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Diffusion in a random medium: A Monte Carlo study
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We use lattices with randomly distributed site-barrier energies to study diffusion properties as a func-
tion of disorder and temperature. We study the case of “dynamic’ disorder whereby the random envi-
ronment is renewed at each successive jump of the hopping particle, and also the case of “static” disor-
der with frozen randomly distributed barriers. The transition characteristics are governed by Boltzmann
statistics. We employ standard Monte Carlo techniques to monitor properties such as the mean-square
displacement. The trends of the motion are shown to include local trapping at early times, allowing for
the search of a crossover time to the conventional diffusive regime, (R2)~t, as a function of tempera-
ture. We find that the crossover time versus temperature dependence is of the Arrhenius type deter-
mined by an effective activation energy barrier for percolation in the case of static disorder. For a uni-
form distribution of the barriers, this activation barrier is shown to coincide with the threshold concen-
tration for bond percolation, as simple arguments suggest. We also demonstrate that an increase in the
degree of dynamic disorder leads to an increase in the particle mobility. Some relationships of the
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present model to several experimental systems are discussed.

PACS number(s): 05.40.+j, 05.60.+w

I. INTRODUCTION

Random environments offer the prototype of disorder.
It is well known that transport properties behave irregu-
larly in such cases, leading to anomalous diffusion, as, for
example, for Brownian particles [1]. This topic has been
treated from several different points of view, utilizing a
variety of different techniques. A detailed presentation of
most classic and recent studies and results in the field
may be found, e.g., in the review articles of Weiss and
Rubin [2], Haus and Kehr [3], Havlin and Ben Avraham
[4], and Bouchaud and Georges [5]. Analytical methods
include models for the transition probabilities [2—8] lead-
ing to known but highly complicated differential equa-
tions, which can be solved under certain assumptions,
e.g., the effective-medium approximation (EMA) [9,10],
renormalization-group analysis [11], etc. Additionally,
computer simulation models for disordered systems also
abound, as, for example, the percolation model [4,12] (a
binary system of open and closed sites), and other fractal
structures. Of particular interest is the addition of a local
drift force (bias of motion), see, e.g., the one-dimensional
treatment of Lehr, Machta, and Nelson [13], as there is a
large number of related applications.

A naive but common method to introduce randomness
is to build up a random environment of site (or bond) en-
ergies. One can view this either as a lattice of random
barriers or random wells [3,4]. The two models, even
though at first sight may seem identical, are amenable to
different treatments. Moreover, randomness may be
viewed as being imposed by either “dynamic” or “‘static”
disorder. In the first case the renewal of the barriers
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occurs upon each jump of the tracer because the local en-
vironment is formed by particles that are identical with
the hopping one and performing the same kind of
motion. Evidently, this case is more appropriate for
describing self-diffusion. In the static case one deals with
a frozen lattice of random barriers and a tracer atom
moves without changing them. This model has been
treated extensively in the literature, see [3], and it is be-
lieved to describe diffusion of foreign particles, conduc-
tivity, etc. In both cases the fundamental questions con-
cern the influence of disorder on the onset of typical
diffusive behavior of the mean-square displacement
(MSD) (R?)~Dt, as well as the determination of the
diffusion constant D for varying degree of disorder. In a
previous work [15], we determined analytically the im-
pact of dynamic disorder on D under the tacit assump-
tion that { R2) ~ Dt holds for the long-time limit and an
effective diffusion coefficient D, may be derived, provid-
ed a probability distribution of the barrier heights is
adopted explicitly. In the case of static disorder we treat-
ed the D in terms of a percolation problem [15] where-
by a tracer was considered as effectively avoiding any
barrier which is higher than some critical one E,, and we
related E, to the dispersity o of the probability distribu-

“tion. The purpose of the present investigation is to assess

the validity of the analytical treatments [15] by means of
computer simulation. Experimental studies of diffusion
and self-diffusion in disordered systems derive as a rule
some effective activation energy of the process E 4. Our
numeric investigations demonstrate the dependence of
E & on temperature T and degree of disorder o. Our re-
sults show that for dynamic disorder one indeed observes
a non-Arrhenius behavior of D with T. For static dis-
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order we demonstrate that E.s is determined by some
effective percolation barrier E,.

The effective activation energy of the process E
should be determined on the ground of some averaging
procedure and reflect either the mean jump frequency
{v) [15] or the mean stay time {r) [8,9,14] of the mov-
ing particle. In general, (v) is determined by the jump
probability p; distribution function that the moving parti-
cle will overcome barrier E;, {(v)=3,v,p;, while
(r)=3,7,p;. Evidently, in view of v=7"!, one has
(v)# (1) 7!, except for the case when p, is given by a &
function. The decision which type of averaging is the
proper one must be made with respect to the nature of
the processes involved. Thus it is well known, that in
parallel chemical reactions the overall rate is determined
by the fastest process, whereas for chain reactions
proceeding successively the slowest is the governing one.
In the case of tracer diffusion a different mechanism may
hold at different lattice dimensionalities. Since random
walks in one-dimensional (1D) lattices (as well as in sys-
tems with hierarchy constraints) may be considered as a
process of successive events whereby barriers cannot be
surrounded or bypassed, it is to be expected that {7) is
the relevant quantity. However, in lattices with dimen-
sion d =2, {v) controls the effective rate, as higher bar-
riers are usually avoided. In a Monte Carlo simulation
one obtains averaged quantities without a priori assump-
tion on the relevance of (v} or (7). Anticipating, we
should point out that the results of our numeric experi-
ments unambiguously confirm that the analytically deter-
mined (v} coincides with the mean jump frequency ob-
served in the course of the simulation, so that the mean
stay time is given by (v) ~!instead of (v™!).

II. MODEL

In the present investigation the random barriers define
transition probabilities which are governed by Boltzmann
statistics in a standard fashion. We impose the restric-
tion that jumps that are made between two specific sites
carry exactly the same probability at any time during the
calculation. For example, once a forward jump is made
in a particular direction, then the backward jump (back
to original position) should carry the same probability as
the forward jump. For that reason we use a model where
the barrier (bond) energies are defined by use of the equa-
tion

Here x is a random number between 0 and 1 from a uni-
form distribution, and o is a dispersion parameter rang-
ing also in the interval O to 1 that controls the width of
the range of the energy values. When ¢ =1, we have the
maximum width of energies in the range 0 to 1, and as o
decreases then the energy range correspondingly becomes
narrower down to a single value E =0.5. If a directional
bias is introduced Eq. (1) becomes

E;=0.5—0(x —0.5)—¢, (2)

where € is the strength of the bias. In the present paper
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€=0, as the case with the bias will be treated elsewhere.
The jump probabilities P; from site i to site j are simply
the Boltzmann exponentials, i.e.,

Py=(1/2)e “0/T

(3)
Here z is the coordination number. The temperature T
(in arbitrary units) is a controlling parameter that is to be
carefully investigated here. After all P’s are summed up,
the difference from 1 becomes the probability P;;:

Py=1— 3 Py, 4)
J(3#0)

which is the probability for the particles to remain on the
same site.

III. METHODS OF CALCULATIONS

Calculations are performed on 2D square lattices (four
neighbors), and on 3D simple cubic lattice (six neigh-
bors). Longer-range interactions are neglected. As de-
scribed above we discern two cases of lattice disorder: (a)
the case for which all bond energies are assigned at time
t =0, and stay frozen for the duration of the calculation,
and (b) the case of dynamic disorder for which there is no
memory of the energies, which are randomized at each
time step. The latter is computationally simpler, as it re-
quires no lattice at all. It is also free of any finite-size
effects, and one can safely go to a very high number of
steps. For the first case, we typically build Iattices of size
600X 600, and 100X 100X 100, with cyclic boundary con-
ditions. However, we limit our investigation to times for
which the hopping particle basically does not reach the
boundary. The particle is placed in the middle of the lat-
tice at time ¢t =0. We use the so-called lattice-growth
technique. This means that only the bonds of the lattice
that are to be visited by the particle will be given energy
values, while the rest are not used at all. Thus, initially
the four (or six) neighbor sites are assigned random ener-
gies according to Eq. (2), and by drawing on a random
number it is decided what step will be taken. Once these
bond energies are decided they stay the same (frozen) for
the entire calculation. In subsequent steps first it is in-
quired if the four neighbors have been earlier defined or
not. If they have been defined their values are directly
used. If not, they are assigned energy values at that time,
Just like the original bonds. We keep track of the particle
coordinates as a function of time, from which the mean-
square displacement is calculated. For case (b), as stated
above, no lattice is generated. At every time step four (or
six) energies are calculated on the basis of the same equa-
tion (2), then the four (or six) probabilities are calculated,
and the direction of motion is decided by drawing on a
random number. The only parameter that is monitored
here is the number of displacements in each direction as a
function of time. Eventually the mean-square displace-
ment is again calculated. The average values of the data
are calculated from a large number of realizations. De-
pending on inherent noise present the numbers of realiza-
tions utilized vary from 1000 to 10000 different ones.
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IV. RESULTS

Figure 1 describes the behavior of the mean-square
dispacement ( R2) as a function of time at different tem-
peratures for the case of static disorder, case (a) above.
We present data for the range 10 to 107 steps. We ob-
serve that for all temperatures there is always an early
time regime which differs from the diffusive regime
(R?)~Dt, i.e., at each temperature there is a particular
crossover time 7,. This is in agreement with earlier ana-
lytic (EMA) and numeric results [3]. In Fig. 1 we observe
that for long times the log-log plot gives a linear relation-
ship. The slope of the line is 1, which is the expected
value, ie., (RZ)~Dt. As the temperature decreases,
linearity is achieved at longer and longer times 7,. For
this reason high T calculations are carried to 10° steps,
while low T calculations are carried to 107 steps. For
T =0.05 this diffusive regime sets on after one million
steps. Figure 2 shows the data for calculations for 3D
lattices, with the same model and algorithm as the 2D
one. We observe similar behavior in all respects.

Our interpretation of the observed (temperature-
dependent) crossover time 7, is the following. As the
particle starts at some random position, it is most prob-
able that it is localized at some relatively low-energy val-
ley at which it is to be found. Thus, at early times and
low temperatures the particle is “trapped” in some limit-
ed region of the lattice and cannot escape as the tempera-
ture is low and all jumps are consumed to visit the same
sites over and over again. The probability for escaping
from this position is very small, but after a given time 7,
this probability is realized. It is expected that the cross-
over time is

, — o Fe’/T ,

(5)
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FIG. 1. Mean-square displacement (R?}, as a function of
time (number of steps) for several different temperatures for the
case of frozen 2D lattices [case (a)], in log-log form. The tem-
peratures are: 1.0, 0.50, 0.25, 0.20, 0.15, 0.10, 0.067, and 0.05
(top to bottom). The dispersion o =1.00. For T =0.067 and
T =0.05 we used 3000 realizations; for all the rest we used 1000
realizations. This was done because there is inherently more

noise for the low-T cases.
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FIG. 2. Mean-square displacement (R2) as a function of
time (number of steps) for several different temperatures for the
case of frozen 3D lattices [case (a)], in log-log form. The tem-
peratures are: 1.0, 0.50, 0.25, 0.15, 0.10, 0.075, 0.0667, and 0.05
(top to bottom). The dispersion ¢ =1.00. We used 1000 realiza-
tions.

where E . is some effective activation energy. We can es-
timate the crossover time 7, for each temperature, when
the phenomenon takes place by plotting in Fig. 3 this
crossover time 7. versus 1/T lin-log fashion, for the 2D
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FIG. 3. Plot of the crossover time (the time after which
(R?) is linear), 7., as a function of 1/7, for the temperatures
investigated in Fig. 1 (squares) and in Fig. 2 (diamonds). The
straight lines are the best fits that give the slopes (see text).
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and 3D lattices. We observe for both cases an almost
linear relationship. The scattering in the points may well
be due to the uncertainties of the exact position of the
crossover points. The slope of the line is
E4+=0.51£0.05 (2D), and E_=0.25+0.05 (3D). Ac-
cording to the conventional chain-reaction theory the re-
actions with the slowest rate (“bottlenecks”) determine
the total rate of the process. Reactions that might be
bypassed faster do not contribute to the overall rate of
the process. The activation barriers which are higher
than a given critical value (E >E,) are practically
bypassed. All channels with E <E, will be considered as
open, as the hopping particle moves consistently only
along these channels. According to the classical chain-
reaction theory, the effective activation energy E ¢ would
practically coincide with the upper limit E,. Clearly this
picture will be valid only if the concentration of conduct-
ing channels exceeds the percolation threshold p.. Thus
E, may be viewed as the energy barrier determined in
such a way that the concentration of channels with bar-
rier E<E, isp.. Asshown in [15] E, is determined by

EP
[ pdE=p, )

where P(E) is the energy barrier probability distribution
function while the threshold concentration of the “low
enough” barriers p, depends both on the number of
directions available for motion z and on the space dimen-
sion d. For d =2 (z=4) p,=0.5 (bond percolation) and
for d =3 (z=6) p,=0.25. Taking into account that
P(E)=1/0 and that =1 it follows that good estimates
for the E, values are the following: E,=0.5 2D), and
E,=0.25 (3D).

Figure 4 contains the same data for case (b) in linear
axes for 2D lattices. Here the situation is simpler as the
plot in lin-lin form shows that all lines start at the origin,
and are straight throughout time with specific slopes.

6x10" |
(R%H

Ladt -

210° -

1 1
0 25x10* 540 1010°

1
75x10°*
Time '

FIG. 4. Mean-square displacement {(R?) as a function of
time (number of steps) for several different temperatures for the
case of constantly randomizing lattices [case (b)]. The tempera-
tures are 7=1.0, 0.75, 0.50, 0.25, 0.15, 0.10, and 0.05 (top to
bottom). The dispersion 0 =1.00. The results are averages of
10 000 realizations
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FIG. 5. Direct comparison between the frozen and the ran-
domizing lattices for two different dispersions oc=1.0 and
o=0.5. Same axes as in Fig. 1, but in linear form. Here the
temperature T=0.15. The top two lines are for the randomiz-
ing lattices, the bottom two for the frozen lattices. In each
group the o =1.0 line is higher than the o =0.5 line.

The slopes decrease with decreasing temperature, as ex-
pected. This is because the energy barriers generate an
average environment, which can be overcome rather easi-
ly at high T but with difficulty at lower 7. No low-energy
valleys are generated here, as all energies are constantly
randomized. Thus, temperature here is directly a mea-
sure of the efficiency of transport. The log-log plot (not
shown here) gives a series of parallel straight lines for
(R%)=1.

Figure 5 shows the effect of the dispersion ¢ on the
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FIG. 6. Slopes of data similar to that of Fig. 5 as a function
of the dispersion, both for frozen and randomizing lattices, for
two different temperatures 7=0.50 and 0.15. Frozen lattices:
squares, ' =0.50; triangles, T'=0.15. Randomizing lattices:
circles, T=0.50; diamonds, T =0. 15.
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FIG. 7. Slopes of the lines of Fig. 4 vs 1/7T in a semiloga-
rithmic plot.

mean-square displacement. We observe that for static
disorder dispersions of =1 and 0.5 produce almost
identical results in agreement with EMA predictions [3].
For dynamic disorder the impact of o is stronger and as
the dispersion is lowered so is the {(R?). The complete
picture is given in Fig. 6 by plotting the slopes of the lines
in the previous figure as a function of o for two different
temperatures. Note that the increase of T decreases the
impact of o on (R?) since the barrier differences are
effectively “smeared out™. Finally, Fig. 7 gives the be-
havior of the mean-square displacement (case b) as a
function of 1/7T in lin-log form. Evidently the mobility
reveals a non-Arrhenius behavior, as is frequently ob-
served experimentally in typical glass-forming melts and
predicted analytically in [15,17].

V. DISCUSSION AND CONCLUSIONS

The present investigation demonstrates that there is a
significant difference in the impact of the degree of disor-
der on the mobility of the particle in media with static
and with dynamic energy barrier distribution. This be-
comes more pronounced when temperature is decreased.
One may derive a mean jump frequency as the ratio of
the number of successful versus the number of attempted
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jumps. The Monte Carlo resulis reveal that this quantity
coincides with (v}, as calculated for the same probability
distribution function and assumed in our analytical treat-
ment in [15,17]. The movement of a particle in a
“dynamically” disordered medium when the probabilities
are randomized at each time step corresponds to self-
diffusion or to viscous flow of amorphous systems. It
should be noted that the temperature dependence of
viscosity of about forty undercooled melts was described
successfully [17] within the framework of this model.
The theoretical predictions are well in quantitative agree-
ment with experimental data while viscosity varies by
more than ten orders of magnitude.

In the case of static disorder we observe characteristic
T-dependent crossover times 7, to the long-time diffusive
regime {R2)~¢ which turn out to be determined by an
effective energy barrier for percolation E,, which is in
turn given by the critical threshold concentration of
bonds, or “easy channels” p,. The percolation threshold
E, turns out to be independent of o in 2D for a sym-
metric probability distribution P(E). Since the diffusion
coeflicient is determined unambiguously by E,, D4 does
not change with o either. This situation differs from the
result obtained within the site percolation model [18]. If,
however, P(E) is not symmetric and has a cutoff at
higher energies and a long tail at low energies, then D 4
will increase simultaneously with o (E, will decrease).
Note that this is in agreement with the experimental ob-
servations (see for instance the experimental data on
resistivity of amorphous and crystalline lithium acetate
upon changes of structure and temperature [16]). In this
way the present model is able to predict temperature be-
havior of ionic conductivity in the crystalline (highly or-
dered) and amorphous state.
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