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We have studied the reaction A + B - B ([A] << [B]) by computer simulations in 3-, 2-, and 1-dimensional 
lattices. We first reviewed the case of normal homogeneous lattices and then extended the study to lattice 
clusters below, at, and above the critical percolation threshold. The decay profiles of the minority species A 
were analyzed by a model of stretched exponentials of the form: I (?)  = exp(-C16+ C2tV- ...). The corresponding 
reaction rate is then time-dependent. The analysis of the simulated decay profile was better when a higher 
number of terms of the series were employed. Higher-order terms are necessary when the reaction domain is 
more restricted. The choice of the approximation order mainly affects the calculated value of the reaction rate 
at  long times. The exponent f was smaller when the reaction domain was more restricted, Le., below the 
percolation threshold or at  smaller dimensionalities. The above reaction is a model for time-correlated fluorescence 
quenching analyses. We compared these results with experimental data from time-resolved fluorescence 
measurements on pyrene decanoate incorporated in lipid vesicles (recorded with the photon counting technique), 
and we found that only two terms in the above stretched-exponential expression suffice to satisfactorily describe 
the fluorescence decay profile. The present work is useful for applications to fluorescence probing of organized 
molecular assemblies. 

1. Introduction and Theory 
Chemical reactions in restricted spaces have been the focus of 

a large number of studies in the past decade, as it was revealed 
that the usual kinetic laws do not hold anymore, and one has to 
resort to a fractal picture, or more generally, to a power law with 
noninteger dimensionality, even for the simplest of the reactions.' 
The bimolecular reaction A + B - B is in this category, but most 
studies to the present day deal with thecaseof equal initial reactant 
concentrations ([A] = [B]). However, the case of the reaction 
A + B - B ([A] << [B]) is also of great importance since, among 
others, it represents the reaction between an excited fluorophore 
and a quencher. Fluorescence quenching experimentsZ have been 
and are extensively used as a valuable tool to probe both structure 
and dynamics of microheterogeneous systems such as micelles, 
microemulsions, lipid vesicles, and polymers. The analysis of 
fluorescence quenching is, in most of the casesZ time-resolved. 
Different models have been used to interpret the fluorescence 
decay profiles. Thus, in the case of micelles and microemulsions, 
the quenching reaction is best described by the interaction between 
compartmentalized reactants, which are distributed among the 
available micelles.3~~ Such a model cannot be easily extended to 
lipid vesicles or biological supramolecular assemblies which are 
large and fairly complex systems. There have been several 
approaches to treat the fluorescence quenching reaction in lipid 
vesicles. The vesicle lipid phase behaves as a two-dimensional 
viscous fluid. Thus, an attempt has been made to describe 
fluorescence quenching kinetics in vesicles by the Smoluchowski 
diffusion theory.536 This theory implies a time-dependent reaction 
rate and a stretched exponential fluorescencedecay law, i.e., square 
root of time dependence. This type of dependence on time is a 
consequence of the fact that the dimensionality of the reaction 
domain is considered Euclidean (integer). In addition to this 
limitation, a complication arises by the finding that the reacting 
species might be aggregated in thevesicle lipidic core, particularly, 
in the vesicle gel phase? so that (quenching) reaction might not 
be purely diffusion-controlled. Thus, other authors analyzed the 
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fluorescence decay profile by a sum of several exponential terms.- 
Of course, it is true that any fluorescence decay profile can be 
fitted by a sum of several exponential terms. The reliability of 
fitting procedures has been recently increased by using global 
analysisg or maximum entropy analysis.1° However, a sum of 
exponentials cannot give a close form expression for the reaction 
rate. Furthermore, it cannot give direct information on the 
structure of the reaction domain. We believe that all these 
difficulties stem from the fact that all models used so far do not 
involve the notion of dimensionality. However, microheteroge- 
neous phases are essentially systems of restricted geometry. For 
this reason models describing reactions in such media must include 
a parameter related to the dimensionality of the reaction domain. 

The most fundamental quantity necessary to describe the 
kinetics of a chemical reaction is the rate constant. Experimen- 
tally, one observes the evolution of the monitored reacting species, 
and with the help of a kinetic model the rate constant is calculated. 
In cases of fluorescence probing, where an excited fluorophore 
is quenched by a quencher, the evolution of the reaction is 
monitored by fluorescence. Then, analysis of the flurescence 
decay profile gives the quenching rate constant. However, it is 
now well understood that constant rates only exist in a small part 
of the known kinetics, while spatial or energetic disorder leads 
to time-dependent constants. This is the case of fluorescence 
quenching in organized molecular assemblies, such as micelles, 
microemulsions, and vesicles which consist of microdomains; i.e., 
they possess geometrical disorder. Fluoresence quenching in liquid 
media can generally be analyzed in two parts. One part is the 
energy exchange between the excited and the quenching species. 
Energy can be transferred to a distance r by dipole or multipole 
interactions with probability obeying a power law l /F ,  where s 
= 6,8,10, etc., for dipoldipole, dipole-quadrupole, quadrupole- 
quadrupole, etc., interactions, respective1y.l1J2 Also, energy can 
be transferred by electron transfer with probability proportional 
to exp(-kr), where k is a constant. In most cases the employed 
fluorescence quenching couples are such that no important transfer 
occurs when they are immobilized. The probability of a transfer 
can then be satisfactorily represented by a power law with large 
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s values. The second part of fluorescence quenching in fluid 
media is a diffusion-controlled process. Allinger and Blumen” 
have derived a general equation for reactions occurring by both 
energy transfer and diffusion, using a power law for the transfer 
probability. Thus, the survival probability of the decaying 
fluorescent species, represented by the time-dependent fluores- 
cence intensity Z(t) ,  is given (in a simplified form) by 
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described by the following equation 

~ ( t )  = exp(-c,/+ c,t‘/>, o < f <  1 (4) 

where A is the dimensionality of the reaction domain, D is the 
mutual diffusion coefficient, and A and B, are constants depending 
on Aand theoccuration probabilityp of theavailable solubilization 
site by quenchers (assuming that quenchers are much more 
numerous than excited fluorophores). Analytical expressions for 
B, are given in ref 13. This equation, which is derived by ensemble 
averaging over all quenching possibilities, clearly separates the 
two parts of the interaction. Note that if A/s is a small number, 
as in the case of multipole interactions, then At*fS corresponds 
to a rapidly decaying contribution. This practically implies that 
long-range transfer is negligible. Only close-lying reactants can 
interact. Since reactants can come close by diffusion, then only 
the diffusion-controlled part of the interaction, i.e., the infinite 
series of eq 1, is important. On the other hand, for immobile 
reactants (D = 0) the only contribution is the energy-transfer 
term AtAls. Diffusion-controlled reactions in media with geo- 
metrical restrictions should then be modeled by the infinite series 

Equation 1 is too complicated for practical applications. 
However, an alternative form can be employed by using a cumulant 
expansion introduced by Blumen, Klafter, and Zumofen’c16 to 
describe energy migration by random walk in lattices with spatial 
disorder. In terms of cumulants, the decay law becomes16J7 

of eq 1. 

- (-X)i 
Z(t )  = expxK,(t)--  

I= 1 i! 

where K&) are the cumulants, A = -h(l - p ) ,  and p is the 
occupation probability. It is known17 that, for any distribution 
of the reaction probabilities and for a given value of time t ,  ~ l ( t )  
is equal to the mean p(t) ,  and Kj(f) is equal to the variance. The 
reaction rate is determined by the parameter of the number of 
distinct sites S(t) visited by the random walker within time t .  
Then ~ l ( t )  is proportional to the mean of S(t) and KZ(~)  to its 
variance. Higher-order cumulants are more complicated expres- 
s ion~, ’~  also involving s(~). However, we should note that even 
though in a regular lattice S(t) might be proportional to t ,  in 
lattices with spatial disorder16 S(t) = d where 0 < f < 1. It is 
then obvious that the successive cumulants introduce successive 
powers of t into the decay law, with exponents being integral 
multiples off. Therefore, the decay law can be written as 

wheref, CI, CZ, C3, etc., are constants. It is also obvious that C1 
should be related with A, C2 with X2, etc. This simplified decay 
law is now useful for practical applications if an important question 
is answered: are the Cs related with each other? Inspection of 
eq 2 shows that the question is reduced to whether the cumulants 
Kt(t)  are correlated. There are discrete distributions,17 like the 
Poisson or the binomial distribution, where the K’S are given by 
specific relations. In the most common case, the normal 
(Gaussian) distribution, the first cumulant is equal to the mean 
and the second to the variance, which are not related, while all 
higher-order terms are Fluorescence decay profiles 
recorded by the photon counting technique, thus containing noisy 
data, correspond to normal distribution. Such profiles should be 

where C1 and CZ do depend on A (Le., reactant concentration), 
but they are also influenced by dispersion, defined by the physical 
system itself. Therefore, they are not correlated. If the 
distribution of the reaction probabilities is not normal, then C, 
and higher-order terms might be different from zero and the Cs 
might be correlated. This question will be one of the subjects of 
the present work. When the reaction domain is self-similar 
(fractal), then f is proportional to the fractal dimension of the 
reaction domain. It is then obvious that the decay law of eqs 3 
and 4, which are combinations of stretched exponentials, describe 
a specificdependenceon both thereactant concentration (through 
A) and geometry (throughfl. The reaction rate can be now easily 
derived from eq 3 (or eq 4) by differentiation18 

K( t )  = f c p  - 2fC2tV--‘ + ... ( 5 )  

This expression gives a first-order rate which, of course, is 
time-dependent, as expected. 

It is obvious from the above theory that the fluorescence decay 
profile and the rate constant for diffusion-controlled quenching 
in a geometrically disordered medium should be expressed as a 
series of terms containing noninteger powers of time. We have 
experimentally found that in some cases only one term of the 
series suffices to fit the experimental decay profile.lg In other 
cases, two terms are necessary”JJ9 and may be other cases where 
three or more terms might be needed, as described above. To 
clarify this question, we have undertaken the present work where 
the A + B - B ([A] << [B]) reaction is studied by computer 
simulations in one-, two-, and three-dimensional lattice clusters, 
which are supposed to satisfactorily represent organized molecular 
assemblies. 

In order that a microheterogeneous system, e.g., vesicles, is 
represented adequately by a fractal picture, it should possess the 
property of self-similarity. It is true that perfect fractals can be 
produced only on a computer screen, but any disordered system 
may show some degree of self-similarity, and such an assumption 
is amenable to confirmation by experiment. At any rate, it is 
well-known that these structures are highly ramified, and thus 
a structure similar to a percolation cluster may be a reasonable 
model to explore. 

2. Computational Metbods 
The techniques used to perform the computer simulation for 

the fluorescence-quenched reactions were similar to these previ- 
ously reported.z4 Briefly, clusters are generated on a lattice with 
a specified dimensionality with size L = 1 000 000 (1-D), L = 
1000 X lo00 (2-D), and L = 100 X 100 X 100 (3-D) sites. The 
clusters are generated using the techniques of the percolation 
problem by specifying the probability p for an open site, which 
in this work varies, depending on the dimensionality and the case 
examined. For somecam thelargest cluster is isolatedand further 
used, while for others all clusters of all sizes are taken into account. 
The cluster characterization is done using the cluster multiple 
labeling technique. The reaction is simulated by positioning a 
certain number of A and B particles on the available clusters at 
time t = 0. Reaction proceeds in the known way: all particles 
perform random walks with the stipulation that when it is found 
that an A and a B particleoccupy the same site, then A is removed 
from the system but B stays in the same site. This situation 
depicts the collision between an A and a B particle leading directly 
to a reaction. When two A or two B particles collide, nothing 
happens. We use exclusion volume principle; Le., we do not allow 
more than one particle to occupy simultaneously the same site. 
Wemonitor theconcentration [A] of A particles (Le., theminority 
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TABLE 1: Reaction Rate Constant vs Total Number of 
SDecies B in a Homogeneous 3-D Lattice 
[ E ]  X l P 3  K(106s-1)cr k X  lo9 [ E ]  X l P 3  K(106s-I)" k X  lo9 

1 1.3 1.3 4 5.2 1.3 
2 2.6 1.3 5 6.1 1.3 
3 3.9 1.3 10 14 1.4 

0 Unitsof inverse time have been assigned to the values of Kby assuming 
each random step to be equal to 1 ns, a value very close to real times in 
fluorescence probing. 

species representing the excited fluorophore) as a function of 
time. The basis for our time unit is one Monte Carlostep (MCS), 
which is defined as the time it takes for a particle to move to its 
nearest neighbor. In the present calculation time changes from 
0 to 300. If we assume that 1 MCS is equivalent to the time order 
of nanoseconds, then the real situation of fluorescence decay is 
nicely represented by the present simulation. We have monitored 
several interactions by varying the number density of B. It should 
be underlined that, by assuming a uniform time distribution and 
by making all available sites equivalent, no time dispersion and 
no energetic dispersion have been taken into account. Thus, the 
analysis focuses at purely dimensionality considerations. 

3. Results and Discussion 
The A + B -. B ([A] << [B]) Reaction in a Homogeneous 3-, 

2-, and I-Dimensional Lattice. When a minority species A 
interacts with a majority species B in a nonreversible reaction 
which is carried out in a nonrestrictive environment, then the 
kinetics of the reaction obeys the following simple differential 
equation: 

d[A]/dt = -k[B] [A] 

the solution of which is 

[A](t) = [A],e-k[B1r (7) 

where [A] and [B] are either the molar concentrations or the 
number densities of the corresponding reactants. k then is a 
constant, thesecond-order reaction rateconstant. We havestarted 
our study of the above reaction by first simulating it in a 
homogeneous three-dimensional lattice. The decay of the species 
A vs time was described by a single-exponential function in 
accordance with eq 7. Table 1 shows the calculated values of the 
corresponding first-order rate constant K = k[B], as well as the 
quotient of K/[B], i.e., the value of k. In Table 1, [B] is the 
global number density of the B species found by division of the 
absolute number of B by 1 000 000 (the total number of lattice 
points). 

We then note that not only the decay obeys eq 7, Le., k is a 
constant, but it is also unaffected by [B], within a reasonable 
range of [B] values. Indeed, the number of our lattice points was 
lo6 (100 X 100 X 100 lattice). The number density of A was 
102/106, Le., only 0.01%, while the maximum number density 
[B] was only lO4/ 106, Le., 1% of the total number of latticepoints. 
At higher B densities, however, the kinetics did not obey eq 7 
anymore. This was expected, since the lattice size is then two 
small for such high reactant densities. Even for [B] = 0.01, a 
deviation of k from the calculated value 1.3 X 109 has already 
been observed. In another series of simulated reactions we used 
[A] = 0.001 and [B] L 0.04. We have then found that the decay 
of A does not obey eq 7; Le., it is no more a single-exponential 
function of time. This finding is obviously due to the fact that 
the concentration of the reacting species is too large for the lattice 
space used, which is a manifestation of finite size effects. 
Obviously, a restricted reaction does not obey eq 7. This finding 
was further verified by carrying out reactions in a homogeneous 
2-D and a homogeneous 1-D lattice of the same reactant to lattice 
point ratios, Le., [A] = 0.0001, [B] = 0.001-0.01, and 1061attice 
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Figure 1. Decay of [A] vs time for a 3-D, 2-D, and 1-D lattice of size 
1000000. [A] = 0.0001 and [B] = 0.01 in all three cam. 

points (IO00 X 1000 for 2-D and 1 000 000 for I-D). In both 
cases, we have found that the reaction did not obey eq 7. When 
the decay of A is not a single-exponential function of time, this 
is equivalent to saying that the reaction rate is not constant any 
more. Geometrical restrictions, either in space or in dimension- 
ality, then impose reaction rates which are time-dependent. The 
difference in the kinetics of the reactions for the same reactant 
number density, but different lattice dimensionality is seen by 
the semilogarithmic plots of the decay profiles of A shown in 
Figure 1. 

3-Dimensional Lattices at and below the Percolation Threshold. 
We simulated the above reaction in a 3-D lattice (100 X 100 X 
100) at the percolation threshold (fraction of allowed sites p = 
0.3 12) and below the threshold (p = 0.25). [A] was always equal 
to 0.0001, and [B] varied from 0.001 to 0.01, Both A and B were 
placed on allowed sites and were forced to make random steps 
only within the allowed clusters. In the case ofp = 0.3 12 we have 
carried out the analysis in two different cases: (1) only the largest 
cluster was allowed, while all smaller clusters were erased, and 
(2) all clusters were allowed. The latter is more close to real 
situations in fluorescence probing of organized molecular as- 
semblies. In the case of p = 0.25, all clusters were allowed. In 
all three cases the decay profiles of [A] were not described by 
eq 7; i.e., they were not single exponentials. Obviously, the decay 
rate was then time-dependent. We tried to fit the simulated 
decay profiles of [A] by eq 1, in the form of eq 3, using subsequent 
order approximations, Le., increasing number of terms inside the 
exponential. The quality of fit was judged by visual inspection 
and by thedistribution of theresiduals, Le., thedifferences between 
the decay data and the fitted values at each random step (at each 
time value). As seen in Figure 2, fitting was better when a higher 
number of terms inside the exponential were used. The improve- 
ment of the quality of fit was more marked at higher [B] values. 
Both these findings were expected, since with the increase of 
terms the approximation of the infinite series is improved and 
also, since their importance increases as [B] increases. We have 
thus found that in these computer-generated decay profiles the 
constants C,, C4, etc., are not zero. According to the theory 
presented above, this suggests that the distribution of the number 
of distinct sites visited by the random walker within a given time 
is limited by the existence of a lower limit for S(t), (i.e., zero, 
since no negative values are allowed) and also the existence of 
an upper limit (i.e., equal number of visited sites as the number 
of random step) and the Gaussian becomes skewed. Furthermore, 
the diversion from a perfect Gaussian, obviously, creates a certain 
degree of correlation between the Ci values so that fitting with 
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(and c3/c1 when necessary) which shows the importance of the 
higher-order approximation, in relation to the first-order term, 

Thefvalues, calculated with eq 4, shown in column 2 of Table 
2, were not affected by the population of species B. Thus, the 
valuesoff, calculated with eq 8, were also chosen to be independent 
of [B]. fwas found smaller when the reaction domain was more 
restricted, Le., forp = 0.25. f was the largest when the reaction 
was carried out exclusively in the percolation cluster. Higher- 
order approximation is more important when the environment is 
more restricted. Thus, both CZ and C3, shown in columns 3 and 
4 of Table 2, obtained higher values with respect to Cl when p 
= 0.25. Furthermore, C2 and C3 became more important when 
[B] was larger. This is in accordance with the above theory 
which suggests that (other factors kept constant) C, is proportional 
to AI (where A = -In( 1 - p ) ) .  It is also in accordance with previous 
experimental findings showing the same quencher concentration 
effect.19 C2/C1 was found larger wheneq 8 was used in the place 
of eq 4. This is a purely computational effect since in the case 
of eq 8 the added C2 is increased to counterbalance the subtracted 
C3. The rest of the columns in Table 2 give the values of the 
first-order rates K. Naturally, all 6 s  increased with [B], since 
the first-order reaction rateis higher when the reactant population 
is higher. KI was always larger than KLas it always happens with 
this type of reactions. KAY, naturally, obtained an intermediate 
value. KI was relatively small in the more restricted domains, 
Le., forp = 0.25 or forp = 0.312 when all clusters were allowed. 
KI was much higher when the reaction was done exclusively within 
the largest cluster at the percolation threshold. The effect of the 
geometrical restrictions was even more marked in the values of 
KL. KL was negligible when p = 0.25, was very small when p = 
0.312 with all clusters allowed, and became large when the 
reactants were free to move within the percolation cluster. Thus, 
in the less restricted environment the rates are higher both at 
early and at long reaction times. The KAY values were affected 
to a rather limited extent when eq 8 was used in the place of eq 
4. The effect was higher for KI, especially, in the percolation 
cluster, while KL was found, dramatically, different with eq 8 
from with eq 4, especially, in the percolation cluster. It is then 
obvious that the proper approximation plays a very important 
role for the calculation of the longtime reaction rates. This role 
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Figure 2. Computer generated (-) and fitted curve using (- - -) q 4 
amd (. 6) eq 8. 

many terms produces ambiguous, nonreproducible parameter 
values. In Table 2 we present values of the obtained parameters 
by fitting eq 3 to the decay profiles of [A]. We have used two 
different approximation cases, i.e., eq 4 (CZ # 0, C3 = 0) and 
the following eq 8 (C3 # 0): 

Z(t )  exp(-C,c'+ C2r2f- C3t3'), 0 < f < 1 (8) 

The fittings obtained with eq 4 were unique. Those obtained 
with eq 8 were nonunique. For this reason we have made a choice 
of the values off and let only the Cs vary, when eq 8 was employed. 
By fitting eqs 4 and 8 to the decay profiles of [A], we calculated 
f, CI, and C3 (when necessary) which were then introduced into 
eq 5 to obtain the values of K(t). For practical reasons and in 
order to present the evolution of K with time, we have chosen to 
tabulate K1, the value of K(t) at the beginning of the reaction, 
KL, the value of K(t) at the end of the reaction, and KAY, the 
average value over 300 steps. In Table 2 we then present the 
calculated values off, KI, KL, and KAvas well as the ratio C2/C1 

TABLE 2. Values of 6 CdC,, CJCI, KI, KL, and KAV for a Three-Dimensional Lattice at and below the Percolation Threshold 

p = 0.312 (pqrcolation threshold), all clusters allowed, analysis with cq 4 
1 0.55 1 1  1.8 0.07 
5 0.55 15 9.7 0.24 

10 0.56 17 18 0.31 

0.21 
0.87 
1.6 

p = 0.312 (percolation threshold), all clusters allowed, analysis with eq 8 
1 0.55 12 0.0 2.1 0.07 0.21 
5 0.55 18 

10 0.55 19 
0.1 10 0.26 
0.1 19 0.35 

0.88 
1.6 

p = 0.312 (percolation threshold), only the largest cluster allowed, analysis with cq 4 
1 0.51 12 20 0.1 2.0 
5 0.56 17 81 1.2 7.2 

p = 0.312 (percolation threshold). only the largest cluster allowed, analysis with cq 8 
1 0.67 16 0.1 16 0.9 2.0 
5 0.67 21 0.2 74 3.3 7.5 

10 0.56 21 156 2.0 1 1  

10 0.67 27 0.3 143 7.5 12 
p = 0.25 (below percolation threshold), all clusters allowed, analysis with eq 4 

1 0.43 34 2.2 0.02 
5 0.46 34 9.8 0.04 

10 0.44 39 20 0.05 

1 0.44 48 0.9 2.3 0.02 
5 0.44 49 0.8 1 1  0.06 

10 0.44 59 0.7 21 0.09 

p = 0.25 (Wow percolation thrtshold), all clusters allowed, analysis with eq 8 

a See footnote to Table 1 .  

0.1 1 
0.51 
0.94 

0.12 
0.52 
0.96 
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TABLE 3 Values of 4 CdG, G/G, 6, K h  and KAV for a Two-Dimensional Lattice at and below the Percolation Threshold 
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lV'[B] f 103C2/Cl C3/CI KI KL KAY (106 s-')O 

p = 0.5931 (percolation threshold), all clusters allowed, analysis with eq 4 
1 0.55 14 2.0 0.06 0.19 
5 0.55 15 9.7 0.25 0.88 

p = 0.5931 (percolation threshold), all clusters allowed, analysis with eq 8 
1 0.55 14 0.0 2.0 0.06 0.19 
5 0.55 20 0.2 10 0.29 0.89 

p = 0.5931 (percolation threshold), only the largest cluster allowed, analysis with eq 4 
1 0.58 13 6.5 0.21 0.64 
5 0.58 14 29 0.63 2.8 
10 0.58 15 53 0.83 4.8 

10 0.57 14 18 0.46 1.7 

10 0.55 15 0.0 19 0.49 1.7 

p = 0.5931 (percolation threshold), only the largest cluster allowed, analysis with eq 8 
1 0.67 17 0.1 5.3 0.29 0.64 
5 0.67 18 0.1 25 1 .o 2.8 
10 0.67 18 0.1 46 1.7 4.9 

p = 0.5 (below percolation threshold), all clusters allowed, analysis with eq 4 
1 0.49 23 1.8 0.02 0.12 
5 0.44 27 9.5 0.14 0.57 

D = 0.5 (below ocrcolation threshold), all clusters allowed. analvsis with w 8 
10 0.44 29 18 0.22 1.1 

1 0.44 2i8 010 
5 0.44 40 0.8 
10 0.44 40 0.6 

See footnote to Table 1. 

TABLE 4: Values of I, C2/C1,&, K b  and KAV Found with 
the Help of 9 4 and 5 (C' = 0) for a One-Dimensional 
Lattice at 100 o and 90% of Allowed Sites 
1t3[B] f 103Cz/Cl K1 KL K~y(106~-Iy 

100% Allowed Sites 
1 0.51 0 1.1 0.07 0.12 
5 0.55 4 4.7 0.30 0.58 

90% Allowed Sites 
1 0.36 60 1.4 0 0.05 
5 0.37 65 6.8 0 0.22 
10 0.36 67 14 0 0.43 

10 0.51 1 1 1  0.63 1.2 

a See footnote to Table 1. 

is even more important in environments where the long-time 
reaction probability is higher. 

2-Dimensional Lattice at and below the Percolation Threshold. 
A similar analysis was carried out in a 2-D lattice (1000 X 1000) 
at  the percolation threshold (p = 0.593 1) and below the threshold 
(p = 0.50). The results are tabulated in Table 3. As in Table 
2, the analysis was carried out with eq 4 and with eq 8. The 
results were qualitatively the same for both three and two 
dimensions. The quantitative differences are not extensive either. 
Thus, f was found to have the smallest value below the percolation 
threshold C3/Cl were also found to have the largest value below 
the threshold. We then verified that the choice of the right 
approximation order is more important below the percolation 
threshold. The K's also varied in the same manner here as in the 
three-dimensional lattice both at  and below the threshold. We 
might then safely propose that in computer simulations of the 
above reaction 2-D and 3-D lattices give results with rather 
unimportant differences, as long as the ratio of the number of the 
reactants over the number of allowed sites remains equivalent. 
This is expected, since the spectral dimension that determines the 
reaction rate is about the same for 2-D and 3-D percolation 
clusters. 

1-Dimensional Lattice at 100% and 90% of Allowed Sites. 
Finally, a similar analysis was carried out in a one-dimensional 
lattice (1000000 points) at 100% and 90% allowed sites. The 
results are tabulated in Table 4. The analysis was made with 
both eq 4 and 8. However, it was found that analysis made with 

211 . 
10 
20 

6.03 
0.16 
0.26 

0.13 
0.59 
1.1 

TABLE 5: Values of I, CJCl, 4, K, and KAY Found with 
the Help of Eqs 4 and 5 for Three-Dimensional Lattice above 
the Percolation Threshold ([A] = O.OOO1 and [B] = 0.01) 
density of allowed clusters f lo3 Cz/C1 KI KL KAY (106 

0.312 0.56 17 18 0.3 1.6 
0.32 0.56 17 20 0.4 1.7 
0.35 0.60 12 19 0.6 2.1 
0.40 0.65 7 19 1.2 2.8 
0.50 0.83 2 14 2.8 5.0 
0.60 0.90 2 14 3.5 6.5 
1 .o 1 .o 14 14 14 

a See footnote to Table 1. 

eq 8 did not add any new information. So the corresponding data 
are not shown. 

As in three and two dimensions, the data were modified when 
going from the less restricted to the more restricted lattice. Thus, 
fand the K's take smaller values in 90% than in 100% allowed 
space. Also, CZ/C1 increases very much in going to the more 
restricted space. So there is an analogy of the data obtained in 
one-dimensional lattice with those obtained in the higher- 
dimensional lattices. Note, in this respect, the substantial 
progressive decrease offwith decreasing dimensionality from p 

Progressive Variation of Restrictiveness in a 3-Dimensional 
Lattice. In another series of simulated reactions we have used 
the same above 3-D lattice, but we have varied the percentage 
p of allowed sites. The number of A species was fixed to 100 and 
that of the B species to 10 000. We have analyzed the obtained 
decay curves with eq 4. The results are shown in Table 5. We 
have found that f progressively decreased from f = 1 (that 
corresponds to homogeneous lattice) to f = 0.56 (that corresponds 
to the percolation threshold) asp decreased. As expected, Cz/C1 
increased and the K's decreased with decreasing p ,  i.e., with 
increasing restrictiveness of the reaction domain. fwas smaller 
than the value expected at the percolation threshold according 
to the Alexander Orbach conjecture.21 This is simply due to the 
order of approximation used. Note also the progressive decrease 
of the importance of Cz with respect to C1 as f increases, i.e., as 
the restrictions of the reaction domain are relaxed. At f = 1 
(homogeneous space) KI = KL = KAY. As therestrictions increase, 

= 0.25 (3-D) t o p  = 0.90 (1-D). 
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F’igure 3. Fluorescence decay profile of 4 X lo-’ M pyrenedecanoate in 
2 X 10-4 M vesicle forming cardiolipine. 

KL and KAY progressively decrease while K1 increases to obtain 
the value found at the threshold. 

Comparison with Experimental Results. Equation 4 has been 
successfully applied to describe fluorescence decay profiles in 
several cases of fluorescence probing of water-in-oil microemul- 
sions and lipid ~esicles.l*J*2~ In all cases, an excellent fit was 
obtained (ef Figure 3) using either CZ # 0 or even CZ = 0.19 We 
have never succeeded to fit eq 8 to experimental decay profiles 
recorded with the photon-counting technique, i.e., with a technique 
producing noisy data. This fact comes in verification of the above 
assertion that (noisy) experimental data better approach a normal 
(Gaussian) distribution of values of the fluorescence intensity at 
each time t ,  so that in a cumulant expansion only the first and 
the second term have nonzero values. It is useful to comment on 
the values of fi C2/Cl, K1 KL, and KAY obtained in various 
experimental cases as compared with the present simulation data. 
f has been found to vary in a rather large range of values, of 
course, being always smaller than unity. The efficiency of a 
reaction in organized molecular assemblies directly reflects onf. 
Thus, efficient localized interactions, which can be designated as 
quasi-static interactions, correspond to very low f values. Dif- 
fusion-limited interactions correspond to higher f values. As in 
simulated interactions, f values cannot be uniquely related with 
the geometry of the reaction domain. Nevertheless, restricted 
geometries yield lowfvalues in the sense that reactions are then 
more localized (smaller number of distinct sites visited for the 
same number of random steps). The ratio C~/CI goes to the 
opposite direction. Thus, they are larger in more restricted 
geometries and at higher B concentrations. Furthermore, we 
have found that, in experimental situations, there is an important 
role played by the efficiency of the reaction in relation with the 
duration of the lifetime TO of the excited state of the fluorophore. 
Thus, C2/C1 is larger when TO is smaller.20 The K‘s behave in a 
similar manner as in simulated interactions. KAY gives a value 
which represents well the overall efficiency of the interaction. KI 
gives the reaction probability at short times and KL at long times. 

Efficient localized interactions correspond to large K1 values, 
while efficient diffusion corresponds to large KL values. The 
difference between K1 and KL is larger when f is smaller. 

4. Conclusiona 
In this work we carried out computer simulation for the A + 

B reaction for the case of unequal initial concentrations of the 
A and B reactants. We covered the three usual dimensionalities, 
Le., 1-D, 2-D square, and 3-D simple cubic, and also extended 
the work to lattice clusters built using the percolation model, at 
the critical point and above and below it. In this way we tried 
to cover several possible degrees of inhomogeneity of the reaction 
space and draw the corresponding conclusions. Our results show 
that the decay of the minority species follows a stretched 
exponential form, where the exponent is characterized by a 
‘spectral dimension”, which is a generalized form of a fractal 
dimension. The calculations indicate that this exponent directly 
gives thedegreeofcomplexityofthespaceinvolved. These profiles 
that are derived by computer simulation seem to be in very good 
agreement with experimental data of fluorescence probing in 
microemulsion and lipid vesicles. 
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