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Neural Nets with Markers and Gaussian-distributed 
Connectivities 

E. FOURNOU, P. ARGYRAKIS & P. A. ANNINOS 

(Received for publication 2 3une 1992; revired paper accepted 20 3 d y  1992) 

We investigate probabilistic neural nets with the inclusion of chemical markers and 
Gaussian distribution of the connectivities of the constituent neurons. We  stun from the 
studied case of Poisson distributions and extend it to an analogous formalism for the 
acrivity of a netlet with Gaussian characteristics. The analytical formulae are somewhat 
more complicated due to the presence of markers. The results show that the change from 
a Poisson to a Gaussian distribution may cause a net to change class if it belongs to class 
A, making it class B. This trend is similar to the one observed in the absence of markers. 
We also observe interesting trends in the variation of the sizes of the markers by isolating 
the contribution of each subnet to the overall activity. Finally, the general repercussions 
of the present work to our understanding of the dynamics of the brain network are 
discussed. 

KEYWORDS: Neural modeling, chemical markers. 

1. Introduction 

Phylogenesis of the central nervous system from amphibia to mammals has been 
marked by the appearance of new brain structures as well as structural 
modifications and specialization of archaic structures. The emergence in mammals 
of a neocortex characterized by a multi-layered nerve cell arrangement, combined 
with the retention in the hippocampus of essentially monolayered paleocortex, 
constitutes an outstanding example of this evolutionary process. More detailed 
scrutiny reveals additional structural specializations; thus, sensory neocortex is 
five-layered, whereas the motor cortex shows much less distinct stratification. On 
the other hand, thalamic nuclei, with the exception of the lateral geniculate, do not 
show any clear laminar organization. The question naturally arises whether these 
structural features may reflect, and perhaps determine, fundamental differences in 
the mode of operation of distinct brain structures. Alternatively, the possibility may 
exist that such structural specializations merely represent anatomical 'accidents of 
development', perhaps reflecting phylogenetic origins, but playing a functional role 
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78 E. Fournou et al. 

no more significant than, for example, the appendix or the coccygeal vertebrae in 
man. 

It is difficult to provide an answer to this question from the anatomical and 
physiological data currently available. Although substantial neurohistological and 
neurophysiological information is available, meaningful correlation of these two 
sets of data can only be accomplished in very isolated instances. In general, unlike 
recording from invertebrates, where the simplicity and viability of the nervous 
system make it feasible to observe the elements recorded from, physiological 
studies of the mammalian central nervous system (CNS) are performed in a 'blind' 
fashion and it is exceedingly difficult to correlate these studies with the microscop- 
ical anatomy of the tissue. 

While the ultimate answer to the question of functional meaning of anatomical 
structure eventually must come from increased sophistication in experimental 
design and methodology, some insight may be obtained through the use of models. 
It is, of course, impossible to create a model which is a perfect replica of the system 
under study; to do so would presuppose perfect knowledge of the system, obviating 
the necd for the model. Rather, one may choose a certain smaller subset of 
properties and employ the model to study the effect of these properties on the 
operation of the model. 

In the present study, we investigate the relationship between structure, as 
expressed in patterns of interneuronal synaptic connectivity, and 'spontaneous' 
activity in finite nerve-cell assemblies. In constructing models of such neuron 
assemblies, connectivity among individual elements may be specified to follow a 
given probability law, maintaining all other parameters constant. It will be shown 
that the probability law selected to specify the connectivity pattern has a profound 
cffect on subsequent activity in the system. 

2. The Mathematical Formalism of the Model 

The mathematical formalism is based on the same assumptions as in previous work 
(Harth er al., 1970; Anninos et al., 1970; Anninos & Elul, 1974; Anninos & 
Kokkinidis, 1984). The present model focuses on two points: the concept of 
chemical markers and the effect of the Gaussian pattern of interneuronal connec- 
tivity on the network activity. The past studies have assumed a Poisson pattern of 
interneuronal connectivity. Thus, we will present as a starting point the basic 
equations for the activity of an isolated netlet with N markers for the Poisson 
pattern and then we will derive the equations for the Gaussian case. 

Neural nets are assumed to be constructed of discrete sets of randomly 
interconnected neurons of similar structure and function, termed nerlers, but neural 
connections are set up by means of chemical markers carried by the individual 
cclls, according to the theory of neural specificity (Sperry, 1943, 1963; Prestige & 
Willshaw, 1975). According to this theory, each neuron makes active synaptic 
connections only with those neurons in the network which carry markers with the 
highest chemical affinity to its own. Thus, the whole network is divided into neural 
subpopulations, each being characterized by its own marker. In a netlet with A 
neurons, each neuron at some instance may carry an electrical potential of a few 
millivolts, which it passes on to the neurons that it is connected to. The neuron is 
the elementary unit in these models, and it is a bistable element. It can be either 
in a resting or in an active (firing) state. The transition from the resting to the 
firing state of the neuron occurs when the sum of postsynapric potenrials (PSPs) 
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Neural Nets with Markers 79  

arriving at the cell exceeds a certain critical value, the threshold 0 of the neuron. 
PSPs may be either excitatory (EPSPs) or inhibitory (IPSPs), shifting the mem- 
brane potential closer to or further away from 8, respectively. A fraction h 
(0 < h < 1) of a certain number of neurons out of the total may be inhibitory with 
all of their axon branches generating IPSPs, while the rest of the neurons will be 
excitatory with all of their axon branches generating EPSPs. A neuron receives, on 
average, p +  EPSPs and p- IPSPs. The size of the PSP produced by an excitatory 
(inhibitory) unit is K' (K-). 

If a neuron fires at time t, it produces the appropriate PSPs after a fixed time 
interval r, the synaptic delay. PSPs arriving at a neuron are summed instantly, and 
if this sum exceeds 0, it will cause the neuron to fire immediately. Firing is 
momentary and causes the neuron to be insensitive to further stimulation for a 
time interval called the refractoty period. PSPs, if below 8, will persist with or 
without decrement for a period of time called the summation time, which is 
assumed to be less than the synaptic delay. It is also assumed here that the 
refractory period is greater than the synaptic delay, but less than twice the synaptic 
delay. If a number of neurons fire simultaneously at time t, then all neural activity 
resulting from this initial activity will be restricted to times t + r, t + 2r, . . . . 

The dynamic variable that is monitored here is the level of activity an, i.e. the 
fraction of neurons in the netlet that are active at t = nr. This quantity is a scalar 
and does not specify which particular neurons are firing in the netlet. The activity 
a, at time t = nr depends exclusively on the firing record of the netlet at time 
t = (n - 1)r. Therefore, the dynamics of the netlet is a Markov process. The  
expectation value < a., > of the activity at time t = (n + 1)r, is the average value 
of a,,. I generated by a collection of netlets with identical structural parameters and 
the same an. It is also assumed that all subsystems in the netlet with different 
markers are assigned the same fraction of active neurons an. The important 
constraint of markers gives rise to ordered patterns of nerve connections. Notwith- 
standing, the interconnections between the neurons are assumed to be made up at 
random; active connections are considered to be only these that belong to cells 
which carry the same type of marker. T o  be more specific, neural connections exist 
at random with no restriction among all cells, just as in the case with no markers, 
but the EPSPs (and IPSPs) are carried only to the connections that belong to the 
same marker. Connections between neurons of different markers are inactive, i.e. 
they carry no signal. The total number of the A neurons is therefore divided into 
several such subpopulations. If ml, m2,. . . , m~ are the fractions of neurons in a 
network of N markers corresponding to each subpopulation, then obviously, 
m l + m ~ + . . . + m ~ = l  . 

2. I. Poisson Distriburion 

The quantity < a n +  > is calculated similarly to previous studies (Harth et al., 
1970; Anninos et al., 1970). In a netlet with A neurons and N markers, if a, is the 
activity at time t = nr and mj, h, (j = 1,2, . . . , N )  are the fraction of neurons and 
the fraction of inhibitory neurons, respectively, carrying the jth marker in the 
netlet, then the expectation value of the activity in the netlet at time t = (n + l)r, 
for the Poisson approximation, is given by (Anninos & Kokkinidis, 1984): 
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80 E. Fournou et al. 

This equation results by adding all probabilities for all combinations of thresholds 
and PSPs that produce firing. The quantity 

is the probability that a neuron of the jth marker receives a PSP which exceeds its 
threshold 0 ,  and is expressed here in terms of Poisson distributions of the number 
of excitatory and inhibitory inputs to a cell. PL,, and Q are the probabilities that 
a neuron of the jth marker will receive L-EPSPs and I-IPSPs at time r = (n + l)?, 
and they are given by 

and 

The upper limit I,,,.,, in the sum is the total number of active inhibitory connec- 
tions of the netlet in the subsystem of the jth marker, and is given by 

Lox,, = Aanp ;h,m, (5) 

while q', in the upper limit in the inner sum is the minimum number of excitatory 
inputs necessary to trigger a neuron which has received I inhibitory inputs and 
carries marker j. It is given by 

q',= u [e j+  I K ; ) I K l ]  ( 6 )  

The function u[x] is defined as the smallest integer which is equal to or greater 
than x. 

The behavior at the origin of equation (1) is also of interest in this treatment. 
Thus we must take an expression for the slope of the curve < an+  > vs a, as 
a.+O, i.e. we must take 313~. < a n + ,  > la, = 0, from equation (1). The result is 

3 
m 1 - h )  for every q ,  = 1 

- , = I  
< a n + , >  1 . . = 0 = (  

3a. 
0 for every q ,  t 2 

where the parameter q ,  is defined as the minimum number of EPSP necessary 
to trigger a neuron in the absence of inhibitory inputs, and it is given by 
q ,  = ~ [ 0 ~ l K f ] .  

2.2. Gaussian Distribution 

Following the assumptions of previous papers (Anninos et al., 1970; Anninos & 
Kokkinidis, 1984), we at first examine the case of an isolated netlet with two 
markers, a and b. We assume here (Anninos & Elul, 1974) that the number of 
input PSPs per neuron will follow a Gaussian distribution if the average number 
of active inputs per neuron becomes sufficiently large, according to de Moivre's 
approximation. 

In a netlet of A neurons with two markers a and b, let m, and mb = 1 - m. be 
the fractions of neurons characterized with the chemical markers a and b, respec- 
tively, and h, and hb be the fractions of inhibitory neurons for the two markers, 
respectively. Let also a,A be the active neurons in the netlet at time t = nr. Then, 
one synaptic delay later, i.e. at t = (n + l)r, a number Aa.p: + (1 - hJm. of 
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Neural Nets with Markers 8 1 

EPSPs and a number Aa.p,h,m, of IPSPs will appear in the subnet of the a 
marker. Similarly, a number Aa.p; (1 - hb)mb of EPSPs and a number Aa.p i hbmb 
of IPSPs will appear in the subnet of the b marker. On average, a number 
i. = a.p (1 - hJm. of EPSPs per neuron and a number of r. = a.p;h.m. of IPSPs 
per neuron will appear in the subnet of the a marker, and similarly a number 
ib = a.p; (1 - hb)mb of EPSPs per neuron and a number tb = a.p 6 hbWZb of IPSPs per 
neuron will appear in the subnet of the b marker. If i,(W is the number of EPSPs 
input to a given neuron of the a(b) marker and io(ib) is the corresponding number 
of IPSPs, then the total PSP input to a neuron of the a(b)  marker, at time 
r = (n + I)r, is given by 

for marker a, and 

for marker b. 
If all the quantities I,, lb, i. and ib are sufficiently large, their distributions may 

be - approximated by normal distributions about their average values I., ib, 7. and 
ib .  Therefore, Gaussian distributors will also be the distributions of e,,., and 
eb,., since their variancies, Si,.+ and 62, respectively, are sums of the 
corresponding variancies of I., i. and h, ib, and the probabilities for I,, i,, h and ib 
are independent of one another. Thus, the mean PSP for the two markers a and 
b will be given by 

&,.+I =i .~ '  +;,K- =a,m,[p i ( l -h , )K '+p,h .K-]  (10)  

and 

and their vacancies by 

and 

respectively. 
The probability P.(a., m., 0.) that the PSP exceeds a threshold 0.  for the a 

marker is now 

&. n + l 

where 

and similarly, the probability Pb(a., mb, 0b) that the PSP exceeds a theshold 0b for 
the b marker is 

where 
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82 E. Fournou et al. 

Since, as in other previous work (Anninos et al., 1970; Anninos & Kokkinidis, 
1984), we also assume here that all neurons that are active at t = nr will be inactive 
at the next time step t = (n  + l ) ~ ,  because of refractoriness, there are exactly 
Am.(l - a,)  neurons in the a marker and Amb(1 - an)  = A(1 - m.)(l  - an)  neurons 
in the b marker that are not in a refractory state at t = (n  + 1)r.  The expectation 
value of activity is therefore given by 

We may now proceed to a straightforward generalization for an isolated netlet of 
N chemical markers m l ,  mz, m,, . . . , m ~ ,  where mj is the fraction of neurons 
characterized by the jth chemical marker, and 

N 

ml + m 2 + m 3 + .  . . + m ~ =  E r n j =  1 
j =  1 

( 19 )  

In analogy to equation (18) ,  we may now write the following expression for the 
expectation value of the activity 

N 

< a n c l  > = ( 1  - a . ) Z m , 4 ( a n , m , , 0 , )  
j =  1 

( 20 )  

where Q(a.,  m,, 0,) is the probability that a neuron of the jth marker receives a PSP 
which exceeds its threshold Oj, and is given by the equation 

. . .  
I,, n + l 

where 

and 

sj.+ = a,mj[pf ( 1  - hj ) (K+) '  + p~ hj(K-)'I 

It is also of interest in this analysis to study the behavior of equation (20)  at the 
origin, i.e. to find the slope of the curve < an+ > vs a. as a.+O, in order to see 
the significance of the replacement of the Poisson probability distribution by a 
normal one, for the case of netlets with chemical markers. For this purpose, we 
first write equation (20)  in the form 

where 

and then calculate the partial derivative off  with respect of a, at a.+0, i.e. 
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Neural Nets with Markers 83 

from which we have 

Using equation (21)  and applying Leibnitz's theorem we get 

Taking I K +  I = I K -  I = K ,  ( 0  < K < -=) and q j  = 8,lK' it follows from equation 
(26)  that 

q j - a . [ m , p : ( I  - h j )  + m j p J h j ]  
" =  d[a.[mjpf ( I  - h,) + mjpJ h,]] 

Using e. = m,p: ( 1  - h,) and p, = m,pJ h, we get 

Differentiating this equation with respect to a, we obtain 

Taking into account equations (29)  and (32) ,  equation (28)  can be written in the 
form 

from which, after some algebraic manipulation, we get 

Since as a.+O the x,-+m, then it can be easily seen by 1'H6pitalJs rule that 

3. Results 

On the basis of equations ( 1 )  for the Poisson approximation of interconnectivity 
and equation (18)  or (20)  for the Gaussian one, we obtained plots of the 
expectation value of the activity < a , ,  > as a function of the preceding activity 
a., for a wide variety of different combinations of parameters. We at first examined 
the effect of connectivity on dynamical behavior of isolated networks first with one 
and then with two markers, a and b. For six such networks with m. = 1 .O, 0 .9 ,  0 .8 ,  
0 .7 ,  0.6 and 0.5 for the a marker, and mb = 0.0 ,  0 .1 ,  0 .2 ,  0 .3 ,  0 .4  and 0.5  for the 
b marker, respectively, we received the curves of < a , ,  > vs a". These are shown 
in Figures 1 and 2 .  Solid lines are obtained by the Poisson approximation of the 
interneural connectivity while dashed lines by the Gaussian one. The curves in 
Figure ] ( a )  represent the total network activity for each of the above-mentioned 
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84 E. Fournou et al. 

1 . 0 k  

Figure 1. (a) Expectation value'of the total neural activity < an+, > vs preceding 
activity a. for isolated netlets with two chemical markers. Parameters: (1) m, = 1.0, 
mbz0.0; (2) m,=0.9, mb=0.1; (3) m.=0.8, mb=0.2; (4) m,=0.7, mb=0.3; (5) 
m, = 0.6, mb = 0.4; ( 6 )  m. = mb = 0.5. All subjects have the same h = 0.3, p = 100, 
8 = 1, n = 1, K* = 1 and refractory period r = 1. (b) Magnified plot at the origin of 
Figure l(a). The solid lines are obtained by equation (1) (Poisson case) and the 

dashed lines by equation (18) (Gaussian case). 
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Neural Nets with Markers 85 

isolated netlets. The same curves in appropriate magnification are given in Figure 
l(b). From these plots, we notice that, as expected, the different behavior of the 
neural activity at the origin for the Poisson and Gaussian approximations (Anninos 
& EM, 1974) exists for all the above netlets with or without markers. We observe 
that for the case of two markers here, the Gaussian results are distinctly different 
from the Poisson ones, and the difference increases as the (ma- mb) factor 
decreases. At the same time, we see that point A of the unstable steady-state (on 
the x = y  line), which exists here only in the Gaussian case, goes away from the 
origin. The curves in Figures 2(a) and 2(b) show the contribution of each marker 
to this behavior, for each one of the above six combinations of two markers. 

The parameters of Figures 1 and 2 were varied to a large extent. We derived 
the behavior for nets with the following values of the other parameters, the same 
for each marker: p' = p-  = 20, 50, 100, 200, 500; 0 = 1, 3, 5; h = 0, 0.1, 0.2, 0.3; 
1 K C  I = I K -  1 = 1 and A = 1000 neurons. These plots are not shown here. The 
data for the entire variation of the parameters are in qualitative agreement. The 
general conclusion is that the numbers I, and i, G= 1,2, .  . . , N) of EPSPs and 
IPSPs (which are the inputs to a given neuron for each marker) must be 
sufficiently large, justifymg the replacement of the Poisson by a Gaussian distri- 
bution. Since their average values are i,= a.pj+(l - h,)mj and ;,= a,,pj-hjmj 
(j = 1, 2, . . . , N), it is obvious that the combination of all these parameters must 
be such as to give the appropriate average values (above 50 (Cox & Lewis, 1966, 
p. 21)) for each of the 4 and i,. In Figures 3 and 4, we show networks of four 
subpopulations, i.e. four markers in each netlet: m. = 0.1, mb = 0.2, m, = 0.3 and 
md = 0.4. For the sake of comparison, two different characteristic values for p' 
were used: p ' = 20, relatively small, and p t  = 200, large enough to have consider- 
ably improved results for the Gaussian approach. The values of thresholds were 
selected such that we have all three classes, A, B and C, for the Poisson case 
(Harth ez al., 1970; Anninos et al., 1970). 

The curves in Figures 3(a) and 3(b) represent the total activity of each netlet 
for p + = 20 and 200, respectively. All three classes, A, B and C, are included here 
for the Poisson approximation, while only B or C classes appear in the correspond- 
ing Gaussian networks. In the upper right comer of Figure 3(b) a piece of the same 
plot at the origin for 0 = 1 is shown in magnification. For this value of 0, q = 1, 
(since K + = 1) and the Poisson network is of class A, even though the correspond- 
ing Gaussian net belongs to class B. The curves in Figure 3(b) with p +  = 200 
exhibit considerable agreement between the Poisson and Gaussian data and the 
crossing point A (see magnified plot) is very close to the origin, i.e. in a firing 
percentage about a, = 0.001, which means one neuron out of 1000. However, in 
Figure 3(a) in which p +  = 20 the differences between the two cases are large, 
requiring no magnification. 

Figures 4(a) and 4(b) show the activities for each marker and the total network 
activity for the two nets of class B for the Poisson and also B for the Gaussian 
approximation, with the same parameters as in Figures 3(a) and 3(b), respectively. 
The contribution of each marker to the overall behavior of these networks can be 
seen in these plots. We observe that in Figure 4(a) (p' = 20) each of the four 
differences (four lower groups of curves) contributes significantly to the difference 
in the total activity group (top group of curves). However, in Figure 4(b) 
(1.1' = 200) all such differences are small, and for large a. (a. > 0.4) they are 
extremely small. One can see that these differences are larger in the smaller 
markers (lower groups of curves). 
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E. Foumou et al. 

Figure 2. Contributions of the two subsystems a and b, (a) of marker a and (b) of 
marker b, on the total activity for each of the netlets of Figure 1. The numbers 
respectively indicate the netlets as referred to in Figure 1 (a). The solid lines are used 

for the Poisson approximation while the dashed lines are for the Gaussian one. 

On the basis of the same formalism, we also examine the time dependence of 
the neural activity for both cases, the Poisson and Gaussian one. Thus, we monitor 
the total activity of the net as a function of time, for several time units (synaptic 
delays), here t = 15. At time t = 0 the net is presented with some initial activity. 
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Neural Nets with Markers 87 

Figure 3. < an+ > vs a, for isolated netlets with four chemical markers, m, = 0.1, 
mb = 0.2, m, = 0.3, md = 0.4, with h = 0, K' = 1 and refractory period r = 1. (a) Here 
all subnets have p = 20; for group 1,0 = 1, n = 1; for group 2,O = 2, n = 2; for group 
3,8 = 3, n = 3. (b) Here all subnets have p = 200; for group 1,O = 1, n = 1; for group 
2,O = 15, n = 15; for group 3,O = 25, n = 25. In the upper right comer, a magnified 
plot at the origin for n = 1 (group 1) is shown. The solid lines are obtained by 
equation (1) (Poisson case) and the dashed ones by equation (20) (Gaussian case). 
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0 . 0  0 .2  0 .4  0.6 0.8 1 .  

Figure 4. < a,, + , > vs a, for the netlets with four chemical markers and the same 
parameters as in Figure 3, for groups 2. (a) Here p = 20, 0 = 2, n = 2. (b) Here 
p = 200, 9 = 15, n = 15. The curves a-d represent the activities of each marker 
whereas T gives the total activity of the netlet. The solid lines are used for the 

Poisson case and the dashed ones for the Gaussian case. 

Figures 5-7 show the results for the nets of Figure 3 with four markers. Group 1 
of Figure 3(a) gives Figure 5(a) and Group 1 of Figure 3(b) gives Figure 5(b). 
Similarly, Group 2 produces Figure 6 and Group 3 produces Figure 7. We observe 
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Figure 5. Time dependence of total activity a, for the netlets of group 1 of Figure 
3 with four markers a, b, c and d. (a) Initial activities: a,, = 0.02, 0.1, 0.3,0.6 and 0.9 
for the parameters of Figure 3(a). (b) Initial activities: a, = 0.001, 0.002, 0.55 and 
0.9 for the parameters of Figure 3(b). The solid lines are used for the Poisson 

approximation and the dashed ones for the Gaussian one. 

that in Figure 5(a), after about r = 10 time delays, all initial activities collapse to 
the same value, a = 0.48 for the Poisson net, while for the Gaussian one most of 
them collapse more rapidly to a lower level of activity, a = 0.45. Only the smallest 
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of the five initial activities, sol = 0.02, after a few time steps becomes eventually 
zero. Thus, the Poisson netlet behaves as an A class net while the Gaussian one 
behaves as a net of class B. In Figure 5(b), we observe similar behavior with 
respect to the distinction of classes in the two nets, but here the nets, due to the 
large value of v +  (p+ = 200), exhibit strong oscillations about the same value, 
a = 0.5, in both cases. In Figures 6(a) and 6(b), we notice similar behavior for the 
two cases. Some initial activities, below the corresponding threshold of each case, 
after a few time steps become eventually zero, while the rest reach a stable steady 
state. All the networks here are of class B. The main difference however, is that in 
Figure 6(a) (with p' = 20) the attained level of activity (a = 0.28) in the Gaussian 
net is considerably below the level (a = 0.39) attained in the Poisson net, while in 
Figure 6(b) (with p' = 200) the attained levels are almost the same in both cases. 
Finally, in Figures 7(a) and 7(b) we notice that all curves lead to zero activity as 
these nets belong to class C. 

4. Discussion 

The principal question posed in the present study is whether differences in 
structure between various regions of the nervous system reflect, or perhaps even 
determine, distinct modes of function. Thus, the present study concentrated on 
analysis of the dynamic pattern of spike firing as represented in equation (20), 
which describes the relationship between the level of activity expressed in terms of 
the number of discharging neurons at a given period a n +  ,, and the activity in the 
immediately preceding period a,. Explicit solution for this equation has been 
derived in the present paper for the case where P(a.,m,,O,) is a normal variable. The 
corresponding solution for the Poisson case has been studied in detail in earlier 
work (Csermely, 1968; Harth et al., 1969; Anninos et al., 1970; Anninos & 
Kokkinidis, 1984). Comparison of these two sets of results shows that, given two 
nets with an identical proportion of excitatory and inhibitory synapses as well as 
firing threshold and the same markers, but differing in the functions P(a., mj, O,), 
the resulting activity in the two cases is quite different, the Poisson net being 
capable of sustained activity under conditions in which activity in Gaussian nets 
would become quenched very rapidly (see Figures I (b), 3(a) and 3(b)). 

The question which must be dealt with at this point is that of the interpretation 
of the functions P(a., m,, 0,) in real nets in the CNS: do different P(a,, mj, 0,) entail 
differences in structure of these nets, and if so, what are these differences? 

T o  answer this question, we need to consider equation (20) in somewhat 
greater detail. This equation states that the number of firing neurons (as a 
percentage of the total neuron population) in a given cycle is determined by the 
number of neurons available for firing during that particular cycle. This is because 
(1 -a,,) is the fraction of available neurons in the whole net, since those a, neurons 
which fired in the preceding cycle are refractory during the current cycle. From the 
total number of neurons, only (1 - a.)mj belong to marker j, and are available for 
firing. Equation (20) states, however, that in each marker only a fraction of the 
available population will fire, and that this fraction is determined by P(a., m,, 0,) 
for the jth marker. According to whether a Gaussian or Poisson probability 
function is selected, P(a., m,, 0,) will either be a Gaussian or Poisson variable 
determined by an. Specifically, the value of P(a., mj, 0,) in successive cycles would 
be distributed according to either normal or Poisson distribution, with the inde- 
pendent variable being the number of neurons firing in the preceding cycle an. 
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Figure 6. Time dependence of total activity a, for the nerlets of group 2 of Figure 
3 with four markers a, b, c and d. (a) Initial activities: a0 = 0.075, 0.2, 0.25, 0.7 and 
0.9 for the parameters of Figure 3(a). (b) Initial activities: a. = 0.15, 0.2, 0.35, 0.7 
and 0.9 for the parameters of Figure 3(b). The solid lines are used for the Poisson 

approximation and the dashed ones for the Gaussian one. 

It is appropriate to enquire how this functional dependence can be satisfied 
in 'real' neuronal nets, i.e. in nets where the pattern of interneuronal connections 
is unalterable. One way to answer this question is to investigate if the number 
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Figure 7. Time dependence of total activity a, for the netlets of group 3 of Figure 
3 with four markers a, b, c and d. (a) Initial activities: a. = 0.2, 0.5 and 0.9 for the 
parameters of Figure 3(a). (b) Initial activities: a, = 0.2, 0.5 and 0.9 for the para- 
meters of Figure 3(b). The solid lines are used for the Poisson approximation and 

the dashed ones for the Gaussian one. 

of synaptic connections received by each cell would vary as a Gaussian or, 
alternatively, a Poisson variable. Based on the assumption that synaptic potentials 
sum algebraically-an assumption which is widely accepted in regard to the 
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analysis of physiological data (see, however, Elul & Adey, 1966 for further 
discussion)-it is clear that different cells in the net would have a different 
probability of discharging following the discharge of, say, 10% of the cells in the 
immediately preceding cycle. Moreover, on the assumption of algebraic summa- 
tion of synaptic inputs, the firing probabilities of these cells, being directly related 
to the number of afferent connections, will be distributed following a Poisson or 
Gaussian probability distribution, respectively. In this way, equation (20) will be 
satisfied in nerve nets in which the number of connections received by each cell 
(and in a closed system-also originating in each cell) represents a Poisson 
or, alternatively, a Gaussian variable. Our results may therefore be restated as 
follows: a neuronal net where the number of connections received by each neuron 
is distributed according to a Poisson function will exhibit sustained activity. 
On the other hand, a net in which the number of connections reaching each 
particular nerve cell varies according to a normal distribution will not be capable 
of sustained activity. 

These results are of significant interest in pointing to a hitherto unconsidered 
parameter, which may be worthy of examination in histological material: the 
probability distribution of the number of synapses received by individual cells in a 
given nucleus or region of the brain. Although there are a number of studies in the 
literature dealing with quantitative aspects of synapse populations, the variance 
and the mean of counts in individual neurons have not been documented in most 
of these studies, and the probability function of distribution of these connections 
has not been investigated. 

Notwithstanding the absence of specific information on the probability distri- 
bution of the numbers of synaptic inputs to individual neurons in different brain 
structures, we may proceed in our investigation of the present results in a more 
general fashion, giving certain well-known properties of the normal distribution. It 
is important to recall in this context that, for a large number of events (i.e. in our 
model, a large number of interconnections), the Poisson distribution converges 
toward the normal distribution (cf., for example, Feller, 1957, pp. 176-178; Cox 
& Lewis, 1966, Chapter 1). Thus Poisson neuronal nets may be viewed as 
approximately Gaussian whenever the number of synaptic connections is relatively 
large. Insofar as the normal distribution is the limiting distribution for a great 
many experimental distributions when the number of elements becomes large, it is 
also likely that, in general, most systems with large numbers of synaptic connec- 
tions per never cell would tend toward the Gaussian case discussed in the present 
study. For these reasons, it appears that the conclusions reached here regarding 
nets characterized by Gaussian probability law may be applicable within the 
limitations of the basic assumptions of the model, and with only minor 
modification, to most real neuronal centers for which there is histological evidence 
of rich systems of interconnections. Indeed, these results would equally apply also 
to nerve nets with Poisson distribution of interconnections, provided only that the 
average number of connections (the Poisson parameters ii) is above 50 (cf., for 
example, Cox & Lewis, 1966, p. 21). Thus, our results may be further generalized 
to suggest that the average number of intemeuronal connections in a given CNS 
structure may be the significant parameter in determining spontaneous activity: all 
structures having large numbers of interconnections per nerve cell would be 
unlikely to exhibit intrinsic sustained activity. Such spontaneous activity appears 
from our results to be more likely to originate in neuronal nets with small average 
number of synapses per neuron. 
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