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We formulate an approach to the A + A - products reaction that is based on a reaction-diffusion equation 
frequently used for the A + B problem but requires an appropriate generalization for the A + A problem. 
Starting from this reaction-diffusion equation, we construct the first equations in a moment hierarchy whose 
first two members are the global density of A particles and the pair correlation function. We terminate the 
hierarchy via an approximation that relates the three-particle correlation function to two-particle correlation 
functions and thereby obtain a set of coupled equations that tums out to be linear and hence analytically 
tractable. This approach leads naturally to the proportionality of the rate of the reaction to the pair correlation 
function evaluated at r = a,  where a is the diameter of the reacting particles. In other words, the reaction 
rate is proportional to the probability that two A particles are sufficiently close. In the more traditional 
approach based on the Smoluchowski theory for trapping phenomena, the reaction rate is instead proportional 
to the gradient of the pair correlation function. We discuss the differences between these points of view and 
their consequences. We also present numerical simulations in one and two dimensions in order to check our 
predictions. We confirm the well-known anomalous rate law in one dimension (the anomalies are marginal 
in two dimensions) and the proportionality of the reaction rate to the two-particle correlation function. Our 
simulations show that the rate of the reaction is indeed determined entirely by the spatial distribution of a 
very small shell of particles around a given reactant particle. Anomalous kinetics is a direct reflection of the 
deviation of the spatial distribution of this small shell from a random configuration. We also present simulation 
results that confirm the predicted distance and time scaling of the pair correlation function in one dimension. 

I. Introduction 

The diffusion-limited annihilation reaction A + A - products 
has been the subject of intense theoretical, numerical, and 
experimental study over the past decade.’-7s The “anomalous” 
behavior of this reaction in Euclidean dimensions d 5 2 (and 
more generally in fractal systems of dimension ds 5 2, where 
d, is the spectral dimension) is by now clearly established. These 
anomalies are apparent both in batch reactions,’2-’4~22-24,5s*70-75 
where one observes the decay of an initial distribution of A 
particles, and in steady-state reactions,5~21~38~40~46~s3~58~59~65~74 
where one continually supplies the system with A particles and 
one observes the characteristics of the steady state. In the batch 
reaction, the anomaly shows up most directly in the exponent 
X in the rate law (J = -kex, where e(t) is the global density of 
A particles as a function of time. “Classical” chemical kinetics 
of well-stirred reactions yields an exponent X = 2, whereas the 
observed asymptotic rate law for this system yields X = 1 + 
d42 for d, < 2 with logarithmic corrections for ds = 2. In the 
steady-state reaction, the anomaly is observed in the reaction 
law Q = e:, where Q is the rate at which A particles are 
continually injected in the system and Qss is the steady-state 
density. Again, classical chemical kinetics yields X = 2, 
whereas the observed reaction law for the A + A - Q system 
is again X = 1 + dJ2 for ds -= 2 with logarithmic corrections 
ford, = 2 .  Note that the similarity in the behavior of the batch 
and steady-state exponents for the A + A reaction contrasts 
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with the A + B reaction, where the two behave quite differently 
and where even the critical dimensions for classical behavior 
are different for the two types of experiments. 

It is by now well understood that rate laws are a direct 
reflection of the spatial distribution of particles. In particular, 
the classical rate law reflects a random Hertzian distribution, 
that is, one in which the probability that the nearest neighbor 
of a given particle is to be found at a distance r in a given 
direction peaks at r = 0 (suitably modified if the particles have 
a finite size). It is this continual supply of close pairs of particles 
even as they react that is embodied in the usual bimolecular 
rate law. Any form of thorough stirring ensures this supply;56 
diffusion in sufficiently high dimensions is such a thorough 
stimng mechanism. However, in low dimensions diffusion 
becomes ineffective. The anomalous rate laws are then a direct 
consequence of the deviation of the spatial distribution in these 
systems from a random one. Indeed, it is well established 
numerically that the distribution of particles in the A + A system 
after long times in the batch reaction, or in the steady state, is 
almost latticelike in low Euclidean dimensions, with very few 
nearby pairs. The reaction thus slows down relative to its rate 
in the well-stirred system, and this slowing down is reflected 
in the higher exponents in the rate laws. 

The anomalous behavior associated with the A f A reaction 
is not merely of theoretical interest-indeed, it has been observed 
experimentally, some of the experiments having been carried 
out before the behavior was understood t h e ~ r e t i c a l l y . ~ ~ ~ ~ ~  Two 
kinds of A + A experiments have been carried out that exhibit 
these effects: (1) exciton annihilation experiments in one- 
dimensional pores, in effectively one-dimensional isolated 
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polymer wires, in fractal systems, and in ordinary three- 
dimensional systems,50 and (2) excited molecule naphthalene 
fusion and quenching experiments in one-dimensional pores.75 
The anomalous effects are clearly seen in these experiments. 
Indeed, in ref 75 the discussion goes beyond the asymptotic 
rate laws that restricted earlier experimental analysis and deals 
with the spatial pattern formation of excitons and the effects of 
excitation time modulation on these spatial patterns. 

Although the anomalous behaviors are now well understood 
qualitatively and numerically, the underlying theories are still 
not complete. Most of the theoretical arguments are based on 
scaling approaches that yield the correct exponents. Exact 
results for the A + A - products batch reaction have been 
obtained for one and two dimensions in the classic papers of 
Tomey and McConnel16-8 and for one dimension also by 
Elyutin.16 For the steady-state problem an exact solution in one 
dimension was obtained by R a ~ z * ~  and also by Peacock-L6pez 
and Keizer‘”‘3 on the basis of Keizer’s general theory of 
fluctuations around the steady state. A related problem, the A + A - A “coagulation” reaction, has also been considered 
theoretically, numerically, and experimentally. This system has 
been solved asymptotically in one dimension by S p ~ u g e ~ ~  and, 
more recently, for all times by Doering and Ben-A~raham,4~ ,~~  
both for the batch reaction and the steady-state reaction. 

The theoretical methods used in these approaches are power- 
ful but rather specific in the sense that it is difficult to generalize 
them to problems other than the ones they were applied to. They 
include detailed enumeration of random walk paths by a few 
walkers and generalization to many walkers by induction 
methods (Torney and McConnell), interacting spinlike theories 
(Spouge), king modellike theories (Racz), and an elegant 
statement of the problem in terms of the dynamics of the 
interparticle separation instead of the particle densities (Doering 
and Ben-Avraham). 

A theoretical approach that is appealing because of its 
generality is a reaction-diffusion formalism such as has been 
used extensively in the A + B - 0 p r ~ b l e m . ~ * , ~ ~ - ~ ~  Herein 
we start from a generalized reaction-diffusion model for the 
A + A problem and obtain from it a hierarchy of equations 
involving increasing numbers of particles. This hierarchy is 
truncated at the two-particle level, and we solve the resulting 
set of equations to obtain the global density of A particles and 
also the spatial distribution as reflected in the pair correlation 
function. We apply our approach to both the batch reaction 
and the steady-state problem. 

Our approach leads to a global reaction rate that is propor- 
tional to the pair correlation function; that is, the probability of 
a reaction is proportional to the probability that two A particles 
are located sufficiently near one another. This is to be contrasted 
with the more common Smoluchoswki-type trapping boundary 
condition in which the probability of trapping is proportional 
to the gradient of the pair correlation function. We compare 
the results of these two viewpoints. 

It may be helpful at this point to summarize briefly the 
historical development of the theory and its semantics. Orig- 
inally, there were two distinct approaches to dealing with the 
chemical reaction term in the binary reaction problem. The first 
is essentially the law of mass action, where the reaction rate J 
is proportional to @ A @  or to @A2 for an A + B or an A + A 
reaction, respectively. This is even now the most prevalent 
approach (see, e.g., Noyes’ review76) and employs the global 
time-dependent densities e(t) (the “macroscopic approach”). 
Within this same general viewpoint, recent (“microscopic”) 
approaches have introduced the local densities @(r,t)  instead 
(e.g.. see refs 58 and 77-79). Historically, this microscopic 
approach goes back to Collins and Kimball,80 even though their 

contribution is intimately connected with the following (second) 
approach. The second approach, which we call the “extended 
Smoluchowski8’ approach”, was originally developed for the 
trapping of B particles on a stationary colloid A. It relates the 
reaction rate J to the instantaneous local flux of B particles 
across the boundary of the sphere determined by the capture 
radius a of the A particle. For a fixed diffusion constant D, 
Fick’s First Law gives a linear relation between this flux and 
the radial component of the gradient on the boundary of the 
sphere, which we denote as (V@),=,. This Smoluchowski 
gradient approach needs to be augmented with an appropriate 
boundary condition for the density at the sphere boundary. The 
Smoluchoswki boundary condition is @ I F a  = 0. This results 
in the relation J = D(V@),=, at long times. SveshnikofP2 
generalized Smoluchowski’ s approach to probabilistic trapping 
(a sticking probability smaller than unity). On the basis of a 
hint by Smoluchowski,81 Sveshnikoff also generalized the theory 
to ordinary bimolecular reactions where the size and diffusivity 
of A and B in the A + B - C reaction may be comparable. 
This generalization presents a number of problems originally 
stated by Collins and Kimball,80 whose resolution of these 
problems led them to replace the Smoluchowski boundary 
condition by the relation between the reaction rate J and the 
local density at the boundary 

where k is a microscopic rate constant (representing, inter alia, 
the sticking coefficient). For instance, for the colloid it follows 
that for the B particles @ I F a  is linear with the radial component 
of the density gradient V@ at the boundary, Le., 

The so-called radiative boundary condition of Collins and 
Kimball (the name was actually given by Waite,83 in analogy 
with the heat transfer problem) essentially combines the idea 
of the law of mass action with that of the Smoluchowski 
gradient. For the “symmetrized” ordinary bimolecular reaction, 
the difference between the Smoluchowski-Sveshnikoff and the 
Collins and Kimball boundary conditions is best seen in the 
approach of Waites3 and of Monchik et al.84 This approach 
deals with the two-particle density flr,r’;t) and the boundary of 
the sphere of radius a is replaced by an interparticle distance a 
(still the capture radius) so that capture occurs when r = r‘ + 
a, where a has magnitude a and arbitrary direction. In the so- 
called generalized Smoluchowski approach the (absorptive) 
boundary condition is now 

Ar,r’=r+a,t) = 0 (3) 

On the other hand, the generalized Collins and Kimball or 
radiative boundary condition requires that the Smoluchowski 
gradient be proportional to flr,r’=r+a,t), i.e., 

J - ((VrAr,r’,t))r,=r+a) - @r,r’=r+a,t)) (4) 

where the subscript on the gradient operator denotes the variable 
with respect to which the gradient is to be taken and the brackets 
indicate normalized integrals over the position variables. Only 
for a random distribution is (4) equivalent to the macroscopic 
law of mass action, 

However, even a reactive system that starts from a random 
distribution deviates from randomness at longer times, especially 
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for interparticle distances of the order of a. It is interesting to 
note that for certain realistic limits, e.g., large k, the generalized 
Smoluchowski (absorptive boundary condition) and the Collins 
and Kimball (radiative boundary condition) approaches give 
identical answers.80 Thus, little difference has been found 
between the two in the true diffusion-limited case in contrast 
to the so-called diffusion-controlled case, where the microscopic 
reaction (“sticking”) probability is less than unity. 

Following Waite83 and Monchik et al.,s4 Wilemski and 
Fixmans5 have discussed in detail how to use “sink” (reaction) 
terms in the reaction-diffusion equation so as to derive the 
radiative (Waite) boundary condition for the two-particle density 
approach. Source terms were also added.85 Further elaborations 
have been discussed by van Kampen,86 de Genne~,~’ and 
Keizer.@ The last two also discussed the problem for dimen- 
sions below three. In the literature the construction of the 
reaction (sink) term for the A + A reaction problem seems to 
have been particularly problematic. Here we construct such a 
sink term, derive the generalized Collins and Kimball boundary 
condition,s3 and compare the results with those obtained with a 
Smoluchowski boundary condition. Furthermore, we do this 
for all integer dimensions. 

In section I1 we present our reaction-diffusion model, obtain 
the first equations of the hierarchy implied by this model, and 
implement our approximation to break the hierarchy. The result 
is a closed set of equations for the global density of A particles 
and for the pair correlation function of the particles. In section 
111 we solve these equations for a batch reaction, and in section 
IV we do so for the steady state in the presence of sources. Our 
simulation results are presented and discussed in section V. The 
comparison of our results with those obtained with a Smolu- 
chowski boundary condition is presented in section VI. We 
end with a summary and some concluding remarks in section 
VII. 
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introduced above is given by 

e(t) = MtYV = (e<rA>, (7) 

Here V is the volume of the system. We also introduce the 
average two-particle density function 

Ar,O = (e(r’,t) e(r’+r& (8) 

11. Reaction-Diffusion Model 

We consider a d-dimensional Euclidean space on which A 
particles at an initial average density (number of particles per 
unit volume) eo diffuse freely. Two A particles annihilate, A + A - 0, when they come in contact at a distance a between 
their centers (a is the “diameter” of each particle). We wish to 
calculate the rate law for the particles, that is, the law that 
govems the decay of the density e(t) of A particles as a function 
of time. We also wish to calculate a measure of the interparticle 
separation that underlies the rate law. 

A. Definitions. We formulate a reaction-diffusion model 
that leads to a hierarchy of equations involving, as usual, 
increasing numbers of particles at each level of the hierarchy. 
The hierarchy is constructed from a “microscopic” (albeit 
continuous) reaction-diffusion model and is truncated at the 
two-particle correlation function level. We show that this 
truncation leads to the known results for the A + A problem. 
Although many of the results that we obtain are known from 
other approaches and from numerical simulations, our approach 
offers the advantage of arriving at all of these results within a 
single consistent point of view based on a single physically 
motivated approximation (truncation). 

We begin by defining the local density e(r,t) of A particles 
at space point r and time t ,  

N(r) 

e(r,t) = C d(r  - r,(t)> (6) 
i 

where ri(t) denotes the position of particle i at time t and N(t)  
is the total number of particles in the system at time t. In terms 
of this local density, the average “one-particle” (global) density 

and, similarly, the average three-particle density function 

F( r , r’, t )  = (e (r”, t )  e(r”+ r ’, t )  e (r”+ r’+ r ,  t)),.. (9) 

The definition of higher order averages is obvious but will not 
be needed. The subscripted brackets indicate an average over 
configuration space: 

(10) 
1 (F(r’))r, = VJdr’ F(r’) 

The two-particle function by definition satisfies the identity 

For a random distribution of point particlesfir,t) = e2(t) because 
the densities at different points are uncorrelated and hence the 
average of the product in (8) becomes simply the product of 
the averages. The three-particle density function satisfies the 
identities 

1 -Jdr’ F(r’,r’’,t) = e(t)Ar”,t) V 

1 -Jdr“ V F(r’,r”,r) = e(t) Ar’,t) 

1 -Jdr’Jdr’’ F(r’,r’’,r) = e3(t) 
V2 

For a random distribution fir,r’,r) = e3(r). Our model for the 
A + A reaction will ultimately depend only on the one-particle 
and two-particle density functions. 

It is convenient to introduce the pair correlation function 

g(r,t> =Ar,r>/e2(t) (13) 

This pair correlation function is of course normalized to unity, 

(14) 
1 

(g(r,Q>, = i;Jdr g(r,t> = 1 

and for a random distribution of point particles g(r,t) = 1. 
Similarly, the three-particle correlation function is defined by 

(15) 

and is also normalized to unity, ((G(r,r’,t)),),, = 1. 
B. Reaction-Diffusion Equation. Our model starts with 

a reaction-diffusion equation for the local density from which 
we then construct an equation for the average density, for the 
two-particle density function, etc. In the A + B problem with 
local densities eA(r,t) and eB(r,t) the reaction-diffusion equation 
ubiquitously used in the literature is77-79 

G(r, r’,t) = F(r,r’,t)/e3( t )  

a 
$A(r,t) = ov2@A(r,t) - k@A(r,t) @B(r?t) + QA(rJ) (16) 

and similarly for eB(r,t), where D is the diffusion coefficient 
(often assumed to be equal for both species), k is a local reaction 
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density function or of the pair correlation function. To construct 
this equation consider the rate of change of the product of two 
densities: 

d 
-[e(r,t) e(r+r’,t)I = Q(r,t) e(r+r’,t) + e(r,t) Q(r+r’,t) - dt 

ke(r , t )  e(r+r’,t) d(r’-a) (21) 

The derivative on the left represents all the different ways in 
which this product can change. The f i s t  two terms on the right 
represent the possible changes in each of the two densities in 
the product due to diffusion and due to the reaction of a particle 
at r with a third particle ~d of a particle at r’ with a third 
particle. The e’s  in these two terms are thus given by (17). 
The last term on the right represents the direct reaction of the 
two particles in question, the one at r and the one at r + r’. 
Substituting (17) into (21) yields 

-[e(r,t) ~( r+r ’ , t ) ]  = -k@(r,t) Q(r+r’,t) d(r-‘-u) + a 
at 

e(r+r’,t)(DV:@(r,t) - kJdR e(r,t) e(r+R,t) d(R-a) + 
Q@)> + e(r,t)(Dv,,,, e(r+r’,t) - kJdR e(r+r’,t) x 

2 

@(r+r’+R,t) d(R-a) + Q(t)) (22) 

indicate the variable with 

The next step is to integrate (22)  over r and divide by V.  

The subscripts on the operators 
respect to which these operators are to be evaluated. 

We obtains6 

rate coefficient, and QA(r,t) is a source term modeling extemal 
sources if the system is open. In the case of a single species 
this model is usually abandoned because a reaction term of the 
form -k2(r , t )  does not distinguish between the reaction of two 
different A particles or of a single A particle inappropriately 
reacting “with itself ’. Therefore, while a great deal of the AB 
literature starts from eq 16, the starting point for the AA 
literature is usually quite different. We wish to formulate a 
model that starts from the same sort of formulation as (16) but 
is suitably adjusted to the AA case. 

A physically motivated adjustment is provided by the 
generalized reaction-diffusion equation58 

This equation says that the local density of A’s changes through 
diffusion, through the reaction of the A particle in question with 
another A particle a distance a away from it, and through 
extemal sources. Equation 17 is not the usual local equation, 
but that is the price that must be paid to deal with the A + A 
reaction in this language. Equation 17 is our basic model, with 
the further restriction that we will here only consider space- 
independent sources, Q(r,t) = Q(f). In writing such continuum 
models, one usually has in mind (and one usually simulates 
when dealing with such systems numerically) an underlying 
discrete lattice of lattice constant CI in which A particles hop 
from site to a site with a hopping rate r. The continuum limit 
is strictly appropriate as a - 0 and r - 00 in such a way that 
D = Ta2/Zd is finite. Here z d  is the number of nearest neighbors 
of any site. 

C. Rate Equation for the Average Particle Density. The 
evolution equation for the global density e(t) is obtained by 
integrating (17) over r and dividing by the volume. With the 
definitions (7), (8), and (13) we find 

where the dot denotes a time derivative and Qd is the solid angle 
in d dimensions. Note the dependence of the reaction term on 
the pair correlation function.86 We have implemented statistical 
spatial isotropy and the consequent dependence of Ar,t) only 
on lrl = rand not on angles. Here and subsequently we simply 
replace a vectorial argument by a scalar argument, h(r) = h(r), 
when a function is known not to depend on the orientation of 
r. Equation 18 is the first equation in a hierarchy. 

Equation 18 is of the standard form 

N) = Q(0 - 4 0  (19) 

where the injection rate per unit volume Q(t) is zero for a batch 
reaction and where J(t)  is the reaction term, which in our model 
is proportional to the pair correlation function, 

d-1 2 J( t )  = - k ~ p  e ( t )  g(a,t) = - k ~ p ~ - i P ( ~ , t )  (20) 

The rate law (19) is of the standard classical bimolecular form 
if the pair correlation function g(a,t) is independent of time. 
“Anomalous” behavior is therefore reflected in the time 
dependence of the pair correlation function. 

D. Rate Equation for the Pair Correlation Function. The 
second equation in the hierarchy is that of the two-particle 

D 
V 

&,t) = -@r’,t) &-’-a) + -Jdr (e(r+r’,t)V:@(r,t) + 
@(r,t)V,+, 2 e(r+r’,t)) - kJdR d(R-a)(F(r’,R,t) + 

F(-r’,R,t)) + 2Q(t) e(t) (23) 

The second term on the right can be integrated by parts twice, 
and the derivatives with respect to r can be converted to 
derivatives with respect to r’ so that we can write 

D D 
-Jdr V e (r + r’, t )  V:@ (r  , t )  = -Jdr V [ V:e ( r  + r’, t)]  e (r ,t) 

= gJdr V V,?@(r+r’,t) e(r,t) = DV,?f(r’,t) (24) 

The third term on the right of (23) can be dealt with similarly: 

= DV,?f(r‘,t) (25) 

Combining these results in (23), we then have 

&r’,t) = -kf(r’,t) d(J -a )  + 2DV%r’,t) - 

kJdR d(R-a)[F(r’,R,t) + F(-r’,R,t)l + 2Q(t) e(t) (26) 

This equation is an exact consequence of our starting model-no 
further approximations have yet been made. Its consistency 
with (18) can be checked by integrating over r‘ and dividing 
by 2 V ~ ( t ) .  In the thermodynamic limit ( V -  =), the f i s t  term 
on the right does not contribute to this integrated expression 
and (1 8) is recovered. 

It is more convenient to write (26) in terms of the pair 
correlation function g = f/e2 and the three particle correlation 
function G = Fie3. These substitutions followed by division 
by e2(t) (and relabeling r’ as r) immediately gives 
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2 g ( r , t )  + g(r,t) = -kg(r,t) d(r-a) + 2DV2g(r,t) + O(t)  

e(t) 
-- 2Q(t) k@(t)sdR d(R-a)[G(r,R,t) + G(-r,R,t)] (27) 
e(?) 

This is the second equation in our hierarchy. 
E. Breaking the Hierarchy: Two-Particle Approximation. 

Our approximation to break the hierarchy consists of writing 
the three-particle correlation function as a product of two two- 
particle correlation functions: 

G(r,R,t) g ( r 4  g ( R 4  (28) 

Thus, the probability of a triplet of particles separated by r and 
R (and r + R) is written as the product of the probabilities of 
a pair separated by r and another pair separated by R. Note 
that (28) preserves the correct normalization to unity for 
G(r,R,t). We further note the two identities g(-r,t) = g(r,t) 
and 
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Correlation function. If the system behaves classically, then the 
spatial distribution of particles should become essentially 
random and g(r,t) should approach 1 at long times independent 
of r (except for small corrections due to the finite radius a of 
the particles). Anomalous behavior is associated with a 
deviation from this uniform distribution, a deviation that persists 
even in the limit a - 0. Indeed, simulationssg show that for d 
< 2 there is a dearth of near neighbors surrounding any given 
particle, and it is this depletion that causes the reaction to slow 
down. This depletion should show up in a decrease of g(r,t) 
as a function of r as r - 0. We expect to find such behavior 
for d < 2, while for d > 2 the pair correlation function is 
expected to be essentially constant. 

An important point needs to be made here concerning the 
truncation of (27). Van Kampens6 discusses the A + A reaction 
and associated cluster expansions and makes the important 
assertion that the only systematic way to arrive at an ap- 
proximate solution is to expand in powers of a parameter. He 
cautions against truncating the hierarchy on intuitive grounds, 
finding such intuitive approaches to be unreliable. One possible 
expansion parameter is the particle density (van Kampen 
discusses the equivalence of dealing with the initial particle 
density or the density as a function of time), and in this context 
he specifically addresses eq 27. His conclusions regarding the 
order in density of the different terms in (27) are based on the 
assumption that the pair correlation function is of 0(1) in the 
density (van Kampen does not address low-dimensional systems; 
this assumption is therefore correct in his discussion). This leads 
to the conclusion that the first term on the left of (27) and the 
last term on the right are of higher order in the density than are 
the remaining terms (he only considers batch reactions) and 
should therefore be dropped in a theory that deals only with 
leading order behavior in the density. In other words, he argues 
that the precise cancellation of these terms, which arises as a 
result of the hierarchy breakage (28), is irrelevant since both of 
these terms should be dropped anyway. We note here that this 
argument does not carry through in any straightforward way 
when the behavior of the system is anomalous since the pair 
correlation function itself becomes density-dependent. Ex post 
it will tum out that these two terms are indeed of lower order 
in the A + A problem even in low dimensions (but not in the 
A + B problem), but this cannot be deduced ex ante. Indeed, 
the assumption we have made here is only justified ex post by 
its success, and therefore it can be argued that simply dropping 
the two “cancelling” terms is an equally reasonable assumption. 

We end this section by writing, for comparison, the equations 
that would replace (31) and (32) in a Smoluchowski-type 
approach (see the Introduction). In this more traditional 
approach the reaction terms are chosen according to the 
“Smoluchowski boundary condition” derived for diffusion- 
limited trapping processes (see, e.g., ref 59) 

S d R  d(R-a)  g(R,t) = Qpd-’g(a,t) (29) 

and recall the rate equation (1 8) so that 

Substitution of (28)-(30) into (27) then yields the much simpler 
equation 

Equation 3 1 together with the rate equation (1 8) 

then constitute our closed set of equations. 
We can write (32) in the form 

where k(t)  is the effective rate coefficient for the reaction 

k(t)  = -kQ&d-’g(a,t) (34) 

If g(a,t) is asymptotically constant, then (33) is asymptotically 
an ordinary second order rate law that leads to the usual classical 
results for well-stirred reactions. If, on the other hand, g(a,t) 
tums out to be time-dependent at long times, then the rate law 
is “anomalous”. If our theory is correct, then we should find 
that g(a,t) is asymptotically time-dependent (proportional to 
t-d’2) for d -= 2 and time-independent for d > 2 (d = 2 should 
be the critical dimension). An altemate way to write eq 33 is50 

= -k’exO> + Q(t> (35) 

where K is a constant independent of time and where anomalous 
behavior is reflected in deviations of the exponent X from the 
classical value X = 2. This leads to the more physical 
representation of (33) 

thus recognizing that anomalies are reflected in the density 
dependence of the effective rate coefficient. 

The classical vs anomalous behavior of the system should 
also become apparent in the asymptotic behavior of the pair 

that is, the gradient of the pair correlation function rather than 
the pair correlation function itself drives the reaction. The factor 
of 2 in (38) reflects the disappearance of two A particles upon 
reaction. Our description (19) with (20) seems more appropriate 
for the A + A reaction. 

We note that in the Smoluchowski approach there is no 
separate “local reaction rate coefficient” k since the reaction 
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term now arises as a consequence of a trapping boundary 
condition. The Smoluchowski rate coefficient is related to the 
diffusion coefficient by 

k = 2Dla (39) 

where a is the radius of the trap. 
If one follows a procedure similar to the one we followed to 

truncate our hierarchy but with the Smoluchowski reaction term, 
one finds for the second equation of the hierarchy 

g(r,t) = 2DV2g(r,t) - 2D[$ g(r,t)]d(r-a) + 

in place of (31). In the Smoluchowski approach one imposes, 
in addition, the absorbing boundary condition (inconsistent with 
our approach) that 

(41) 

We will discuss the comparison of the solution of this 

f(a,t)  = g(a,f) = 0 

hierarchy with our method in section VI. 

111. Batch Reactions 
We begin by considering batch reactions, that is, reactions 

in which there is no source other than the initial distribution of 
A particles (Q = 0). Our two hierarchy equations (32) and 
(31) then reduce to 

g(r,r) = 2DV2g(r,t) - kg(r,t) d(r-a) 

= 2DV2g(r,t) - kg(a,f)  d(r-a) (43) 

Equation 43 is a linear equation that can easily be solved by 
Fourier-Laplace transformation. We first Fourier transform 
according to 

where Ld = V, the system volume, and n is the d-tuple of 
integers nl,  n2, ..., nd .  The inverse transformation is 

1 00 

In writing (44) and (43 ,  we have assumed periodic boundary 
conditions. Transformation of (43) according to (44) yields 

where 

(47) 

(48) 

2 
= -p cos(2nnalL) 

H2,n = -Jo(2nndL) 2na 
L 

(49) 

Jo(z) is a Bessel function of the first kind. The ordinary 

differential equation (46) has the solution 

J , ( ~ )  = e-(8D~Zn21LZ)t &(o) - kJt dt’ g(a,t’) k&,(t-t’) (50) 

where 

1 &(O) = F J d r  g(r,O) 

The inverse Fourier transform of (50) is 

g(r,t) = g,(r,t) - kh‘ dt’ g(a,t’) Kd(r,t-f’) (53) 

where 

1 m 

is the pair correlation function for a purely diffusive process, 
that is, in the absence of any reactions, and 

Since (53) is a convolution, its time Laplace transform according 
to 

P(s) = Jm dt e-$‘ F(t) 

g(r,s> = g,(r,s) - kg(a,s> $(r,s) 

(56) 

is particularly simple and useful: 

(57) 

With (51) in (54) we find 

n 

The n = 0 term in (58) is fixed by (14) regardless of the size 
of the system: 

(59) 

This r-independent nondecaying contribution dominates the 
long-time behavior of g,(r,t) since all the other contributions 
decay with time. Indeed, if the initial distribution is uniform 
without regard to the finite size of the particles, then g(r ,O) = 
1 and g,(r,t) remains exactly equal to unity for all time. If we 
are only interested in the long-time behavior of the particle 
density, then we retain only the Laplace transform of the 
nondecaying contribution, Le., we set 

g,(r,s) - l /s  (60) 

(to obtain the short-time behavior, we need to specify the initial 
condition in detail). 

Now consider the second term of (53). The function Kd(r,t) 
decays with time (the only possibly nondecaying contribution 
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is the n = 0 term in the sum, which vanishes in the 
thermodynamic limit). In the large-volume limit the sum in 
(55) can thus be replaced by the integral 

Lindenberg et al. 

where 

(Note that the sum (58) can only be approximated by an integral 
in the V - m limit afrer the nondecaying n = 0 contribution 
has been explicitly separated; otherwise this all-important 
contribution would get lost in the limit.) 

Equation 57 (or, more precisely, its integral over angles) can 
now be used to solve for the unknown quantity g(a,t) that 
appears on the right hand side of (57) by setting r = a: 

g ( W )  = go(aJ) - kg(a,s) &(a,s) (65)  

so that 

In view of the discussion surrounding (60) we immediately 
observe that the long-time behavior of g(a,t) regardless of initial 
condition (and indeed its behavior for all time for a uniform 
initial condition) is obtained from 

Finally, the Laplace transform of the pair correlation function 
according to (57) then is 

Further discussion requires that we evaluate the functions Kd 
explicitly, which in tum must be done separately for each 
dimension. 

A. One Dimension. In one dimension we find (with r = 
1x1, where x is the usual Cartesian coordinate) 

The Laplace transform of Kl(r,r) is 

Setting r = a and substituting into (67), we obtain 

(71)  
1 g m >  = 

s + [ k ~ ” ~ / 2 ( 2 D ) ’ / ~ ] [ l  + e-(2s/D)”2a 1 
and therefore for small s 

(2D)1/2 + O(S’”) - - (72)  
(2D)’/2 2 0  - ka 

j(a,s) - - + - 
ks ‘I2 k2 ks ‘I2 

The inverse transform of (72) is 

This immediately gives for (42) with d = 1 and 521 = 2 

(73)  

that is, a rate coefficient asymptotically proportional to t-1/2. 
From (74) we easily deduce that 

and consequently 

e=-160 e 3 
n 

(75) 

Such an asymptotic third-order rate law in one dimension has 
been found with use of a variety of other approaches and also 
from simulations. Note that the rate coefficient is entirely 
determined by the diffusion coefficient D and is otherwise 
independent of the size a of the particles and of the local rate 
coefficient k. This observation is also bome out by numerical 
simulations. 

The spatial distribution of reactants is now found from (68). 
It simplifies the final results to note that for diffusion-controlled 
reactions k is large (e.g., eq 39) in the sense that kKl(a,s) - 
W ( ~ D S ) ’ / ~  >> 1 except for very large values of s (which only 
affects the shortest time behavior). We thus set 

Further, again no important physical information is lost by 
setting a = 0 in this expression-as in the rate law, the finite 
size of the particles here does not play an important role. We 
then have 

whose inverse Laplace transform is 

r 
(2(2Dt)”’) 

g(r,t) = erf - (79)  

This expression is exactly of the desired form: at large values 
of r, g(r,t) - 1; that is, there is no long-range order in the 
system. For small r,  however, there is definite structure in the 
pair correlation function. A depletion region around each 
reactant particle grows in time as t1l2. Note also that this result 
preserves the correct normalization of g(r,t) .  

B. Two Dimensions. In two dimensions we obtain 

1 
2Dq2 + s K2(r,s) = %!dq eiq’r Jo(q4  2 n  
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Note that the rate coefficient depends explicitly on the size a 
of the particles and that there is no reaction if the particles are 
point particles. 

The spatial distribution of reactants is found from (68): 

(80) 
U = --lo(a(s/2D) 1 /2 )K0(r (~ /2D)  112) 

where l o  and KO are modified Bessel functions and r 2 Q. For 
small s one obtains 

2 0  

k2( r , s )  - &[ln 2 - y - '(&)I 2 2 0  (81)  

where y = 0.577 ... is the Euler constant. The leading contribu- 
tion in s to g(r,s) is 

(82)  
4 0  

kas ln(r2s/2D) 
g(r,s> - - 

In the absence of the logarithmic term in the denominator we 
would find that g(a,r) is approximately constant independent 
o f t  (cf. next subsection for three dimensions) and an associated 
classical rate law Q - -e2. The logarithmic contribution leads 
to the well-known logarithmic reduction to the classical rate 
law in two dimensions and to logarithmic deviations from a 
uniform spatial pair correlation function. 

C. Three Dimensions. In three dimensions we readily find 

K3(r,t)  = Y J d q  4na2 eiqr e-2Dq2r sin(qa)/qa 
( 2 4  

The Laplace transform of K3(r,t) then is 

Setting r = a, we find 

1 1 e-(2s/D)1"a 

2(2Ds)'"" - 
k3(a,s) = 

and, for small s, 

U k3(a,s) - 20 + o(s1/2) 

Substituting (85) into (67), we obtain 

+ o(s-1/2) 1 
g(a's) - s + ( 1  + ka/2D) 

The inverse transform of (88) is 

that is, a constant rate coefficient for long times. Equation 42 
with d = 3 and B d  = 422 then yields the classical rate law 

If we set k = 2D/a as in (39), we have 

( ~ / 2 D ) " ~ l r - a /  - ( ~ / 2 D ) ~ ' ~ l r + a l  - e  ka 

k -2(s/2D)% 

( 2 ( 2 D ~ ) ~ / ~ ( ~  - e 

For (~ /2D) ' /~a  << 1, W2Ds >> 1 ,  and a 5 r this reduces to 

] (93)  
U , - (~ /2D)"~r  g(r,s) - f[ 1 - 

r ( l  + 2 D / l ~ 2 ) ~  

and inverse Laplace transformation of this expression im- 
mediately yields 

The spatial distribution thus approaches a uniform one (except 
for corrections of order a) and indeed remains uniform for all 
time if a = 0. If we set k = 2D/a, we have the even simpler 
form 

U r 
2r ( 2(2Dt)1") 

g(r,t) - 1 - - erfc - (95)  

In any case, there is no growing depletion zone. This result is 
of course well-known from numerical simulations. 

IV. Steady-State Reactions 

In this section we consider the steady state when there are 
sources present, that is, when Q f 0 and Q = 0. Our two 
hierarchy equations (32) and (31) then become 

(96) d-1 2 
Q = k Q a  e g ( 4  

2Q 0 = 2DV2g(r) - kg(r) d(r-a)  + --[1 - g(r)] (97) 

where the absence of a time argument where there was one 
previously denotes the steady state. 

As before, we Fourier transform (97) according to (44) to 
obtain 

where we have used (96). Solving for g n  yields 

This can now be inverted according to (45). The n = 0 term 
must be separated out explicitly, and the remaining sum can be 
converted to an integral: 
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This result agrees with that of Clement et al.,59 who, however, 
used the Smoluchowski boundary condition in their analysis. 

Further results again require a separate discussion for each 
dimension. 

A. One Dimension. In one dimension (again with r = 1x1, 
where x is the usual Cartesian coordinate) eq 100 becomes 

Lindenberg et al. 

The results can again be simplified if we set kd2D = 1 and 
if in the steady state there is much less than full occupancy, 
Le., a3@ << 1. Setting r = a in (107) and expanding the 
exponential (which is again justified with these assumptions), 
we obtain 

Q cos(qr) cos(qa) 
g(r)  = 1 - -J”dq 

2nDe2 q2 + <Q/De> 

This together with relation 96 

Q = 2ke2g(4  (102) 

constitutes the solution of the steady-state problem. 
The results can be simplified further (and brought to more 

familiar form) if we take ka/2D = 1 [cf. (39)] and if we assume 
that a@ << 1, Le., that there is considerably less than “full 
occupancy” in the steady state. Setting r = a in (101) and noting 
that in this case Qa2/D@ = 4g(a)a@ << 1, we can expand the 
exponential. This readily leads to an algebraic equation for 

which in turn can readily be solved to yield 

g(a> = 4ae  (103) 

with corrections of higher order in ag (note that this confirms 
the consistency of the inequality Qa2/D@ << 1). Substitution 
into (102) then immediately leads to the familiar result59 

Q = 16De3 (104) 

again with small corrections. Finally, substitution of (104) in 
(101) then yields for the spatial distribution 

g(r)  = 1 - l(e-4e~r-a~ + e-4e~r+a~ ) (105) 2 

Thus, in the steady state there is again a depletion zone around 
each reactant particle. The size of this region is inversely 
proportional to the steady-state density of reactants. 

B. Two Dimensions. As in the batch reaction, the two- 
dimensional expression for the pair correlation function in the 
steady state 

does not lend itself to a simple analytic expression for Q as a 
function of the steady-state density nor for the steady-state 
spatial distribution g(r). In particular, there are again logarithmic 
deviations from classical behavior that we do not pursue 
explicitly. It is, however, straightforward to establish that again 
our results agree with those of Clement et al.59 

C. Three Dimensions. In three dimensions eq 100 becomes 

g(r)  = 1 - 

This together with relation 96 

Q = 4 n ~ ~ k ~ ~ g ( a )  ( 108) 

again constitutes the solution of the steady-state problem. 

g(a) = l/2 (109) 

with corrections of higher order in 
in tum leads to 

This result in (108) 

Q = 4nuDe2 (1 10) 

The spatial distribution of reactants in the steady state obtained 
from (107) with (1 10) then finally is 

Thus, in three dimensions there is no depletion zone in the steady 
state-the distribution is essentially uniform.59 

V. Simulations 

We have carried out a number of numerical simulations of 
the A + A - 0 reaction in order to test some of the results 
predicted by our theory. In this section we present the results 
of these simulations and the comparison with our predictions. 

A. Methods. The numerical simulations of the chemical 
reaction are performed using the conventional techniques 
described in our earlier  paper^.^^.*^-^' Briefly, lattices of lo6 
sites in one dimension and square lattices of size 2000 x 2000 
in two dimensions are generated. Particles are initially placed 
at random on the lattice with the restriction that only one particle 
can occupy a given site at any time. We impose cyclic boundary 
conditions on the lattices. The reaction then proceeds in the 
usual way: the particles diffuse on the lattice by performing 
independent forced random walks to nearest neighbor sites. 
When two particles step onto the same site, they react, which 
means that they are removed from the system. Cyclic boundary 
conditions are applied at the ends of the lattice to the random 
walk as well. We monitor the particle density as a function of 
time for times up to lo4 steps, and this immediately yields the 
global rate of the reaction. We also monitor in one dimension 
the number of A-A pairs (that is, the number of pairs of 
particles on adjacent sites) and the number of A-0-A pairs 
(that is, the number of pairs of particles separated by exactly 
one empty site). For two dimensions we also monitor the A-A 
and A-0-A pairs, but in addition we also monitor the bent 
A-0-A pairs which we denote by bA-0-A, by which we 
mean the case where the two A-0 bonds form a 90” angle (as 
opposed to the straight line A-0-A configuration). 

Correlation functions in one dimension are calculated as 
follows. For each particle, at a fixed time t after the beginning 
of the simulation, we count R ,  the number of all other particles 
present in a sampling interval A at a distance 1 away from the 
particle (point of origin). Typically A = 10 sites, and we go 
up to 1 = 1000 sites in both directions from the point of origin. 
We average the results over all particles. The properly 
normalized correlation function is then given by 

n 
2N1 

g(1,t) = -A 

where N is the total number of particles present in the system 
at time t. Thus g(Z,t) gives the normalized probability of finding 
at time t a particle within a distance A at a distance 1 away 
from a particle known to be at the origin. 
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Figure 1. Simulation results for the reaction rate vs time for one-dimensional lattices (diamonds). Simulations are carried out on lattices of lo6 
sites with initial density eo = 0.2, and results are averaged over 100 runs. The curves involve the density @ of A particles, the density @AA of 
nearest neighbor pairs, and the density @AoA of pairs separated by exactly one empty site. The following combinations (from top to bottom at 2 = 
4) are shown as a function of time: (i) 2&), (ii) 10g3(t), (iii) efi + @AOA, (iv) efi + '/2@AOA, (v) @AOA, and (vi) @AA. The short-time behavior is 
shown in a on a linear scale; the long-time behavior is shown in b on a log-log scale. 

The results of this section are presented in terms of discrete 
lattice simulations; our analytic results are of course based on 
the continuum reaction-diffusion model. Although we often 
use the same symbols in both cases, the context makes the usage 
clear. 

B. Results. Figures 1 and 2 deal with the reaction rate as 
a function of time for batch reactions in one and two dimensions, 
respectively. Part a of each figure plots various quantities 
described below as a function of time on linear scales, and its 
purpose is to show the short-time behavior of the various 
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Figure 2. Simulation results for the reaction rate vs time for two-dimensional lattices (diamonds). Simulations are carried out on lattices of 4 x 
lo6 sites with initial density eo = 0.2, and the results are averaged over 1000 runs. Here, in addition to the densities defined for the one-dimensional 
case, we distinguish between the density @AOA of pairs of particles in a linear configuration separated by exactly one empty site, and the density 
@A.oA of pairs where the two A-0 bonds form a 90" angle. The curves (from top to bottom at r = 4) represent the following combinations as a 
function of time: (i) 2g2(t);  (ii) '/@&4 + I /qbAOA + I/@AOA; (iii) '/2@AA; (iv) '/@bAOA; and (v) '/@AO. The short-time behavior is shown in a on a 
linear scale and the long-time behavior in b on a log-log scale. 

quantities, while part b shows the same quantities as a function one out of every five sites is initially occupied), and results are 
of time on a log-log scale that allows the discussion of the averaged over 1000 runs. The diamonds are the number of 
long-time behavior of these quantities. particles reacting per unit volume per unit time, i.e., the reaction 

We begin with our one-dimensional results, obtained for rate obtained from our simulations. The curves are ordered in 
lattices of lo6 sites with an initial density of eo = 0.2 (that is, our description below from top to bottom in the order in which 
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indicate a specific proportionality between these three quantities 
that we have not pursued theoretically. 

We stress a point that is made particularly evident by this 
presentation: the reaction rate is determined entirely by the 
particle arrangements in the small shell of nearest and next 
nearest neighbors on the lattices. Anomalous kinetics is a direct 
reflection of the deviations of these near neighbor two-particle 
distributions from their values for a random distribution of 
particles. Dependence on other quantities is of course implicit 
insofar as the determination of the distribution of nearest and 
next nearest neighbor pairs is a many-body problem. 

In Figure 3 we show the correlation function g(r,t) obtained 
from our one-dimensional simulations. In Figure 3a the 
correlation function is shown as a function of distance r (in 
appropriate discrete units) for various fixed times: from top to 
bottom the times are t = lo2, lo3, lo4, lo5, lo6. The increasing 
noisiness of the curves with increasing time reflects the presence 
of fewer particles and the resultant deterioration in the statistics. 
As expected, at each time the correlation function approaches 
unity at long distances, and also, as predicted, the depletion 
zone develops and grows around r = 0 with increasing time. 
In order to test the scaling implicit in eq 79, we have replotted 
all these curves in Figure 3b as a function of the scaled distance 
r/2(Dt)’/2 with D = ‘/2. The scaling is seen to be excellent. 
There is, however, a difference of a factor 21’2 between this 
scaled distance and the argument of eq 79. This difference is 
certainly a consequence of our truncation approximation. The 
fact that the error simply appears as a numerical factor, Le., as 
an effective renormalization of the parameters, indicates that 
higher order correlation functions that have been ignored or 
approximated are indeed simply related to the lower order ones. 
This is consistent with the proportionality between nearest and 
next nearest neighbor pair densities noted earlier. 

VI. Smoluchowski Boundary Condition 

We noted earlier that a Smoluchowski-type approach to the 
problem considered here would describe the process by the 
hierarchy of eqs 37-41 in place of eqs 32 and 31. It is useful 
to compare the results for the two cases. 

Consider first the batch reactions. Differences in the two 
approaches first appear in a substantial way in (57), which is 
now replaced by 

they occur in Figure l a  at t = 4. The curves essentially retain 
this ordering or become indistinguishable at all times beyond t 
= 4. The top curve is 2e2(t), and the second clirve is 10e3(f). 
The coefficients (2 and 10) are not significant and are chosen 
purely for convenience to visually separate the various curves 
from one another. Thus, the upper curve is proportional to the 
reaction rate in a classical bimolecular reaction and should 
describe the behavior of our system at very short times; the 
second curve is proportional to the asymptotic form (76) and 
should describe the reaction rate at very long times. Indeed, 
the diamonds are parallel to the upper curve at very early times 
and to the lower curve at later times. In Figure l b  the strong 
deviation of the reaction rate (diamonds) from the e2 curve 
(upper curve) is clearly apparent, as is the fact that the e3 curve 
(second from top) runs parallel to the reaction rate results. These 
results are thus consistent with the nonclassical asymptotic rate 
law (76). 

The remaining curves attempt to establish the consistency of 
our assumption that the rate of the reaction is directly propor- 
tional to the two-particle correlation function, as in (20). In 
our discrete lattice formulation, this corresponds to the assump- 
tion that the rate of the reaction depends on the density of nearest 
neighbor pairs (denoted by @A) and next nearest neighbor pairs 
(denoted by eA0.4). In our simulations the probability per unit 
time that a nearest neighbor pair annihilates is twice the 
probability per unit time that a next nearest neighbor pair does 
so (as can be clearly seen by considering the jumping options 
in the two configurations). Therefore, our model assumes that 
the reaction rate is equal to @AA + ‘/2@AOA. In both parts of 
Figure 1 the fourth curve from the top is this latter combination, 
and it is clear that it coincides with the reaction rate diamonds. 
The third curve from the top is the combination @AA + @AOA, 

the fifth and sixth are respectively @AOA and @AA, and all of 
these are essentially parallel to the reaction rate. This would 
appear to indicate that there is a specific proportionality relation 
between @AA and @AoA. We have not established such a relation 
on theoretical grounds. Note that this proportionality can be 
translated in the continuum approach to a proportionality 
between the pair correlation function of adjacent particles and 
of slightly more distant particles (contributions to the correlations 
between slightly more distant particles from groups of three 
particles that are close together, such as might be represented 
by @AAA in the discrete model, are small for low densities). Note 
that the initial values @u(o) and @AOA(o) for the nearest neighbor 
and next nearest neighbor pair densities are those for a random 
distribution of reactants and can be calculated exactly.92 The 
values obtained from our simulations shown in Figure l a  agree 
exactly with the calculated values. 

Consider now our two-dimensional simulation results shown 
in Figure 2. The results are obtained for lattices of 4 x lo6 
sites, again with an initial density eo = 0.2, and results are again 
averaged over 1000 runs. The curves in our description are 
ordered as they occur from top to bottom at t = 4 in Figure 2a. 
The top curve is 2e2(t), and the rate of the reaction as 
represented by the diamonds runs essentially parallel to this 
curve. Recall that in two dimensions the deviations from 
classical behavior are only logarithmic, as noted in section IIIB. 

The second curve from the top is the combination ‘/z@AA + 
I/@bAOA + ‘/8@AoA. If our model relating the reaction rate to 
the pair correlation function is correct, the rate of the reaction 
(diamonds) should coincide with this curve. Indeed this is the 
case, as clearly seen in both parts of Figure 2. The remaining 
three curves are @AA (density of nearest neighbor pairs), @bAOA 

(density of bent next nearest neighbor pairs), and @AoA (density 
of linear next nearest neighbor pairs). Again, these results would 

where the prime denotes a spatial derivative. To find g’ on the 
right hand side we again set r = a. Since the Smoluchowski 
boundary condition (41) imposes a zero value on g(a,t), eq 65 
is now replaced by 

This expression is then solved for g’(a,s) and the solution 
inserted in (57) to obtain in place of (68) 

Note that in obtaining this result the boundary condition g(a,t) 
= 0 had to be explicitly imposed (i.e,, it is not a “natural” 
boundary condition) and was essential in obtaining this result. 
Were one not to use this condition but instead proceed (in the 
spirit of our approach) by taking a spatial derivative of (1 13), 
setting r = a, and solving for g‘, one would find a reaction 
term that would for all time depend on the initial condition, 
which is of course known to be incorrect. 
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Figure 3. Correlation function in one dimension vs distance. (a) Correlation function vs unscaled distance r for various times; times from left to 
right are lo2, lo4, lo5, and lo6. (b) Correlation function vs scaled distance r/(2t)1/2. Symbols: diamonds (t  = lo2), pluses (t  = lo3), squares ( t  = 
10"). crosses ( r  = lo5), and triangles ( t  = lo6). The continuous curve is erf[r/(2t)'/2]. 

What are the differences in the explicit results for the rate 
law and correlation functions for batch reactions? In one 

obtained, that is, to precisely the same rate law (76) and the 
same correlation function (79). Because analytic expressions and therefore 
are difficult to obtain in two dimensions, we have not carried 

In three dimensions we 

find 

dimension (115) leads to exactly the same results as we have j'(a,s) - llas 

through the corresponding analysis. g'(a,t) - l/u 

116) 

117) 
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proportional to one another in the parameter regimes studied 
here, the reaction terms in the two approaches are proportional 
to each other and there is at most a numerical difference (as 
observed) in the prefactor in the resultant reaction rate laws. 
As mentioned earlier and as can clearly be seen from our 
formulas, differences would occur if one departs from the 
diffusion-limited regime and allows the rate coefficient k to be 
small relative to Dla. 

VU. Summary and Conclusions 
In this section we summarize the salient points of our analysis. 

We have formulated an approach to the A + A - products 
reaction that is based on a reaction-diffusion equation fre- 
quently used for the A + B problem but requires appropriate 
generalization for the A + A problem. Starting from this 
reaction-diffusion equation, we have constructed the first 
equations in a moment hierarchy whose first two members are 
the global density of A particles and the pair correlation function. 
We terminate the hierarchy via an approximation that relates 
the three-particle correlation function to two-particle correlation 
functions and thereby obtain a set of coupled equations that 
tums out to be linear and hence analytically tractable. 

This approach leads naturally to the proportionality of the 
rate of the reaction to the pair correlation function evaluated at 
r = a, where a is the diameter of the reacting particles. In 
other words, the reaction rate is proportional to the probability 
that two A particles are sufficiently close. In the more 
traditional approach based on the Smoluchowski theory for 
trapping phenomena, the reaction rate is instead proportional 
to the gradient of the pair correlation function. We have noted 
the differences and essential similarities between these points 
of view and their consequences. 

We have presented numerical simulations in one and two 
dimensions in order to check our predictions. We confirm the 
well-known anomalous rate law in one dimension (the anomalies 
are marginal in two dimensions), and the proportionality of the 
reaction rate to the two-particle correlation function. Our 
simulations serve to stress an important point also brought forth 
by the theory: the rate of the reaction is determined entirely 
by the spatial distribution of a very small shell of particles 
around a given reactant particle. In the lattice simulations, the 
rate is entirely determined by the distribution of nearest and 
next nearest pairs. In the continuum formulation this translates 
into the distribution of reactants that are very close (in physical 
contact) with a given reactant particle. Anomalous kinetics is 
a direct reflection of the deviation of the spatial distribution of 
this small shell from a random configuration. 

We have also presented simulation results that confirm the 
predicted distance and time scaling of the pair correlation 
function in one dimension. 

It must be stressed that the conclusions arrived at in this work, 
in particular the observation that the reaction rate is determined 
by the configuration of particles immediately surrounding a 
given reactant particle and the consequences of this locality, 
are in tum obtained only because we have restricted our analysis 
to local interparticle interactions. The situation would be 
completely different if two particles could react at longer range, 
for example, if the reaction rate between pairs of particles would 
depend on the distance between them as a power law. 
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