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Statistical Models for Surface Catalysis: Evidence for Anomalous Reaction Rates 
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We consider two elementary models for reaction kinetics on a catalytic surface: a monomer-monomer model 
and a monomer-dimer model. In both cases we use Monte Carlo simulations to exhibit anomalous reaction 
kinetics which is the expression of density fluctuations and self-organization of reactants in the system. We 
show the influence of this self-organization on the macroscopic behavior of the system. 

Catalytically activated processes have been known for a very 
long time now but still present a challenge for fundamental 
research. Recently, statistical physics concepts have been used 
to describe collective phenomenon in catalysis such as pattern 
formation in excitable media' or nonequilibrium phase transi- 
tions.l.2 For example, a great deal of work has been done on 
pattern formation associated with nonlinear effects [see, for 
example, refs 4 and 5 and references therein]. 

In a reaction process, one of the sources of nonlinearity is the 
order of the reaction rate or some nonlinear adsorption/desorption 
process. The simple theory of reaction kinetics shows that the 
reaction rate should always be considered as the product of 
reactant densities entering the reaction? This defines a differential 
equation (the rate equation) for the reactant dynamics or the 
steady-state densities. The rate constant, the coefficient of 
proportionality between the reaction rate and the reactant product, 
is the expression of local dynamics. It is proportional to the 
hopping rate if the process is diffusion limited or to a reaction 
frequency when it is reaction limited. Thus a clear-cut separation 
exists between local variables that could be derived, for example, 
from quantum mechanics and collective variables expressed in 
the most simple way as the product of concentrations. 

Until recently, this theory was considered to be firmly 
established. However, in the case of diffusion-limited reactions 
the simple picture was shown to be inadequate for the decay rates 
of several elementary reactions such as the trapping problem, the 
A + A - 0 and the A + B - 0 processes [for example, see 
reviews in ref I and ref 8 and refs therein]. More recently, 
anomalous results were found also in steady-state situations.9JO 
It became clear that simple reaction laws are insufficient to account 
for the key role of fluctuations. Macroscopic results depend on 
the Euclidean dimension of the medium, and anomalous decay 
forms or effective orders of reaction were found. Moreover, fractal 
structures]' have been considered to account for spatial disorder. 
In this case as well, fluctuations are prevalent and influence the 
macroscopic p i~ ture .~J  In general, anomalous laws are the result 
of self-organization of reactants that can lead to spatial pattern 
formation.2.13 

In this paper we will show in two simple examples how reaction 
anomalies occur in catalytic models and how they are related to 
some more complex properties of the system such as coexistence 
diagrams, out-of-equilibrium phase transitions, and wave propa- 
gation. These processes are not necessarily diffusion limited. 
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The work we present here is the result of Monte Carlo simulations 
which incorporate internal fluctuations in a natural way. 

The first elementary process we consider is a monomer- 
monomer catalytic process, A + B - 0, with a high adsorption 
rate and desorption. No diffusion of reactants is allowed. A 
symmetric form of this process was first proposed by Fichthorn 
Gulari and ZifP (FGZ). We consider the case when the species 
are not symmetric in adsorption and desorption. We find self- 
organization and exhibit the phase diagram of species A and B, 
which depends on the geometry. The second model studied is the 
monomer4imer model, A + B2 - 0, for catalysis on a surface 
introduced by Ziff, Gulari, and Barshad2 (ZGB). This model 
exhibits a first-order out-of-equilibrium phase transition. We 
monitor the reaction rate in the vicinity of the transition, and we 
also show that a spatial self-organization of the reactants is 
responsible for anomalous reaction kinetics. 

Bimolecular Reaction Rate and Organization of Reactants 

The reaction rates for a diffusion-limited reaction in 3D was 
derived by Smoluchowski,14 who related the gradient of the pair 
correlation function to the rate of reaction Q A ~ .  In an average 
particle reference frame, the number of reactions is the flux of 
particles diffusing through the reaction surface (considered 
here as a sphere). Thus, 

QAB = ZDIVmAB(r ) lp ,+  (1) 
where a is a microscopic-size radius of the reaction sphere and 
)IIAB(r) is the two-particle correlation function. There is a natural 
length scale A that expresses roughly the typical distance between 
an A and a B. We can write 

The length scale A is the scale of segregation indicating the typical 
size of A and B clusters. In a standard picture,6J4 A is of the 
order of the microscopic-size a and thus the reaction rate is 

kclassica, 2 ZDla  = a d / r  (3) 
where T is a microscopic hoping rate. For a reaction-limited 
equation, the reaction rate has also the same dimensional form 
but the time r is a typical reaction time and ad a microscopic 
reaction volume. The classical relation holds as well when a 
vigorous mixing is applied to the reactants and when, at any time, 
the distribution of particles can be considered to be Poissonian.'5 
Thus in all these cases, the order of reaction is 2. 

Nevertheless, in disordered materials like glasses, important 
deviations from classical reaction rates have been found due to 
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long-range or hierarchical interactions between species.' In 
numerous other cases, the rate "constant" was shown to vary 
when spatial fluctuations organize the substrate. An effective 
order of reaction larger than 2 may possibly occur.8.10J2 In the 
following, we use as an indicator of local self-organization the 
effective segregation length: 

PAPB A = -  
QAB (4) 

Note the important point that an excess of A in B (respectively 
of B in A) is not an indicator of segregation but of another 
phenomenon called saturation.3J3J4 An equation like (4) will be 
able to discriminate between both effects. Note that for diffusion 
on a regular lattice we have in general ED I/. and that eq 4 
applies as well to situations where no diffusion is present a priori 
in the system (reaction limited). 

Monomer-Monomer Catalysis 

Let us now consider a classical Langmuir-Hinshelwood reaction 
involving two different species A and B absorbed on a catalytic 
surface. There is no diffusion involved. The reaction scheme 
follows three steps: 

Adsorption: A* + [XI - A and B* + [XI + B 
with probabilities/site/time PA and PB 

Reaction: A + B - [XI + [XI + AB* 
nearest neighbor reaction 

Desorption: A - [XI + A* and B - [XI + B* 
with probabilities/site/time Pd A and PdB 

The symbol "*" means a species in the gas phase, and '[XI " means 
a free site. We suppose that reaction is slow compared to 
adsorption so that empty sites on the lattice are rare. To 
parametrize possible dissymmetry between A and B, we introduce 
a set of three variables (x, y, p) such that 

( 5 )  
This is a dissymmetric version of the model originally proposed 
by FGZ,3 who take x = y = 0.  A mean-field solution was given 
by Redner and Tayakatsu16 and an exact solution by Clbment, 
Leroux-Hugon, and Sander" on any Euclidean lattice. An 
extension of the solution to disordered lattices has been proposed 
by Clbment, Leroux-Hugon, and Argyrakis.18 The monomer- 
monomer model has also been considered by Evans,*g and the 
dynamical aspect was stressed [see also refs 20 and 211. 

In Figure l a  and l b  we show the result of a Monte Carlo 
simulation for the steady-state distribution of reactants on a 2d 
lattice for x = y = 0 (FGZ model) with desorptionp = l e 3 .  The 
distribution of reactants is initially random (Figure la), but after 
10 000 steps, an obvious segregation between particles occurs. In 
Figure 2a and 2b the simulation was done on a fractal percolation 
cluster [on percolation theory, see ref 221. The segregation 
phenomenon is even more obvious (here x = y = 0, p = 10-4). 
Clbment et al.17J8 have shown that, in general, when p goes to 
zero, one can write the reaction rate in the form 

Q p1-d,/2 ( 6 )  
where d, is the spectral dimension of the lattice. On a percolation 
cluster we have d, = 4/3.22 Equation 6 is valid only for d, < 2. 
At d, = 2, we have a marginal behavior.17 Since the lattice is 
full, we have, in the limit of infinite lattice size, a segregation 

Figwe 1. Monte Carlo simulation of the monomer-monomer model in 
d = 2 for x = y = 0 and p = le3. The squarea are A and the crossa, 
B (the lattice is full). (a, Top) Distribution of reactants at r = 1. (b, 
Bottom) Distribution of reactants for time r = 10 OOO. 

scale with scaling behavior 

(7) 
Thus in this model, though no particle diffusion takes place, the 
spectral dimension determines the behavior of the segregation 
length. We recall that in a random walk problem this exponent 
d, controls the time development of the number of distinct sites 
visited by a random walker [see review in ref 231. 

In the dissymmetric model, we have a phase diagram for the 
concentration of reactants for various x and y. We present results 
in Id since, in this confined environment, the role of fluctuations 
is the largest. Figure 3 shows an example of this diagram for a 
given y = 4 . 3  andp = 5 X 10-2 in d = 1. We show the densities 
and the reaction rates as a function of x .  We see around x = 0 
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Figure 2. Monte Carlo simulation of the monomer-monomer model on 
the largest percolation cluster a t  criticality for x = y = 0 and p = lv. 
The squares are the A species and the crosses the B species (the lattice 
is full). (a, Top) Distribution of reactants at f = 1. (b, Bottom) 
Distribution of reactants for time f = 10 000. 

a window of higher reaction rates with a typical width W,. A 
classical picture would give a width W, = O(p) for a reaction rate 

In Figure 4 we present results of Monte Carlo simulations. 
We plot the reaction rate rescaled by the segregation length, 
using the value of the spectral dimensions d, = 1 (cf. eq 7) as a 
function of x multiplied by the segregation length). We see, for 
a set of different p parameters (p = 5 X 10-2, p = 5 X lW, p 
= 5 X 10-4), we have a reaction rate Q = O(p1/2) for a window 
W, = O(p1/2). Thus we conclude that (i) the reaction window 
is larger than what is predicted by classical theory, and (ii) a 
self-organization takes place in this region since Q = O(p1/2) and, 
according to eq 6, a mesoscopic length scale A = p-ll2 shows up. 

The reaction rate depends on the geometry of the substrate. 

Q = 0(1).24 
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Figure 3. Phase diagrams for the species A and B as a function of x 
(adsorption dissymmetry) in d = 1. Here, y = -0.3, lattice size L = 
10 OOO, andp = 5 X P A  is a solid line with squares, and p~ a dashed 
line with triangles. The solid line is 5 times the reaction rate/site: 5Q(x). 
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Figure 4. Rescaled reaction rate Q(x)  p112 plotted as a function of xp1I2 
in d = 1; y = -3, lattice size L = 10 OOO, and p = 5 X (squares), 
p = 5 x 10-3  (triangles), p = 5 x 10-4 (circles). 

A theoretical solution of this model explaining this behavior is 
in preparation using a mapping onto a spin The 
persistence of the reaction anomaly associated with self- 
organization for d,  < 2 is demonstrated. 

Monomer-Mmer Catalysis 
Simple chemical reactions driven out of equilibrium can display 

a wealth of phenomena. One of the best studied is the monomer- 
dimer model for catalysis on a surface introduced by Ziff, Gulari, 
and Barshada2 It is a reasonable approximation to the oxidation 
of carbon monoxide on a platinum substrate. It consists of three 
steps: 

Adsorption: A* + [XI - A and Bz* + [xx] - 2B 
with probabilities/site/time PA and P, 

Reaction: A + B - [XI + [XI + AB* 
nearest neighbor reaction 

Explicit diffusion of B can also be implemented. The control 
parameter of the reaction is y = PA/(PA + ‘ / ~ P B ) .  A crucial 
point here is that Bz* adsorption requires two adjacent empty 
sites, each of which captures one B atom, while A requires just 
one empty site. The original version of ZGB exhibits complex 
behavior with two phase transitions, a second-order transition 
between B poisoning and a reactive phase at y = 0.389 and a 
first-order transition between a reactive phase and an A-poisoned 
phases at y = 0.525. In the vicinity of the first-order transition, 
there are metastable states and the system shows hysteresis. 
Several variations of the ZGB model have been proposed and 
studied with diffusion of A, desorption, finite reaction rates, 
precursor adsorption, and species diffusion.25 A mean-field theory 
of this process has been given by DickmamZ6 

Recently, Goodman et aI.27 have shown that the trigger waves 
traveling from a stable state to a metastable state have a velocity 
depending on an effective diffusion constant: even when no explicit 
diffusion is present, a wave with a well-defined velocity occurs 
(in contradiction with classical results). This effective diffusion 
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Flgm 5. Segregation length A as a function of the adsorption dissymmetry 
parameter y .  The lattice size is 56 X 56 and the desorption of A, p d ~  
= 3 X l(r.  The solid line is the steady-state value, starting with an 
empty lattice, and the dotted line is the steady-state value, starting with 
a lattice full of A. (a, Top) Fast diffusion (e = 10). (b, Bottom) Slow 
diffusion (c = 0.1). 

seems to be related to the effective diffusion for monomer- 
monomer reactions. Also, the width of the waves is controlled 
by an unbounded (for infinite system) growth of the fluctuations 
given by a nonlinear KPZ equation.28 

In this paper, we are interested in reaction rate anomalies. We 
use a version of the ZGB model where explicit diffusion and 
desorption of A are implemented. The diffusion parameter is c, 
which represents the probability/time of a jump of A in a nearest 
neighbor direction. The desorption probability/site of A ischosen 
to be PA = 3 X l(r. We monitor the reaction rate in the vicinity 
of the first-order phase transition. In Figure 5 we plot the self- 
organization scale A as a function of y for two different initial 
conditions. The first (solid line) is for an empty lattice at initial 
time. The second (dotted line) is for a lattice initially filled with 
A. All the density and reaction rate values are measured in the 
steady state. Figure Sa shows A for a diffusion probability/time 
c = 10, and Figure 5b is the result for c = 0.1. Note that we have 
the transition location that depends on the values of PA and c. 
We clearly see the effect on the anomaly of the hysteretic behavior 
around the transition. The anomaly is the largest when the system 
is in the higher reactive metastable state. Moreover, we see also 
that the anomalous behavior is most expressed when the diffusion 
is slow (Figure 5b). Note that we also have found that the self- 
organization is the largest when no diffusion is present in the 
system, revealing, as in the study of the trigger waves, an effective 
diffusion term.28 On the contrary, when the diffusion is fast, 
little organization takes place in the medium, and mean-field 
values for the reaction rates are almost correct. 
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Conclusion 

In this paper we present results of Monte Carlo simulations 
of two elementary catalytic reaction models. We show that the 
internal fluctuations dominate. Fluctuations may create an 
effective diffusion term that modifies the reaction rate and 
produces self-organization in the system. This effect depends on 
the geometry of the substrate and modifies the curves of 
coexistence of the species in a way that no mean-field equation 
can predict. This anomalous effect is related to the anomalous 
behavior of diffusion-limited reactions which show nonclassical 
kinetics in low dimensions.l’J8 The two models we study here 
are thus prototypes for deeper studies of the interaction among 
macroscopic behavior, nonlinear properties, and internal noise. 
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