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The A + B - 0 Reaction under Short-Range Interactions 
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We consider here the A + B - 0 reaction between particles that diffuse, interact through short-range forces, 
and react on contact. In a plausible approximation the reaction can be described through a nonlinear diffusion 
equation, from which the scaling behavior of the respective A and B concentrations follows. We focus here 
on steady particle generation and obtain the exponents that govern the concentration’s growth. Through explicit 
Monte Carlo simulations of the underlying stochastic process we obtain directly these exponents; furthermore 
we show that the assumption of particle segregation in clusters is correct, by computing the correlation length. 

Introduction 
Although the investigation of diffusion-controlled chemical 

reactions dates back to Smoluchowski (1917),’ some extremely 
important effects were understood only recently.*-14 By now one 
can assert that, for example, the A + B - 0 reaction between 
uncharged particles is well-understood. Nonetheless there are 
very few results concerning reactions between particles which 
interact with each other through short-range forces. Although 
the case of particles interacting through screened electrostatic 
forces was considered already by Debye,15 the multiparticle and 
fluctuation effects which determine the large-scale/long-time 
behavior of this reaction were seldom analyzed. A similar model 
for elastic forces (all particles attract eachother) was investigated 
in ref 16. 

In the present article we deal with the simplest model of an 
A + B - 0 reaction between interacting particles in one dimension 
under particle generation and try to elucidate the role of 
multiparticle effects. A simple analytical model for such a reaction 
was proposed in ref 17; here we review the theoretical approach 
and aim to assess the forecast of the analytical treatment through 
extensive Monte Carlo simulations of the reaction process. The 
situation considered corresponds to particles interacting through 
short-range forces. Here particles of the same kind repel each 
other, whereas particles of different kind attract each other; 
furthermore the reaction occurs on contact. 

Theoretical Model 
Main Equations. In a continuous-medium approximation the 

kinetics of particles’ concentrations nA(x,t) and nB(x,t) is governed 
by the equations 

dnA/dt  = V(DVnA - .vp,(nA,nB)nA) - R ( ~ A , ~ B )  + jA(x,t) 

(1) 

dnB/dt = V(DVnB - avpB(nA,nB)nB) - R(nA,nB) + jB(x,t) 

(2) 

Here D is the diffusion coefficient (considered equal for both 
reacting species), FA(nA,nB) and pB(nA,nB) are the local chemical 
potentials for the particles of the two kinds, CY is the particles’ 
mobility, R(nA,nB} is the reaction term, and j~ and j~ represent 
the generation rates (Le., numbers of particles generated per unit 
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time per unit volume). The variables PA,  p g ,  and R are in general 
functionals of the particles’ concentrations. We shall consider 
the stoichiometrical case, for which U A )  = ( j ~ )  = j holds. 

Equations 1 and 2 represent the standard approximation and 
we start from them; we note, however, that the reaction terms 
may be quite complex (especially in low dimensions) and may 
even depend on correlation functions of higher order than nA and 
nB (see, e.g., ref 9). The approximate character of eqs 1 and 2 
does not influence much the asymptotical short- and long-term 
regimes; therefore we can use eqs 1 and 2 when we focus on the 
scaling behavior of the concentrations and of the correlation 
functions. 

To obtain the short- and the long-time behavior from eqs 1 and 
2, we will use different approximations. We shall see that while 
the short-time regime is simple, the problem of the long-time 
behavior can be reduced to a nontrivial, nonlinear diffusion 
equation, related to expressions describing the growth of rough 
interfaces. 

We start from the very simple short-time situation. Im- 
mediately after switching the particles’ generation on, the 
concentrations are so low that the generated particles hardly 
interact and do not react. Therefore the number of particles in 
the system is simply equal to the whole number of particles 
generated, whose mean concentration is 

n ( t )  = ( n A ( t ) >  = ( n B ( t ) )  = j t  (3) 

This simple discussion is necessary in order to obtain later on an 
estimate for the crossover time to the other, fluctuation-dominated 
regime. Now we turn to this long-time regime, whose behavior 
is much less trivial. 

For extremely fast reactions (R - m) in low-dimensional spaces 
and for long times there exist only nonpenetrating A and B clusters 
and the reaction takes place at the clusters’ boundaries only. We 
set now q(x,t)  = nA(x,t) - nB(x,t) for the local concentration 
difference and put 

nA = @(q) nB = -@(-q) (4) 

In fact, for longer times eq 4 is well-obeyed even for finite reaction 
rates R,  as shown in refs 13 and 14 for systems of noninteracting 
reacting particles. We will prove this in our case (interacting 
particles) through numerical calculations of the two-particle 
distribution functions. Note that eqs 4 imply n ( t )  = (nA(x,t)) 

Using eqs 1,2, and 4 one can derive a closed differential equation 
that involves only q. In ref 17 it was shown for a special interaction 
model that theeffective force acting on the particles is proportional 

= (ne(x,t))  = (Iq(x,t)1)/2. 
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to the local gradient of q(x) .  Our numerical simulations with 
different types of short-range interactions show that this behavior 
is generic, in that it holds for many models and is valid under a 
wide range of assumptions. Namely, if the particles are fully 
separated in clusters and if furthermore in a certain concentration 
range the chemical potential is an analytical function of the local 
concentration, one can take p(n) = + un + .... Then in lowest 
order in n, the interaction terms in eqs 1 and 2 are CYanAVnA and 
CYunBVnB, respectively. Using now eq 4 and substracting eq 2 
from eq 1, one obtains 

aqlat = V ( D  + xlql)vq + t ( 5 )  

where X = au and F(x,r) = j ~ ( x , t )  - j ~ ( ~ , t ) .  For the case of a 
strict stoichiometrical generation of particles we take the total 
amounts of A and B particles generated per unit time to be always 
equal, although the particles themselves are created randomly in 
space. In this case thevariable t(x,r) has the following statistical 
properties: 

(€(x, t ) )  = 0 (6)  
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In one dimension these values correspond to = 2 1 s  and 7 = ]Is. 
Note that from eq 10 the upper marginal dimension d = 2 follows. 
This finding parallels the situation in the Edwards-Wilkinson 
model and differs from the KPZ behavior. 

The cro8sovcr from the short-time regime, eq 3, to the long- 
time one, in which 

([(x,t) [(x’,?’)) = 2jS(x- x’)6(t - t’) (7) 

Equation 5 is related to the KPZ equation for the growth of 
rough interfaces1* but differs from it in an additional nonlinear 
correction to the diffusion coefficient. One can see this through 
an explicit application of the differential operator V to the product 
on the right-hand side of eq 5;  see ref 17. Hence eq 5 and the 
KPZ equation behave differently; in the limit X - 0 however, 
both have the Edwards-Wilkinson model19 as a special case. 
Long-Timescaling Regime. Wereview now quickly thescaling 

considerations which allow to obtain the time dependence of the 
concentrations at long times. These considerations (e.g., ref 17) 
parallel those of ref 4 for a system of particles, which, apart from 
reacting, do not interact with each other. Let us assume the 
existence of a characteristic correlation length (say, a typical 
cluster size) A(?). Moreover, let us suppose that up to timet all 
possible reactions within each cluster of dimension A(t) have 
taken place. Then the total number of particles existing in the 
system at time r is of the order of the mean number of excess 
particles of one kind in each A(t )  cluster. Hence we take the 
total number of surviving particles within a radius A(t)  to be 
equal to themean number of excess particles Na generated during 
this time within a A ( f )  cluster. According to Poisson statistics 
one has Nu = Nt1/2 = (jtA(r))l/z, where Nt is the total number 
of particles generated. The overall concentration is then given 
by 

n(t)  - NJAd N j1t2r’/2A4/2(t) 

In the mean-field framework of ref 17 the behavior of A(t)  for 
large t was obtained by going in eq 4 from the fluctuating diffusion 
coefficient D(x,t) = D + Xlq(x,t)l to its spatial average D(t)  = 
D + 2Xn(t). At long times and high concentrations, one can 
neglect D in comparison with 2Xn(t) in the expression for the 
average diffusion coefficient. We obtain for the correlation length 

A2(t) H l D ( r )  d r  H h l n ( r )  d r  (9) 

The system of eqs 8 and 9 is closed. To obtain from thein the 
asymptotic behavior of the concentration n(t) ,  we make an ansatz 
in the form n(t) - j W  and obtain immediately 

2 - d  
7=4+d  

LI p = -  L 

4 + d  

holds, takes place when both expressions, eqs 3 and 12, lead to 
the same value for n(t). Hence the dependence of the crossover 
time tc on the generation rate j is therefore in one dimension 

t, N J-3/4 (13) 

The corresponding crossover concentration is 

These expressions will be used in analysing the numerical data. 

Numerical Simulations 
Model. Now we consider the results of direct numerical 

simulations of reactions with interacting particles in one dimension. 
The aim of the simulations is both to assess the validity of the 
assumptions made in our theoretical approach and also to obtain 
both the behavior in the intermediate time regime and also 
additional information, such as correlation functions. 

The simulation procedure is as follows: We consider a one- 
dimensional lattice of length L; L extends normally over 104-105 
sites. The actual size of the system will always be taken such as 
to fulfill L >> A(t-) ,  where tmx is the longest simulation time; 
this is in order to avoid finite-size saturation effects. Finite-size 
effects, which give rise to a different behavior were investigated 
in a related context in refs 6,8, and 1 1. In our procedure A and 
B particles are generated pairwise and independently in space. 
For small values o f j  we generate one A and one B particle each 
k simulation steps (then we have j = (kL)-l); to achieve larger 
generation rates we create K particles of kind A and K particles 
of kind B per step (now j * KL-l). The diffusion of a particle 
in the field of the others is modeled through its jumping to one 
of its neighboring sites. The hopping probabilities for moving to 
the right (+) and to the left (-) nearest-neighbor site are 

P: = I12 * 4 (15) 

where the additional term 6, in eq 15 depends on the configuration 
of the surrounding particles. We have considered different 
situations: in the first one we restricted the interactions to the 
right and left neighboring particles only (these do not necasary 
occupy the right and left nearest neighboring sites); in the second 
situation we extended the calculations to include neighbors farther 
away.20 The simulations show that within the numerical accuracy 
the models belong to the same universality class, as far as 
exponential interactions are considered. The present results are 
obtained for the first situation. In this case we took 

where rrJ are the distances between the particlcs i and j ,  fo and 
ro ar t  the parameters which describe the strength and range of 
the interaction, and the “charges” et are equal to +1 for the A 
and to -1 for the B particles. In the case of strong interactions 
and small distances eq 16 can lead to values of IS( that exceed ‘/2. 
In this case we simply put 6 = f1/2 the particle moves now in 
the direction of the acting force with probability 1. 

In Figure 1 we plot the results of the simulations for n(t)  where 
the parameters of interaction in eq 16 were taken to befo = 1 
and ro = 10. The generation rates varied between 5 X 1od and 
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Figure 1. Time dependence of the particle concentration n(t). Note the 
double-logarithimic scales. The data correspond (from bottom to top) 
to generation rates /of 5 x 104,10-5,2 x 10-5,5 x 10-3,10-4,2 x 10-4, 
5 X 10-4, and 10-3. See text for details. 
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Figure 2. Rescaled data from Figure 1 for j = le5 (crosses), j = 10-4 
(circles), and j = 10-3 (triangles). See text for details. 

Each displayed curve was obtained as the average of 100 
runs. The slopes in a log-log plot of Figure 1 are consistent with 
the short- and long-time behavior predicted by eqs 3 and 12. To 
prove that a one-parameter scaling relation holds, we replot in 
Figure 2 three of these curves (forj  = 10-5,j = 1 W, a n d j  = 10-3). 
In Figure 2 n ( t )  is rescaled to n( t ) /& - n(t)f114 and the time 
f to t / t c  - tj314; the axes are, again, double logarithmic. Note 
that the replotted curves collapse on the same master curve, which 
demonstrates the simple scaling relation proposed here. 

Cluster Structure and Correlation Functions. Now we consider 
thecluster structure in thesystem. Note that the basic hypothesis 
in the theoretical consideration of the long-time regime is that 
particles of different kind segregate in clusters. To check this, 
we use here scale-dependent measures of segregation, different 
from the local characteristics used in refs 10 and 12. Our approach 
also accesses the correlation length A(t ) ,  whose scaling behavior 
is our second main theoretical assumption. 

Substituting eq 12 n(t)  - t 1 / 5  into eq 9, we obtain that the 
correlation length should grow according to the power-law A - 
t3l5. To prove that this is indeed the case, we consider the 
following: Let us take intervals of length I << L and calculate a t  
time t the average { ( l , t )  = ( INA - N ~ 1 ) / 1  over the whole system, 
where N A  and NB are the numbers of A and B particles within 
the particular 1 interval. For 1 << A(t )  this quantity must be of 
the order of the mean particle concentration (note that {( 1 ,t) = 
n( t ) ) ,  while for I >> A(t ) ,  when we have many A and B clusters 
within the length I, {(1,t) - 0.  Our hypothesis corresponds to 
the scaling of the quantity {(1,t)/n(r) - { ( l , t ) r l / s  as a function 
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FIgm3. Behaviorof((l,t)r115asa funaionoflr315for t = 300 (trianglts), 
t = 1000 (squares), t = 3000 (diamonds), and t = 10 OOO (crosses). 
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Figure 4. Two-particle correlation functions p u , ~ ~ ( r )  (upper curves) 
and p ~ ~ ( r )  (lower curves). The time is parametrically, from the left, t 
= 300, f = 1000, t = 3000, and t = 10 OOO. The insert shows at higher 
resolution the behavior of PA&) at short distances. 

of 1/A(t)  - l t 3 / 5 .  The data f o r i  = 10-4 and for times t = 300, 
1000, 3000, and 10000 are plotted in Figure 3. This figure 
confirms the scaling proposed. 

The standard characterization of the spatial structure of the 
system is given by the two-particle distribution functions for 
particles of the same kind, p u ( r )  and pBB(r), and for particles 
of different kind, p ~ ~ ( r ) .  These are the conditional probability 
densities to find particles of the corresponding types at the mutual 
distance r, normalizedover the concentration squared. Note that 
these quantities do not provide us with direct information about 
thecluster sizes, since thepxY(r) depend alsoon theconcentration 
profile within each cluster, which also changes with time. Now 
PA,&), pBB(r), and p ~ ~ ( r )  are plotted in Figure 4 for the same 
values of time, for which {( l , t )  was calculated. Note that the 
behavior of p A ~ ( r )  a t  small distances confirms our clusterization 
hypothesis: for larger times it tends to zero. The nonmonotonic 
behavior of p u ( r )  and P A B ( ~ )  at small distances represents the 
effect of direct interactions between the particles. The peak in 
p ~ ~ ( r )  corresponds to the attraction of particles of different kinds, 
while the behavior of p a ( r )  shows the ordering of the particles 
within a cluster due to their repulsion. In the short-rangedomain 
the distribution functions are governed by the interaction length 
ro and do not scale. The overall behavior of the distribution 
function is not simple a t  all and needs further investigations. For 
example, the pattern near the “bifurcation”, where p u ( r )  and 
p,&) depart from each other and from unity shows scaling, 
whosecharacteristic length turns out to follow Ayt)  - tO.5 rather 
than the form A - tO.6 obeyed by t(1,t). This can be the result 
of an interplay between cluster growth on one hand and the fact 
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that particles of the same kind order themselves inside the cluster 
on the other hand. 

Conclusions 
We considered here analytically and numerically bimolecular 

reactions between particles interacting through short-range forces. 
We focussed on the situation of a steady particles’ generation 
under stoichiometrical conditions. The numerical simulations 
confirm the theoretical conjecture that in one dimension the 
particles’ concentration grows as n(t )  - j 2 / 5 t l / 5  and also the 
underlying hypotheses about the particles’ clusterization and about 
the behavior of the correlation length. 
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