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We derive a hierarchy of kinetic regimes and crossover conditions for elementary A+ A+0 and A+B+O batch reactions from 
a nonclassical reaction-diffusion formalism that includes spatial fluctuations. This paper addresses the case of a spatially random 
initial distribution of reactants; correlated initial conditions are discussed in another paper. For low dimensions (d<2) we find 
that both A+A+O and A+B-+O reactions depart (swiftly) from the classical behavior toward a “depletion zone regime” with 
non-Hertxian nearest neighbor distributions and nonclassical rate laws. Eventually the (A-B) density difference fluctuations 
take over in the A+B+O case and lead to the segregated Gvchinnikov-Zeldovich asymptotic behavior with its peculiar rate laws. 
We give scaling laws for the crossover time and crossover density, with explicit dependencies on the initial density and on the 
dimension. Similarly, in three dimensions the crossover from the classical to the segregated Zeldovich regime is derived for the 
A+B+O reaction. Finite size effects differ significantly for the segregated and nonsegregated regimes. In the former case we obtain 
a relation between aggregate sizes and lattice sizes. Monte Carlo simulations bear out the scaling laws and provide the scaling 
coefficients. 

1. Introduction 

Diffusion-limited binary reactions in low dimen- 
sions under appropriate conditions lead to the spon- 
taneous formation of spatial structures and to asso- 
ciated “anomalous” rate laws for the global densities 
p(t) of the reacting species [ l-271. For example, the 
irreversible reaction A +A+0 under “normal” cir- 
cumstances is described by the rate law p= -kp2 
whereas [ 1,4,2 l-27 ] the asymptotic rate law for di- 
mensions d< 2 in an infinite volume is p = - kp ’ +2/d. 
Physically, the slow-down implied by the higher ex- 
ponent is a consequence of the spatial distribution of 
A’s. A random or “mixed” distribution of A’s has a 
Hertz distribution [ 281 of nearest neighbor dis- 
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tances and this distribution in turn leads to the nor- 
mal rate law [ 1,15,27 1. The salient characteristic of 
the Hertz distribution is its maximum at zero sepa- 
ration, indicative of the presence of many extremely 
close nearest neighbor pairs of reactant particles. An 
anomalous rate law implies a deviation from the 
Hertz distribution wherein there are now many fewer 
close reactant pairs [ 1,15,27 1. Indeed, in dimensions 
lower than two an initially random distribution 
quickly settles into a distribution that peaks at a ti- 
nite (nonzero) nearest neighbor separation, leading 
to an almost crystal-like average arrangement of 
reactants. This nonrandom distribution arises from 
the fact that diffusion is not an effective mixing 
mechanism in low dimensions [ 29 1. 

Another example of anomalous kinetics in low di- 
mensions is the diffusion-limited irreversible reac- 
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tion A + B+ 0. Under normal circumstances the rate 
laws for the global densities p,., and PB are PA =h = 
-@A. IfPA(t=O)=PB(t=O)~p(t=O), then the 
densities of the two species are equal at all times and 
we can dispense with the subscripts so that once again 
p= - kp*. The actual asymptotic rate law in an infi- 
nite volume in dimensions de 4 for an initially ran- 
dom distribution of reactants is instead b= 

-kp . 1+4/d In this system the principal cause of the 
anomalous behavior is the formation of aggregates of 
like particles [ l-20 1. The spatial regions in which the 
density of one type of particle is overwhelmingly 
greater than that of the other grow in time (while of 
course the total density within each aggregate de- 
creases with time). Since the reaction can essentially 
only occur at the interfaces between aggregates, and 
since the number of these interfaces decreases with 
time, the reaction slows down relative to the rate that 
would describe a random mixture of reactants. Again, 
this behavior reflects the fact that diffusion is not an 
effective mixing mechanism in low dimensions. Ini- 
tial spatial fluctuations in relative densities can thus 
grow in size as the reaction that eliminates close op- 
posite pairs proceeds. 

This description of the A + B+ 0 reaction depends 
on the presence of initial spatial fluctuations in the 
reactant densities. The particular rate law p= 

-kp l +4/d more specifically depends on an initial dis- 
tribution of reactants that is completely random. A 
random initial distribution leads to fluctuations in the 
initial lucul densities so that the difference in the 
number of particles of type A and type B in a volume 
V is initially of the order of the square root of the 
total number of particles in that volume. 

In this paper we discuss the various regimes of ki- 
netic behavior of the densities of reactants from the 
initial time until the asymptotic behavior is reached. 
We attempt to characterize the various regimes and 
to estimate the crossover times from one regime to 
another. Our analysis in this paper deals with the par- 
ticular situation when the particles are initially placed 
in the system in a random way. The parallel analysis 
for systems with initially correlated pairs of particles 
is presented elsewhere [ 30,3 11. We also present nu- 
merical simulation results in one and two dimen- 
sions and analyze these results in terms of our model. 

Much of our analysis is based on the reaction-dif- 

fusion model for the local densities pA (r, t > and pB ( r, 
t) [6,31,32]: 

bA(r, t) =DV*p,(r, 0 -QA(r, t)b(r, 1) (1) 

and similarly for PB (r, t ), where kg is the time-inde- 
pendent local rate coefficient and D is the diffusion 
coefficient for both species. It turns out to be conve- 
nient to deal instead with the difference and sum 
variables [ 6,3 1,321 

y(r, 1) = 1 L(r, t) -pB(r, 0 1 , (2) 

p(r, t) = f b?4(ry t) +PBtry t> 1 . (3) 

The difference variable satisfies the linear diffusion 
equation 

P(r, t) =DV*y(r, t) , (4) 

which can of course be solved exactly (see below). 
The sum variable ( 3 ) satisfies the equation obtained 
by summing ( 1) and its partner for h : 

P(r, t) =DV*p(r, 0 -kn[p2(r, 0 -y*(r, 0 1 . (5) 

This equation is more difficult to deal with, and can 
only be handled approximately. 

In section 2 we specify in detail the initial condi- 
tion to be considered in this paper and explicitly solve 
for the difference variable for this initial condition. 
Section 3 describes our simulation methods. Section 
4 deals with the analysis of the sum variable equation 
for the random initial distribution of reactants, the 
different kinetic regimes that might be observed as 
the densities decay from their initial distributions, 
and the crossover times from one sort of kinetic be- 
havior to another. We also present simulation results 
and analyze them in terms of our theoretical predic- 
tions. Section 5 presents our conclusions and a brief 
overall summary of our results. 

2. Initial condition and difference equation 

Consider the reaction A+ B-PO. We deal with the 
situation in which A’s and B’s are initially placed at 
random locations in the system. Thus, initially IV 
molecules of each type are placed in the system at sta- 
tistically independent locations {rj”} and {rj’} with 
j= 1, . . . . ZV. The initial local densities are then given 

by 
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p~(r,O)= 5 &r-r?). 
j=l 

The initial distribution is specified by the distribu- 
tion function 

p(rf, . . . . f-2; r?, . . . . r:) 

(7) 

where we have used the fact that for a random distri- 
butionofmoleculesp(P)=p(B)=l/Vand Visthe 
system volume. 

2.1. Solution of difference equations 

The difference variable satisfies the linear diffu- 
sion equation (4), which is solved in Appendix A. 
The quantity of interest involving the difference 
variable (cf. ( 5 ) ) is its mean square value ( y2 (r, t ) ) , 
where the brackets indicate an average over the ini- 
tial distribution of reactants. This is also calculated 
in Appendix A. 

The result for a random initial distribution of reac- 
tants is given in eq. (A. 13 ) : 

PO <r2trT t, >= 2(87cDt)d/2 =@- 
d/2 

. (8) 

Here po= iV/ V is the initial density of either species 
and ( 8 ) defines the coefficient Q. 

2.2. Discretization 

Our Monte Carlo simulations are performed on 
discrete lattices, as are some of the subsequent de- 
tailed calculations. The lattice sites are separated by 
a lattice constant a, and the total number of lattice 
sites is L, so that V= La4 The strict continuum limit 
corresponds to the limit a+0 and L-m such that I/ 
remains finite. The continuum densities p (r, t ) and 
y(r, t) have units of number per unit volume, while 
in our simulations we deal with densities in units of 
number per lattice site. Denoting the lattice densities 
by pi” (Z, t) where the index 1 labels the lattice sites, 
we have the relationp-pl”‘/a’. The maximum value 

of p’” when multiple occupancy of a site is not al- 
lowed is thus unity. The diffusion coefficient D in the 
discretized problem has the value D= 1. Thus the 
distance scale implicit in the diffusion coefficient is 
different in different dimensions. 

In order to simplify notation in our discussion of 
simulation results in subsequent sections we will in 
general omit the superscript “lat” even when dealing 
with lattice densities since the usage will be clear from 
the context. 

3. Methods of simulations 

The simulations of the A + B + 0 chemical reaction 
are performed using the conventional techniques de- 
scribed in our earlier papers [ 1533,341. Briefly, lat- 
tices of sizes up to 1 O6 sites in one dimension and up 
to 2000 x 2000 = 4 x 1 O6 sites in two dimensions are 
generated. A and B particles are initially placed in the 
lattice at random but disallowing multiple occupancy 
of sites. Cyclic boundary conditions are utilized at the 
ends of the lattice. The reaction process proceeds in 
the usual way: The particles diffise on the lattice by 
performing independent random walks to nearest 
neighbor sites. Two A’s or two B’s are not allowed to 
occupy the same site. If an A and a B step onto the 
same site they react, which means that they are re- 
moved from the system. Cyclic boundary conditions 
are employed at the ends of the lattice for the random 
walk as well. We monitor the particle density as a 
function of time for times ranging up to 10’ steps (and 
in one case up to 1 OS steps). 

4. Kinetic behavior 

Our subsequent analysis is based primarily on the 
ensemble average of ( 5 ) over the initial distribution 
of reactants: 

<b(r, t) > =DV’<p(r, 0 > 

-kp[(P2(r,t))-(y2(r,f))l, (9) 

which makes the need for (8) apparent. Note that 
the squared difference variable appears as a source 
term in the reaction-diffusion equation: the fluctua- 
tions in the difference variable thus drive the dynam- 
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its of the system. When the fluctuations in the differ- 
ence variable are large they play an important role in 
the overall dynamics of the system. 

To proceed from this point one must find a way to 
deal with the quantity (p*(r, t)) and, in particular, 
with its relation to (p (r, t ) ) . Rather than attempting 
to construct a hierarchy of ever higher powers involv- 
ing p and y, we proceed along the following lines. 

First, for the initially random distribution of reac- 
tants we can of course calculate (p2(r, 0) ) exactly. 
This calculation is done in Appendix B. From eqs. 
(B.9) and (B.lO) with (B.9) we obtain 

<p2(r, 0) > = (p(r, 0) >2+p,,<p(r, 0) > 

=P$ +Pm&&o * (10) 

Here we have dropped terms of O(N/ V’). In Ap- 
pendix B we arrived at ( 10) by starting with a dis- 
crete lattice of unit cells of volume a4 The quantity 
pmax is the highest possible density of each reactant in 
the simulations with which our results will subse- 
quently be compared, eq. (10) is obtained if one as- 
sumes that at most one molecule can be placed at each 
lattice site, whence pm_= 1 /2ad. In a continuum 
model strictly speaking adO andp,_-tco. However, 
we retain a as a finite quantity to represent the effect 
of the finite size of the A and B molecules and the 
resultant excluded volume effect. Note that the sec- 
ond term on the right-hand side of ( 10) is greater 
than the first (unless po=p_, which is the maxi- 
mum possible value of PO). 

The entire crux of nonclassical reaction kinetics is 
the departure of ( p2 ( r, t ) ) from the relation ( 10). 
To characterize this departure we write 

(p2(r,t))=?(p(r,t))2+~lp,,(p(r, 0) , (11) 

which constitutes a definition of q and CL. We argue 
below that the variation of p between 1 and 0 (and, 
less importantly, that of q between 1 and l/2) cap- 
tures all the important kinetic regimes of the A+ B-+0 
reaction. 

4.1. Kinetic regimes 

The first kinetic regime occurs at t=O. The diffu- 
sion term in eq. (9 ) vanishes at t = 0 since (p (r, 0) ) 
=po is independent of r. The average (p2(r, 0)) is 
given in ( 10). Clearly, (8) is inappropriate for the 

evaluation of the initial mean square difference vari- 
able (the difficulty arises from the limits that have 
been taken in evaluating ( 8 ) ) . Instead, we again use 
(B.9) and (B.lO) with (B.9) to evaluate directly 

(r’(r,o)>=p,,(p(r,O))=p,~~ (12) 

(the infinity in (8 ) as t+ 0 arises from the fact that 
in the strict continuum limit pmax+oo). Thus, eqs. 
(10) and (12) in (9) at t=O yield 

<b(r, 0 > I t=~ =-k<p(r,0))2. (13) 

Integrating over r and defining the average global 
density 

p,(t)= i dr<p(r,t)) , s (14) 

we can write 

b*(t) I t=o =-k&O) > (15) 

Here we have noted that p,(O) = (p(r, 0)) =po. Eq. 
( 15) is precisely the clussicul rate equ@on for a bi- 
molecular reaction. We note that the local rate coef- 
ficient kg is also the rate coefficient for the global rate 
law in this case. Thus, very near t=O we have 
P~(O=PO/(~+~POO and also <p(r, O)=PO/ 

( 1 + Qot). We must in general use this more precise 
form rather than (p) - t -’ because t is so short in 
this regime. Note also that this behavior could have 
been deduced directly from the original reaction-dif- 
fusion equation ( 1) since at t= 0 the diffusion term 
DV’(p,) vanishes because (pA) is independent of 
r, and the average of the product (peps) separates 
exactly into the product of the averages, 

(PA(r,O)PB(r,oO))=(PA(r,O))(PB();O)). (16) 

The analysis that leads to classical behavior at very 
early times is unstable to any fluctuations that lead to 
a deviation from the strict equality ( 16 ). Precisely 
such fluctuations are of course embodied in the driver 
( y2 (r, t) ) . Thus, as soon as these fluctuations de- 
stroy the equality so that 

(P&, t)PB(r9 t) > f (PA(r9 t) > ‘d&d); t) > , (17) 

another kinetic behavior necessarily sets in. This is 
associated with the nonrandom distribution implied 
by ( 17 ) . It is clear that contiguous pairs of A and B 
molecules will react quickly, and unless diffusion can 
just as quickly replenish such pairs, there will be de- 
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viations from a random distribution as reflected in 
( 17). Although we are unable to estimate the time 
(which we call t,,) at which the classical behavior 
ends, simulations (cf. below) indicate that it is ex- 
tremely short (i.e., while pot< 1). 

Since (8) is an exact result, any deviations from a 
strictly random distribution are already built into it. 
In ( 11) any deviations from randomness appear in 
the deviation of ,u and rl from unity. However, as long 
as p is still of 0( 1 ), the second term on the right- 
hand side of ( 11) dominates the first. 

In order to balance contributions of various terms 
in (9) so as to establish the time dependence of (p(r, 
t) ) in the time regime where the distribution of reac- 
tants may no longer be strictly random but ,u is still 
of 0 ( 1) we explicitly substitute (8 ) and ( 11) into 

(9): 

(b(r, 0 > =DV’<p(r, 0 > 

-b,[q(p(r, t))2+wmax(P(r, 0)-Qet-d/21 . 

(18) 

For d= 1 the dominant time dependence of (p( r, 
t)) mustbeoftheform (p(r,t))-(Q/~mlu)t-“2. 
The largest terms in ( 18), which are the last two 
terms, then balance each other. All other terms in 
( 18) (including corrections to the dominant behav- 
ior) balance each other at higher orders in time. For 
d>,2 the dominant balance is established with the 
leading behavior (with perhaps logarithmic correc- 
tions in time in two dimensions) (p(r, t)) -tsl. 
When d= 2 the dominant balance involves the diffu- 
sion term, the term linear in the density, and the last 
term in ( 18). In dimensions d> 3 the last term be- 
comes unimportant. 

In this “intermediate” time regime we have thus 
found that the main time dependence of the mean 
density goes as 

(p(r, t)) mtmd12, d<2, 

“t-l, d>2. (19) 

This behavior is nonclassical in one dimension, and 
is completely analogous to the nonclassical regime of 
the A+A+O andA+A-+A reactions [ 1519,211. In 
those cases the slower-than-classical decay t --1/2 has 
been well documented to arise from the “depletion 
zone” that forms around each surviving reactant after 

the initially very close pairs have quickly reacted 
[ 1,27 1. Diffusion in one dimension is known to be 
an ineffective mechanism toward refilling the deple- 
tion zone [ 1529,351. The same happens here in the 
A + B-P 0 reaction. After the rapid initial reaction of 
very nearby A-B pairs (classical regime) each sur- 
viving A and B is surrounded by a region relatively 
poor in the other species [ 1516,381. These deple- 
tion zones are not efficiently repopulated by diffu- 
sion. In our analysis of the dominant balances of terms 
in ( 18) in one dimension, the diffusion term was in- 
deed a higher-order contribution while the dominant 
contribution came from the species fluctuational 
contribution. 

In two dimensions the behavior in time is classical 
in this regime, (p(r, t) ) -t-l, perhaps with loga- 
rithmic corrections that reflect a remnant of a non- 
classical contribution. Such corrections are well doc- 
umented in the A+A problems [ 1534-371. In 
dimensions da3 the behavior is dominated by the 
classical contributions. Diffusion is now effective in 
countering any depletion around reactants, and spe- 
cies density fluctuations play only a higher order role. 

After a sufficiently long time has elapsed, it is well 
known [ l-5,15,16] that the system evolves towards 
macroscopic segregation and that (p( r, t) ) N t -d’4 
for d< 4. This behavior is captured by our analysis if 
weset~=O((p)/p,)and~=1/2in(ll) (seebe- 
low). The choice q = l/2 implies a complete segrega- 
tion of species, i.e., that (pA(r, t)&(r, t)) ~0. This 
choiceis not crucial to the term balancing arguments. 
More important is the choice of CL. One might be 
tempted to assume that the t -di4 behavior is mainly 
due to the macroscopic segregation, and that the spa- 
tial distribution of molecules within each aggregate is 
of less importance. This is not the case: indeed, were 
we to assume an essentially random distribution 
within each aggregate we would set p cz 1 and we would 
be back to the previous analysis, with the result that 
(p (r, t ) ) - t -d’2 for d d 2. In reality the formation of 
macroscopic aggregates is accompanied by a nonran- 
dom (clumped up) distribution within each aggre- 
gate[15,16].Hencethechoicepe11.Wewillseethat 
setting P= 0 ( (p) /p_) captures the proper behav- 
ior. Thus in this regime in place of eq. ( 18) we now 
analyze the balances implicit in 
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(AC t> > =DV2<P(C t) > 

-/&[a(p(r, t))2-Qt-d'2] . (20) 

where (Y = 0 ( 1) . This is the form that we assumed in 
ourearlierwork [6,31,32]. 

For d< 4 the dominant balance must occur inside 
the square brackets, whence 

0 
112 

(p(r,t))- 9 t-d’4. (21) 

The correction to (2 1) that will allow the balance of 
the remaining terms has a leading contribution of or- 
der t-(1+d’4). For d>4 a balance occurs if (p(r, 
t) ) -Bt- l (classical behavior) with B independent 
of r. An added correction of order t -2 allows the bal- 
ance of the contributions at the next higher order, 
which does not involve the ( r2) - f -” term at all 
(this latter term does enter when d< 4). 

Any simulation with which we wish to compare our 
analysis necessarily takes place in a finite volume. At 
sufficiently long times, finite volume effects will 
therefore affect the results of such simulations. It is 
well known that finite volume effects eventually cause 
an exponential decay of the density: 

(p(r, 0) -e+, (22) 

where x is a constant inversely proportional to the size 
of the system. This then is the dominant decay at very 
long times. This behavior is expected to take over 
when the size of each aggregate is of the order of the 
size of the system, or (if the initial density is too small 
to lead to segregation before finite size effects set in) 
when the average distance between particles is of the 
order of the size of the system. 

4.2. Crossovers 

The “major” crossover time t, and average cross- 
over density pS for d< 4 that we wish to estimate oc- 
cur when the t -d’4 segregation behavior sets in. For 
d< 2 this occurs from the depletion zone or residual 
depletion zone regime while for d>2 it occurs di- 
rectly from the classical regime. In either case, the 
characteristic that determines this onset is the rough 
balance of all three terms in the square brackets in 
( 18 ) . We recall that well before this onset ,u - 0 ( 1) 
while in the segregation regime p - 0 ( (p ) /p,, ) . At 
crossover we set q= l/2 assuming substantial segre- 

gation to have begun. We write the crossover density 
as a fraction of the initial density, 

PS -00 7 (23) 

where fd is a dimension-dependent fraction assumed 
to be of 0 ( 1) and independent of the initial density. 
The balance of the first two terms in the square 
brackets in ( 18 ) then yields k -fdpo/2pmax. The bal- 
ance of the first and third terms, pf/2- 
Qtcd12 - fdpg/2, yields for the crossover time, with 

Qgivenby(8) 

Eqs. (23) and (24) are the main results of this sec- 
tion to be tested against numerical simulations. The 
value of fd must be determined from the simulations. 
If our assumption that fd is independent of p. is cor- 
rect, then tspild should be independent of the initial 
density po. Likewise, the ratio of the crossover den- 
sity to the initial density, pJpo, should be indepen- 
dent of po. 

For d= 1 there is an additional crossover at very 
early times from the classical [po/ ( 1 + k&p,) ] to the 
depletion zone t- ‘I2 behavior. We do not have a 
quantitative estimate of this crossover time. It may 
be similar to that for the A+ A-A reaction, solved 
exactly by Ben-Avraham and Doering [ 19 1. 

Finally, at long times the finite size of the system 
causes an exponential decay of the densities. When 
the initial density is high enough for there to be a seg- 
regation regime, the finite size effects set in when the 
aggregates of like molecules are of the order of the 
size of the system. For d= 1 and d=2 it is known 
[4,5,38] that the linear size of the aggregates on the 
average grows with time as &(Dt)1’2. Here ad is a 
dimension-dependent constant of proportionality 
which, based on the work of Leyvraz and Redner 
[ 38 1, appears to be approximately 4 in one dimen- 
sion, There is actually a distribution of aggregates 
around this average which is skewed toward large ag- 
gregates. Finite size effects are thus expected to set in 
at a time tf such that the average linear size of the 
aggregates is some fraction gd= 0 ( 1) of the linear size 
L of the SyStfXn, Ud(Dtf)‘f2-g&, i.e., 

(25) 



P. Argyrakis et al. /Chemical Physics 177 (1993) 693-707 699 

The dimension-dependent fraction gd is expected to 
be independent of the initial density, and must be de- 
termined from simulations. 

On the other hand, if the initial density is low then 
segregation may never be observed because finite size 
effects set in when the average distance between par- 
ticles is of the order of the size of the system, i.e., when 

Pr’ N Ld. The associated time tf depends on whether 
the density pf is achieved in the depletion zone re- 
gime or in the classical regime, and must be extracted 
accordingly. 

Fig. 1 summarizes a possible progression of kinetic 
behaviors as discussed above. In the figure we have 
assumed that tf z+ t,. 

4.3. Comparison with Monte Carlo simulations 

Fig. 2 shows our Monte Carlo simulation results 
for the reactant density as a function of time in one- 
dimensional lattices of various sizes L. The initial 
density in all cases is ~~~0.2 for each species. Here 
and below densities are always in units of particles 
per site. The initial slope in all cases is seen to be the 
same as that of the A+ A problem - indeed, the ini- 
tial slope in fig. 2 overlaps that of a direct A + A sim- 
ulation. In turn, A+ A kinetics is initially classical 
(slope = 1 in fig. 2) but very quickly crosses over to 

A+A behavior 

(a) - 

PO ________ 

l+Pcs p/2 

the t -‘I2 behavior characteristic of the depletion zone 
in the A + A reactions (slope = l/2 in fig. 2). We find 
that the “average slope” over the first 10 steps is 0.55. 
At very long times the largest lattices show the 
Zeldovich behavior. Indeed, for the largest lattice we 
find an average slope of 0.249 over the last decade of 
the simulation. The crossover time from the A+ A 
depletion zone behavior to the Zeldovich behavior is 
discussed below and found to be t, - 1 02. The smaller 
lattice simulations show the “peel off” due to finite 
lattice size effects. Note that each of the simulations 
for L = 100, 1000, and 10,000 was cut off when only 
a single particle of each kind was left on the average. 
For L = 100 we find that finite size effects begin to set 
in when t = tp 20. According to eq. (25 ), the average 
size of the aggregates is approximately 
g,L~4(Dt~)‘/~- 13, that is, g, =0.13. Thus, each ag- 
gregate of each species is on the average larger than 
1 / 10 of the size of the system (which of course must 
contain at least two aggregates). There is a substan- 
tial probability of even larger aggregates [ 38 1. 

Since we assume that the fraction gd is indepen- 
dent of L, we can use the value obtained above, 
g, N 0.13, to predict the crossover times &for the other 
lattices. We find for L = 1000 that tf- 2 x 1 03, and for 
L = 10000 we obtain tf - 2 x 1 OS. Both are consistent 
with the simulation results. To emphasize this point, 

p.4 e-* 

0 

t 

to 
t 

L 

t 

tf 

t 
classical depletion zone Zeldovich finite system size 

(segregation) 

A+A behavior 

(b) /-- 

P0 ________ , t-l 
l+PJ t-w e-* 

0 

t 

t. 

t 

tt 

t 

classical Zeldovich finite system size 
(segregation) 

Fig. 1. Possible time progressions of kinetic behaviors discussed in the text for a random initial condition. (a) d< 2; (b) d= 3. 
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Fig. 2. (p) -‘-PO’ versus t for lattices of various sizes L in one dimension with a random initial condition. The initial density of each 
species in number per lattice site is p,,=O.2 in all cases. 

I 
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Fig. 3. (p) -‘-PO’ versus resealed time t/L2 for the same cases as in fig. 2. 

in fig. 3 we have replotted the results of fig. 2 as a Note that although the larger systems of course 
function of the scaled time t/L2. On this scale the fi- contain larger aggregates when finite system size ef- 
nite size effects for all the finite lattices begin to ap- fects set in, the number of particles per aggregate at 
pear at approximately tf/L2- 2x 10V3. This figure that point is smaller in the larger lattices since more 
makes evident the scaling relation tf- L’. time has gone by and therefore the total density has 
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had an opportunity to decrease further than in the 
smaller lattices. 

Fig. 4 shows our Monte Carlo simulation results 
for the reactant density as a function of scaled time 
in a one-dimensional lattice for various initial densi- 
ties pO. Straight lines have been drawn to aid in the 
visualization of the crossover times t, from one ki- 
netic behavior ( t - ‘I2 depletion zone behavior at early 
times) to another (t - li4 Zeldovich behavior at later 
times). The lowest densities do not reach the cross- 
over within the time regime shown. Finite lattice size 
effects are not apparent in the time regimes shown in 
this figure. The crossover time t, is of course not 
sharply defined and therefore these lines are not to 
be taken too literally. The product t& is clearly fairly 
insensitive to the initial condition, as predicted in 
(24). The observation that tSpa=O( lo’)-O( 10’) 
leads to fd-0.3-0.5. This in turn leads to values of 
pS N fdpo that are indeed consistent with the crossover 
densities in fig. 4. 

Fig. 5 shows the Monte Carlo results for the reac- 
tant density versus time in two-dimensional lattices 
of various sizes (compare with fig. 2). Again the ini- 
tial density in all cases is po= 0.2 for each species. The 

initial slope is consistent with the A+ A behavior of 
unity within logarithmic corrections. The average 
slope over the first 10 steps is 0.78. At long times the 
largest lattices show Zeldovich behavior: we find a 
slope of 0.53 in the time domain 104-10’ for the larg- 
est lattice -the crossover time to this behavior occurs 
at t,-250 (see below). 

For L = 60 we find that finite size effects begin to 
set in when t = tp 150. We do not have explicit infor- 
mation about the proportionality constant a2 in (25 ) , 
so we can only determine the ratio g2/a2 from this 
information, gJa2 N ( Dtr) ‘12/L N 0.14. If a2 N a, = 4, 
this would give g2 N 0.6, but we have no basis for this 
particular choice. However, since we assume that both 
ad and gd are independent Of L, we can use the ratio 
obtained above to predict the crossover times tf for 
the other lattices according to the relation 
tf- 0.04 1 L2. We thus find for L = 200 that tp 1660, 
for L=600 that tf- 1.5~ 104, and for L=2000 that 
tf- 1.7~ 10’. These are all consistent with the simu- 
lation results. Again, to emphasize this point, in fig. 
6 we have replotted the results of fig. 5 as a function 
of the scaled time t/L2. On this scale the finite size 
effects for all the finite lattices begin to appear at ap- 

Fig. 4. (p) -‘-PO’ versus tpg in one dimension with a random initial condition for the various initial densities indicated. Simulations 
are on one-dimensional lattices of one million sites. The initial densities are in number per lattice site. 
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Fig. 5. (p) -‘-PO’ versus t for two-dimensional lattices of various sizes LxL with a random initial condition. The initial density of 
each species is p0 = 0.2 in all cases. 
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Fig. 6. (p) -‘-PC’ versus resealed time t/L* for the same cases as in fig. 5. 

proximately tf/L * - 4 x 1 O-*. This figure again makes 
evident the scaling relation tp L2. 

Fig. 7 shows our Monte Carlo results for the reac- 
tant density as a function of scaled time in a two-di- 

mensional lattice for various initial densities po. The 
crossover from the early time t-l A+ A behavior to 
the t-II2 Zeldovich behavior has been noted at the 
higher initial densities (we have not explicitly drawn 
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! 2-dim 
- L=2,000x2,000 

Fig. 7. (p) --I-p;’ versus tp,, in two dimensions with a random initial condition for the various initial densities indicated. Simulations 
are on two-dimensional lattices of 2000 X 2000 sites. 

in the two slope lines for p. = 0.02 although the tran- 
sition is visible there as well; at the lowest density fi- 
nite size effects set in too soon to see this transition). 
Again the insensitivity of tSpo to the initial density as 
predicted in (24) is evident. With the value& 0.03 
read from these results, one can see that the predic- 
tion pS -fdpo is again excellent (i.e., fd is independent 
of PO). At very long times the crossover to finite size 
effects is apparent in the upturn of all the curves. 

5. Conclusions 

In this section we summarize the highlights of our 
findings, following the kinetic progressions shown in 
fig. 1. We predict the following sequence of behav- 
iors. First at early times the A+B reaction behaves 
the same as the A + A reaction. Both exhibit classical 
behavior at very early times but quickly cross over to 
the depletion zone behavior t -d’2 for d< 2 with log- 
arithmic corrections for d= 2 and classical behavior 
for d> 3. This parallel behavior continues up to a time 
t., when segregation effects begin in the A+B reac- 

tion. We estimate the time tS in eq. (24) and, in par- 
ticular, predict the product tsp$ld to be independent 
of the initial densitypo. The transition to the Zeldov- 
ich regime is therefore expected at shorter times for 
higher initial densities. We also predict the crossover 
density ps to be proportional to po. Our simulations 
in both one and two dimensions confirm these pre- 
dictions quantitatively. Thus, a simulation for a sin- 
gle initial density in a particular dimension allows us 
to predict this crossover quantitatively for any other 
initial density. We find that in one dimension 
tSpo~O(lOo)-O(10’) andp,/p,-0.3-OS.Intwodi- 
mensions tspo-0( lo’)-0( 102) and ps/po-0.03. 
From these results we can also predict whether the 
transition to the Zeldovich regime occurs earlier or 
later in two dimensions than in one dimension for a 
given value of po. We find that t,( 2 dimensions) /t. ( 1 
dimension) =oo where K is 0( lo’)-0( 102). Thus, 
except for very low initial densities, the transition will 
set in later in two dimensions. 

The Zeldovich regime in all cases ends when finite 
lattice size effects set in. These effects begin when the 
average linear size of each kind of aggregate (which 
grows in time as t’12) is within an order of magnitude 
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of the size of the system, independently of the size of 
the system. In other words, the finite size effects for 
lattices of linear size L start at a time ffw L2. Further- 
more, from the finite size results we obtain informa- 
tion about the segregation process in infinite lattices. 

We can thus summarize the major novel features 
of our results as follows: 

( 1) At early times the A+ B-+0 system does not 
segregate. Instead it behaves exactly as does the 
A+A+O system, with both classical t-l and (for 
d < 2 ) nonclassical t -di2 behavior. 

(2 ) This behavior stops at a time & when the seg- 
regation process begins. We have found scaling laws 
for ts and for the densityp, at time t,. Our simulations 
yield the unknown dimension-specific parameters for 
d= 1 and d= 2. 

(3) Eventually finite system size effects set in when 

the segregated aggregates are within an order of mag- 
nitude of the size of the system (linear dimension) 
at a time tf whose scaling behavior we have con- 
firmed. Again, we have determined dimension-spe- 
cific parameters for d= 1 and d= 2 from our simula- 
tions. These results provide information on the 
segregation process in infinite lattices. 

Finally, our simulations are in excellent agreement 
with our theoretical predictions. 
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Appendix A. Solution of difference equations 

The solution of the linear diffusion equation (4) is well known to be given by 

y(r, t)= L VFI dr’exp[ -i&s(r-r’)] exp( -Dk2t)y(r’, 0) , (A.1 1 

where (for periodic boundary conditions) k = 2x4 V and n is a d-tuple of integers. 
We need to evaluate 

(y2(rJ))=& z 1 dr, exp[ -ik,-(r-r,)] 
s 

dr2exp[ -ik2*(r-r2)] 

xexp[-~(k:+k:)tl(y(r,,0)Y(r2,0))3 (A.21 

where the angular brackets indicate the average over the initial distribution of A’s and B’s. The initial difference 
variable is given by half the difference between the two expressions in ( 6 ) , so that 

(y(rly OMr2~0> > = i c $ f&r, -$I -J(rl -f-i”) 1 j$l [S(r2 -r,A)-S(r2 -ry> I) . (A-3) 

For random initial conditions this expression can immediately be rewritten as 

tr(c, OMr2,O) > = - +N2(6(rl-rf)d(r2-r~))-@2(G(rl-r?)8(r2-r~)) 

+fN(N-1)(6(r,-r~)S(r2-r~))+~lv(N-1)(6(rl-r~)6(r2-r~)) 

+$N(d(r,-r?)6(r2-rt))+tiV(d(r,-r?)S(r2-r?)), (A.4) 

where we have collected and properly weighted (by their frequency of occurrence) the different types of terms 
that occur in (A. 3 ). In all but the last two terms in (A.4) the random initial distribution (7) allows us to write 
the averages of products as products of averages, e.g., 
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(Str, -rfV(r2 -47 > = <6trl 4)) <4r2 -rB) > 

= drp$J(rr-r$‘) drBid(r,-$)=A. 
s I 

The last two terms of (A.4) contain an average of the form 

(&rr -rf)&r,-r?)) = 
s 

dr? $S(r, -r?)6(r2 -rt)= +S(r, -r2) . 

Thus eq. (A.4) can be rewritten as 

(y(rr, O)y(rz, 0)) = - $ + $&rr -r2) . 

Substituting this result into (A.2) leaves 

(r’(r,t))=- 2V4 ~ x C 
( J 

2 dr, exp[ -ik*(r-r,)] exp( -Dk2t) 
> 

+&jd 
rl exp[ -i(k, +k,)*(r-r,)] exp[-D(k:+k$)t] . 

The first integral-sum in (A.8 ) gives 

dr,exp[-ik.(r-r,)]exp(-Dk2t)= c GQOexp(-Dkt)=V. 
t 

The second integral-sum in (A. 8 ) gives 

FZI 
dr, exp[ -i(kr +k2).(r-rl)] exp[ -D(k?+kz)t] = Vc exP(-2%0 . 

kkl 

Collecting (A.9) and (A.10) in (A.8) gives us so far 

(A.51 

L4.6) 

(A.7) 

(A.81 

(A-9) 

(A.lO) 

(y2(r, t)) = - $ + $& C exp( -2Dk:t) . 
k1 

(A.ll) 

The sum in (A. 11) cannot in general be done in closed form. However, it can be carried out in the large- 
volume limit, where the sum can be converted to an integral: 

lim $z exp(-2Dk?t)= - 
(2$ 

dkexp(-2Dk2t)= dkkd-‘exp(-2Dk2t). (A.12) 
V-C.3 

Clearly the first term in (A. 11) is negligible in this limit and so we rewrite (A. 11) as 

N 1 m 
(r2(r,t))= v2dXd/2r(&2) o s 

dkkd-‘exp(-2Dk2t)= N 
1 

1/2(87~Dt)~‘~ ’ 
(A.13) 

Appendix B. Initial averages 

Several t=O averages appear in various contexts in the discussion in sections 2 and 4. It is useful to first 
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present these averages for a discrete system in which the A and B molecules occupy lattice sites separated by a 
lattice constant a. Subsequently we discuss the continuum limit of these results. In all the derivations in this 
appendix we retain the superscript “lat” on the lattice densities in order to avoid confusion. 

Molecules A and B are initially located at sites l? and l,“, respectively, withj= 1,2, . . . . N. The random initial 
distribution is reflected in the probabilities that replace p(rA) drA and p(rB) drB used in eq. (7), 
~(1~) =p(lB) = 1 /L. The average initial density of A molecules is given by 

where in analogy with (2. la) we have 

pka’(l, O)= 5 6(1,lj^> 
jzl 

and S represents a Kronecker delta. Substituting (B.2) into (B. 1) gives 

(pF(l, 0)) = $N . . . 
F F 

[6(1,1?)+*..+6(1, rp)] 
1 N 

N 
=- 

LN , *** N 5 5 
6(1,1;4)= FNLN-l 

5 
s(l,l:)+ (B.3) 

1 

The average of the product of the initial densities of A and B molecules is deduced in exactly the same way 
and is given by 

<P!?‘(& 0)&Y& 0) > = <P!.F(& 0) > <&‘(& 0) > = $ * 

The average of the square of the initial density of A particles is 

(B-4) 

< [P!P(& 0) 19 = {& tP!31,0)12,~~P(l:)= & . . . 5 [6(1,1p)+...+ql, l$)]’ . (B-5) 
I N 

When one carries out the square in the summand of (B. 5 ) , two types of terms (with appropriate weights deter- 
mined by their frequency of occurrence) appear: 

( [pff(l, 0)]2) = N(y) . . . 
? F 1 N 

qz, 1;4)6(1,1:)+ $$ . . . 2 [6(1, lf)12= N(y) + ;. 

Note that from (B.3) and (B.6) it follows that ( [pp(l, 0)12) # (pff (1,O))’ and that in fact 

< [Pf4a’(l, 0) 12> - <PFat(k 0) j2= ; - $3 

that is, the difference (B.7) is largerthan (pf4Bt)‘when N/L< 1. 
The continuum version of averages such as calculated in (B. 1) is 

r I-N N 

(B.7 

<pA(c 0) > = j . . . j ,g, driApA(r7 O) ,I1 dr?) ) (B.8) 

where pA ( r, 0 ) is given in ( 6 ) and p (r* ) is given following eq. ( 7 ) . The calculation of <j?A( r, 0) ) and of (PA (r, 
O)p, (r, 0) ) is straightforward and yields precisely what one expects from (B.3 ) and (B.4): 

<pA(c o))= F, 
N2 

<pA(); o)pB(r, 0) > = -. 
V2 (B.9) 
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The correspondence between the discrete and continuum mean square densities is somewhat more problematic, 
as can be seen from (B.6). Dividing (B.6) by ~~~yields 

<P:(r,o))= ‘~2 Vu‘,’ 

MN-l), N 1 (B.lO) 

The second term clearly diverges as a-+0. Indeed, a calculation based directly on the continuum average yields 

<P:(r, 0) > = 
iv(N-1) N 

p + 7 dr* [d(r-rA)]2, 
s 

(B.11) 

where the second term, being an integral of the square of a delta function, clearly diverges. Eq. (B. 11) provides 
insight into the nature of this divergence. 
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