random barriers and of random traps on the

‘temperature dependence of the asymptotic diffusion coef-

ficient. Their predictions were based on approximate cal-
culations for the random-barrier and for the random-trap
model. They assert a dependence of Dy, in the random-
barrier case on the width of the distribution, independent
on the coordination number or dimensionality. This as-
sertion is in contradiction to our results, which show a
dependence on dimensjonality. It remains to be examined
whether the postulated compensatory effect between the
random barriers and the random traps really exists in
two- or three-dimensional lattices.
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