Journal of Luminescence 58 (1994} 413—416

JOUBNAL OF

LUMINESCENCE

Nonclassical crossovers in binary reactions in one-dimensional
systems

Panos Argyrakis**, Raoul Kopelman?, Katja Lindenberg®

*Departments of Chemistry and Physics, University of Michigan, Ann Arbor, M1 48109-1055, USA
*Department of Chemistry and Institute for Nonlinear Science, University of California at San Diego, La Jolla, CA 92093-0340, USA

Abstract

We examine the crossover behavior for the A + A —» 0 and A + B — 0 reactions, which are highly nonclassical for
a random initial distribution of reactants. We find that both reactions quickly depart from the classical behavior to
a “depletion zone regime”, eventually reaching the segregated asymptotic behavior. We give the corresponding scaling
laws for the crossover time and density. Finite size effects are also discussed. Computer simulations verify the scaling laws

and provide the scaling coefficients.

Chemical reactions in low dimensions that are
diffusion controlled do not behave classically but
exhibit “anomalous” rate laws for the densities p(t)
of the reacting species [1-8]. Thus, for the model
reaction A + A — 0 while the normal rate law
is p= —kp? for dimensions d <2 it is p=
— kp' *2/9 [1,4,8]. It is now well understood that
this behavior is a consequence of the spatial distri-
bution of A’s: Initially the distribution has a max-
imum at zero separation, but as the reaction pro-
ceeds the particles that are in close proximity have
the chance to react, thus leaving a depletion zone
and a distribution that peaks at a finite, nonzero
nearest neighbor separation. A similar situation
holds for the reaction A + B — 0. Under normal
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circumstances the rate laws are p, = pg=
— kpapg. If pa(t = 0) = pg(t = 0) = p(¢t = 0), then
the densities of the two species are equal, so

p = —kp?. But, again it is well known that the
actual rate law in dimensions d < 4 is instead
p = —kp'***9_ Here the cause of the anomalous

behavior is the formation of aggregates of like par-
ticles [1-8]. The regions where the density of one
type of particles is overwhelmingly greater than
that of the other grow in time. Since the reaction
can essentially occur only at the interfaces between
aggregates, and since the number of these interfaces
decreases with time, the reaction slows down rela-
tive to the rate that would describe a random mix-
ture of reactants. Again, this behavior reflects the
fact that diffusion is not an effective mixing mech-
anism in low dimensions. Initial spatial fluctuations
in relative densities can thus grow in size as the
reaction that eliminates close opposite pairs pro-
ceeds. In this paper we briefly discuss the various
regimes of kinetic behavior from the initial time
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Fig. 1. {p>~"' — p; ! versus ¢ for lattices of various sizes L in one dimension with a random initial condition. The initial density of each

species in number per lattice site is po = 0.2 in all cases.

until the asymptotic behavior is reached. We char-
acterize the various regimes and estimate the cross-
over times. We present numerical simulation re-
sults and analyze them in terms of our model. Only
qualitative results are presented here with some
characteristic examples, while a detailed analysis
will be given in [9].

The summary of our results is given in Fig. 1,
which is a plot of {(p> ' — po ! versus ¢t for one
dimensional lattices of various sizes, and is the
result of Monte Carlo simulation data. We observe
the various regimes in this figure as follows: First
comes a classical regime at t = 0. The rate equation
here is the classical rate equation: p,(f)l,=o =
— kpZ(0), where p,(t) is the average global density,
and p,(0) = {p(r,0)> = po. Thus, very near t =0
the solution is p,(t) = po/(1 + kpot) and also {p(r,
1)) = po/(1 + kpot). The initial slope at very early
times is the same as that of the A + A problem,
which is the classically expected value of 1.

Then comes an intermediate regime where we
have {p(r, )> ~ t 4% ford < 2, and {p(r, 1)) ~ ¢t~ !
for d > 2. This behavior is nonclassical in one di-
mension, and is completely analogous to the non-
classical regime of the reactions A + A— 0 and
A + A — A In those cases the slower-than-classical

decay ¢~ '/? has been well documented to arise from
the “depletion zone” that forms around each sur-
viving reactant after the initially very close pairs
have quickly reacted [1]. Diffusion in one dimen-
sion is known to be an ineffective mechanism to-
ward refilling the depletion zone. The same hap-
pens here in the A + B — 0 reaction: After the rapid
initial reaction of very nearby A-B pairs (classical
regime) each surviving A and B is surrounded by
a region relatively poor in the other species [10].
These depletion zones are not efficiently re-
populated by diffusion. In Fig. 1 we see that the
slope in this region is about 0.55 (over the first 10
steps).

After a sufficiently long time has elapsed, it is well
known [1-8] that the system evolves towards mac-
roscopic segregation and that {p(r, 1)) ~ t~¥* for
d < 4. At very long times the largest lattices show
the Zeldovich behavior. For the largest lattice we
find an average slope of 0.249 over the last decade
of the simulation. The crossover time from the
A + A depletion zone behavior to the Zeldovich
behavior is discussed below and found to be
t,~ 102

Finally, at long times finite volume effects will
affect the results of computer simulations. It is well
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known that this causes an exponential decay of the
density, {(p(r,t)> ~ e ¥, where y is a constant in-
versely proportional to the size of the system. This
behavior is expected to take over when the size of
each aggregate is of the order of the size of the
system, or, if the initial density is too small to lead
to segregation before finite size effects set in, when
the average distance between particles is of the
order of the size of the system. This is also shown
clearly in Fig. 1, where the smaller lattices show the
“peel off” due to finite size effects.

The “major” crossover time t, and average cross-
over density p, for d < 4 occur when the ¢~ %4
segregation behavior sets in. This occurs from the
depletion zone regime. We write the crossover den-
sity as a fraction of the initial density: p, ~ fypo,
where f; i1s a dimension-dependent fraction as-
sumed to be of O(1) and independent of the initial
density. This crossover time is found to be [9]:

1
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The equations for p, and ¢, can be verified with the
numerical data from Fig. 1. The value of f; must be
determined from the simulations (but need only be
determined for one value of p,). If our assumption
that fy is independent of p, is correct, then t,p3"
should be independent of the initial density p,.
Likewise, the ratio of the crossover density to the
initial density, p,/po, should be independent of p,.
Our simulations confirm these behaviors.

If the initial density is high enough for there to be
a segregation regime, finite size effects set in when
the aggregates of like molecules are of the order of
the size of the system. It is known [10] that the
linear size of the aggregates on the average grows
with time as aq(Dr)'/?. Here ay is a dimension-
dependent constant of proportionality, which ap-
pears [10] to be approximately 4 in one dimension.
Finite size effects are thus expected to set in at
a time ¢; such that the average linear size of the
aggregates in some fraction g4 ~ O(1) of the linear
size L of the system, aq(Dt)*? ~ g4L, ie.,

L2
e~ gi—5—.
o~ 9iap @

The dimension-dependent fraction g4 is expected to
be independent of the initial density, and must be
determined from simulations. For L = 100 we find
that finite size effects begin to set in when t =
t; ~ 20. According to Eq. (2), the average size of the
aggregates is approximately g,L ~ 4(Dt)'/? ~ 13,
ie., g1 = 0.13. Thus, each aggregate of each species
is on the average larger than 1/10 of the size of the
system (which of course must contain at least two
aggregates). Since we assume that the fraction g4 is
independent of L, we can use the value obtained
above, g; ~ 0.13, to predict the crossover times t;
for the other lattices. We find for L = 1000 that
te ~ 2103, and for L = 10000 we obtain
fr ~ 210%. . Both are consistent with the simula-
tion results of Fig. 1.

We conclude that the following sequence of be-
haviors is present: First at early times the A + B
reaction behaves the same way as the A + A reac-
tion. Both exhibit classical behavior at very early
times but quickly cross over to the depletion zone
behavior ¢ %2 for d < 2. This parallel behavior
continues up to a time t,, when segregation effects
begin in the A + B reaction. We estimate the time ¢,
in Eq. (1) and, in particular, predict the product
t,p3’* to be independent of the initial density po.
The transition to the Zeldovich regime is therefore
expected at shorter times for higher initial densities.
We also predict the crossover density p, to be
proportional to po. Our simulations confirm these
predictions quantitatively. Thus, a simulation for
a single initial density in a particular dimension
allows us to predict this crossover quantitatively
for any other initial density. We find that in
one dimension t,p, ~ O(10°%)-0(10!) and p,/p ~
0.3-0.5. From these results we can also predict
whether the transition to the Zeldovich regime oc-
curs earlier or later in two dimensions than in one
dimension for a given value of p,. We find that ¢,(2
dimensions)/t,(1 dimension) = Kp,, where K is of
0O(10*)-0O(102). Thus, except for very low initial
densities, the transition will set in later in two
dimensions.

The Zeldovich regime in all cases ends when
finite lattice size effects set in. These effects begin
when the average linear size of each kind of aggreg-
ate (which grows in time as t'/?) is within an order
of magnitude of the size of the system, independ-
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ently of the size of the system. In other words, the
finite size effects for lattices of linear size L start
at a time t;~ L? [cf Eq. (2)]. Again, we
have determined dimension-specific parameters
for this crossover from our simulations. Further-
more, from the finite size results we obtain informa-
tion about the segregation process in infinite
lattices.

Finally, we stress that our simulations are
in excellent agreement with our theoretical
predictions.
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