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ed considerable interest,'™ since it was discovered**

that the known laws of kinetics apply only to the ho-
mogeneous three-dimensional space of a reaction vessel or
test tube. As disordered spaces and spaces of low
dimensions became more fashionable and more managea-
ble, several new approaches and problems have evolved,
and we will see that the previous understanding of
diffusion-controlled chemical reactions has to be modi-
fied.

Let us consider an example of a prototype reaction.
The usual textbook kinetic rate law for the second-order
reaction A + 4 =0 is expressed as*

c hemical reactions in condensed phases have attract-

A _

dt (batch mode) (la)
dd —0=r—kAZ (steady-state mode), (1b)
dt

where A is the density of 4 particles at time 1, k is the rate
constant, and r is the creation rate of the 4 particles. Such
a reaction can occur in either “batch” or “steady-state”
mode. In the batch (or transient) mode, all reactants are
entered into the system at time ¢ = 0, usually at random
positions, and no reactants enter at #> 0. In this mode the
density of A decreases with ¢. This mode is relevant when
the main quantity of interest is the reaction rate constant
k. In the steady-state mode, the same reaction mechanism
holds, but new reactants are entered into the system
during the course of the reaction at regular time intervals.
In this mode there is no density decay with increasing ¢,
and the main interest is the way that the system does or
does not attain an equilibrium state. The differential
equation (1) has the simple solution

1/A — 1/4,= kt (batch mode) , (2a)
A =\r/k (steady-state mode) , (2b)

where A, is the density at time ¢ = 0.

For heterogeneous spaces and dimensions less than
three, the rate equation (1) and hence the solution (2)
must be modified. To understand these modifications, we
consider some of the properties of a single random walker.
In uniform systems, the walker’s root-mean-square dis-

placement, R=\/(R %(1)), is proportional to ¢ ' for any
integer spatial dimension d. However, on a fractal lattice
such as a percolation cluster, this relation is not applicable,

and the relation becomes, in general, R~ ' for suffi-
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ciently large ¢. The exponent d,, is the fractal dimension of
the path of the random walker on the fractal lattice. In
general, d,, > 2, because the random walker is slowed down
by the dangling ends and bottlenecks in the disordered lat-
tice. Another quantity of interest is S(¢), the number of
distinct sites that have been visited at time ¢ by the random
walker. After t steps, S(¢) is proportional to the volume F 4
~t %% The ratio d ,/d,, can be shown to be related to the
density of vibrational excitations on the fractal lattice, that
is, p(€) ~ €% = 77, where the “spectral” dimen-
siond, is givenby d, = 2d,/d,,. The dependence of p(€) on
€ is similar to the expression for the density of states in
Euclidean space, p(€) ~¢?/>~ ', with d replaced by d,.

Because the diffusion of a random walker on a fractal
lattice is modified, we expect that the relation (1) also is
modified. We find that

dA

— = — kot ~"4? (0<h<1) (batch mode).
t
(3a)
and
dd—f =0=r—kd*, x= % (steady-state mode) .
(3b)

Equation (3) is applicable to d =1, d =2, and fractal
spaces with noninteger dimensionality. The exponent 4 in
(3)isgivenby & = 1 — d,/2.Such arelation between hand
d. might be expected, because it is well known that a ran-
dom walk models diffusion processes, such as the diffusion
of reacting particles. The solution of the differential equa-
tion (3a) is

/A —1/4g= kot ™. (4)
Note the difference in the exponent of ¢ between the solu-
tions (2a) and (4).

Some simple cases can be quickly summarized. For
d =1 lattices, d, =1, and, consequently, A = 1/2 and
x = 3. For percolation clusters in two and three dimen-
sions, d, ~4/3, and hence #=1/3, and x=2.5. These re-
sults can be verified by computer simulations.*™®

Another interesting bimolecular reaction is the
A + B = Oreaction. For homogeneous lattices the solution
of the rate law (for the case of A, = B,) is given by'

Lo g, ()

A A,

yielding exponents 0.25, 0.50, and 0.75 for d =1, d = 2
and d = 3 lattices, respectively. For percolation clusters 1n
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FIG. 1. Plotof 1/4 — 1/A, versus the time t. Curves 1-3 areforthe 4 + B
reaction with (1) d = 1 ideal lattice, (2) d = 2 percolation cluster, and
(3) d = 3 percolation cluster. Curves 46 are for the A + A reaction with
(4) d = 1 ideal lattice, (5) d = 2 percolation cluster, and (6) d = 3 per-
colation cluster. Thelattice sizes were 10° sites (4 + B ford = 1),2x 10°
sites (4 + A for d = 1), 20002000 for d = 2, and 160X 160X 160 for
d = 3. The percolation clusters were generated at the percolation thresh-
olds p, =0.5931 (d = 2), and p, = 0.3117 (d = 3). The initial densities
were A, = 0.8 (4 + A),and 4, = B, = 0.4 (4 + B). A total of 5-25 real-
izations were used for the average values.

d =2andd = 3, theexponentd /4in (5) is replaced by the
exponent’® d, /4, which has a value of approximately 1/3.
These exponents can be verified by computer simulation,®
although with more difficulty than the 4 + A case. Some
typical results® for the 4 + 4 = 0 and the 4 + B = O reac-
tions are shown in Fig. 1 for d = 1 lattices and for d = 2
and d = 3 percolation clusters.

An interesting outcome of reactions on fractal lattices
is that the rate constant k, which is normally independent
of both concentration and time [cf.(1) ], loses this proper-
ty and becomes time dependent. This behavior of the rate
constant is related to the rate of exploration of the space by
the reacting particles; that is,

PO (6)
dt
This rate is constant only for d = 3 (see Suggestions for
Further Study). .

1 now discuss some of the computational techniques
that have been developed by our group during the past few
years to simulate the reaction mechanism discussed in the
above. The problems we need to consider are the fo.lowing.

(1) What data should be kept in memory during the
run? Of course, we try to reduce these data to a minimum.

(2) How is time calculated?

(3) How is the problem of multiple occupancy treat-
ed? In a reaction two particles cannot normally occupy the
same site because they have a finite size. But what happens
if this restriction is relaxed so that we allow two or more
particles to occupy the same lattice site at the same time?
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(4) How is the nearest-neighbor distance between
particles calculated for regular lattices (straightforward),
and for random lattices, where the direct point-to-point
connection is not valid (more difficult)?

It is straightforward to simulate chemical reactions
based on diffusion on a lattice.>*° A population of reacting
particles is monitored is some region of space as a function
of time. The positions of the particles are known. Each
particle performs a random walk independently of all other
particles. Steps are normally allowed to nearest-neighbor
sites only. There is no interparticle interaction. A reaction
occurs when two particles collide, i.e., land at the samesite.
Every collision leads to a reaction with probability one.
When two particles react in this fashion, they are removed
from the system (they are annihilated).

A reaction can be first-, second-, or higher-order de-
pending on the power dependence of the reactant concen-
trations. If only one kind of reactant is present, we call this
reaction the 4 + A type, because it takes two 4 particles
(two similar particles) for a reaction to occur. Thus the
reaction is second order in 4 and second order overall. The
A+ A reaction can lead to either 4 +4=0 or to
A + A = A; that is, both or only one of the two A particles
are annihilated. If there are two types of reacting particles
present, then the reactionisthe 4 + B type. In thiscasetwo
A’sortwo B’sdo not react, but 4 reacts with B. The 4 + B
reaction is also second order overall (it takes two particles
for a reaction to occur), but is first order in 4 and first
order in B.

The lattice can have any dimension, e.g., a line, a sur-
face, a fractal, or any other well-defined structure. The
main observation of interest is how the rate laws depend on
the lattice structure, giving, for example, different expo-
nents, or some new characteristic behavior, as, for exam-
ple, the fact that the segregation of the 4 and B particles in
the A + B reaction occurs in d = 2 but not in d = 3 (see
problem 6 in Suggestions for Further Study).

First, we consider the problem of how to treat the
reactants. It is clear that the two reaction types, 4 + 4 and
A + B, must be treated differently. The problem of the ex-
cluded volume only appears in the latter case, and its treat-
ment also is different when any number of particles may
occupy a given site. Consider the case of the 4 + 4 reaction
on a lattice. At time f = O (in batch mode), all the reactants
are placed on the lattice, e.g., their coordinates are decided
by use of a random-number generator. The same consider-
ations apply if the reaction is of the steady-state type, for
which the reactants also enter the system at random posi-
tions at given time intervals. One array for each dimension
keeps the coordinates of all the particles. For example, for a
two-dimensional reaction, NX(5) =17 and NY(5) =3
means that the coordinates of particle 5 are stored in two
arrays, NX and NY, and the coordinates of particle 5 are
(17,3). The lattice is kept in memory in a separate array.
Each lattice site has an integer value that signifies the num-
ber of the particle. Thus M(17,3) =5 shows that site
(17,3) is occupied by particie number 5. If M(ij) = 0, the
site (7, j) is not occupied by any particle.



The simulation proceeds by running through the par-
ticle list and moving one particle at a time in a random
direction from (i, j) to (¢, 7). If M({', j') #0, then the new
site (¢, /') is already occupied and both particles must be
annihilated. This procedure is done by setting both M (4, j)
and M (7, ') equal to zero. Also, the two arrays NX and NY
must be changed. The easiest way to make this change is to
give the last two particles in the list the labels of the two
annihilated particles. Thus, if any time we have 100 parti-
cles and we annihilate particle 8 and particle 30, we would
set NX(8) = NX(100), NY(8) = NY(100),
NY(30) = NY(99), and NY(30) = NY(99).

It might seem redundant to keep the same information
in two separate arrays. A simple alternative is to keep only
the array M and to refer to this array when we need to know
the occupancy of a given site. However, this latter method
is not the fastest if we consider the nature of the reaction
process. In the suggested method the list of all remaining
particles at a given time is run through once, because it is
straightforward after moving a particle to determine its
new location. If this list were not kept in memory, then we
would have to locate and move the reacting particles by
sweeping through the entire lattice at each time step. This
sweep is considerably more time consuming, especially
when only a few particles are present. In other words, going
through the list of particles rather than going through all
lattice sites is more efficient.

For the A + B reaction, we must modify our proce-
dure slightly. We keep separate lists for the 4 and B parti-
cles, with the value of the array again denoting the label of
the particle. The M(i,j) array is used as before, but the
array values can now be positive or negative, e.g., if the
array is negative the particle is type 4, and if it is positive it
is type B. For example, if M(17,3) = — 5, the site with
coordinates (17,3) is occupied by the A particle with parti-
cle label five. Because of the excluded-volume principle, a
particle of one type is not allowed to occupy a site occupied
by another particle of the same type. We can implement the
exclusion principle in two ways. One way is to allow the
random walker to choose a new site freely, but to return the
walker to its previous location if it chooses a site that is
already occupied by a particle of the same type. This type of
random walker is called a “blind ant.” The alternative is to
allow the walker to choose only between sites that are unoc-
cupied or have a particle of the other type. This latter type
of walker is called a “myopic ant.”” We also use the blind-
ant condition for the random lattices when a walker at-
tempts to move off the percolation cluster.

The calculation of time. There are two ways of moni-
toring the time during the course of a reaction. The first
way is to consider that one reaction step is completed when
all remaining particles have moved one nearest-neighbor
distance. Here, the time clock is independent of the number
of annihilations occurring in one sweep through the parti-
cle list. In the second method the clock is increased by 1/NV
time units, where N is the number of particles present after
each particle makes a move. Here, the time increment is a
function of the number of particles present. For bookkeep-

ing purposes the first method is easier to implement. In the
second method, time is a real number, and when we want to
calculate averages or find the particle density at fixed inter-
vals of time, we have to bin the times at the desired inter-
vals. The methods yield noticeable deviations (for exam-
ple, in the density decay) only at early times, but at long
times they give practically identical results.

The multiple occupancy problem. When more than
one particle is allowed to occupy the same site, we have to
follow another strategy. We employ the following method
and still avoid sweeping through the lattice. Initially, ali
sites are zeroed; i.e., the M (i, j) are assigned a value of 0.
The appropriate number of particles are then placed on the
lattice, with more than one particle allowed on a site. Every
site has a value that is the algebraic sum of all particles on
that site; that is, each A4 particle contributes — 1 and each B
particle contributes + 1. Thus, if there happen to be three
A particles and one B particle on site (i,j), then
M(i,j) = —2. The annihilation of reacting particles
throughout the lattice is done as follows. First, we check
for the A4 particles by going through the particle list (which
contains the particle coordinates) and checking the value
of the array M at the site where a given A particle is located.
This procedure is done in the same way as before; i.e., one
particle is moved at a time, and a check is performed after
each particle move. If the value is zero or positive, the 4
particle is annihilated, because there must be at least one B
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particle at this site. If the value is negative, the A4 particle
stays intact, and the value is increased by one. After we
finish going through the list of 4 particles, we go through
the B particle list in the same manner. Here, the B particle
is annihilated if the value of M is zero or negative. If it is
positive, the B particle stays intact, and M at that site is
decreased by unity. The increase or decrease by unity when
no particles are annihilated automatically zeroes all the
values of M after going through the particle lists. After the
reaction step is completed, the particles are allowed to dif-
fuse one step and the array M is filled by adding — 1 to

1.00 -

0.0

FIG. 2. The nearest-neighbor distance distributions for the 4 + B reac-
tion in d = 1. All distances r are the 4B nearest neighbor distances. The
horizontal axis is the normalized distance (» — 1)/({r) — 1), where {r)
is the average distance. The Poissonian curve (line 1) is for ¢ = 0, and the
Wigner-type curves are for ¢ = 10 steps (line 2) and ¢ = 1000 steps (line
3). The lattice dimension is L = 10* sites, and A, = B, = 0.1. All data
shown are averages of 1000 realizations.

M(i, j) each time an A4 particle lands on site (4, j) and by
adding + 1 each time a B particle lands on site (i, j).

To see how the reaction process works, consider the
example of three 4 particles and one B particle at a site
(i,j) sothat M (i, j) = — 2. When we find the first 4 parti-
cle at site (i, j), M(i,j) will be increased to — 1. When we
find the second A particle, M (i, ) will be increased to 0.
When we find the third 4 particle, it will be eliminated
because M (i, j) = 0. When we find the B particle at (i, j), it
will also be eliminated. Thus, at the end of this reaction
step, the correct numbers of 4 and B particles have been
eliminated and M (4, j) = 0.

The problem of finding the nearest-neighbor distances.
Our understanding of the mechanism of a reaction is en-
hanced if we know the distribution of the nearest-neighbor
distances of all reacting particles. The nearest-neighbor
distance of a particle is defined as the smallest distance
between the particle and all other particles. The distribu-
tion of these distances changes dramatically as the reaction
proceeds, and this change can provide information about
the reaction mechanism. At time ¢ = 0, the most probable
nearest-neighbor distance between randomly placed parti-
cles in any dimension is » = 1 (one lattice constant). The
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distribution of nearest-neighbor distances on a d = 1 lat-
tice is given by Hertz'’ :

P(r) =2pe= =", )

where p is the particle density. The distribution P(r) in (7)
is shown in Fig. 2. As the reaction proceeds, the distribu-
tion of nearest-neighbor distances changes, because the
r =1 neighboring particles have a higher probability of
reacting, because the remaining particles now are further
apart, the average distance and the most probable distance
increase. The distribution at a later time also is shown in
Fig.2. Wesee a crossover from an exponentially decreasing
curve at t = 0 to a Gaussian-like curve with a maximum.
Analogous formulas and distributions are applicable to
d =2 and d = 3 lattices.

The observed crossover is a key characteristic of the
extent of the reaction, and therefore the computation of the
P(r,t) distribution is important. By definition, each re-
maining particle has only one nearest-neighbor distance,
and the problem is to find the distribution of all such dis-
tances. For a perfect lattice this calculation is not difficult.
We simply place the origin at a given particle, and then
move away from the particle, one lattice spacing at a time,
until the first new particle is found, and record this dis-
tance.

For random lattices, such as a percolation cluster, this
method does not work, as we can see from Fig. 3. The
shaded area is not part of the cluster, and thus the distance
between 4 and B is not a straight line, but a line that goes
around the shaded area. The algorithm to find the length of
this line is more complicated and is called breadth-first
search.!! In this method we look for the nearest-neighbor
of a given particle by first looking at the immediate neigh-
boring sites, ignoring sites that do not belong to the perco-
lation cluster. The percolation clusters are constructed us-
ing the well-known cluster-multiple-labeling technique,'?
which will not be described here. These first neighbor sites
are labeled as visited by this search, and their (x,y) coor-

FIG. 3. Schematic of a section of a percolation cluster. We want to calcu-
late the nearest distance between points 4 and B on the cluster. Because
the shaded area is not part of the cluster, the answer is not the straight line
connecting points 4 and B, but the curved line shown that goes around the
shaded area.



dintes and their r distance from the particle of interest are
placed in an array. If none of these sites contains a reacting
particle, then we next look for the nearest-neighbors of
these first neighbors that have not yet been visited. Their
(x,p) coordinates and their distances r are then placed at
the end of the array, one site at a time. If none of these
second neighbors contains a reacting particle, we continue
on the third neighbors and so on. Every new site that is
considered is labeled as visited. Its distance r is simply the
distance of the previous (mother) site plus one. In this way
the length of the array grows quite fast, but it is still the
most efficient method for solving this problem. In this
method a traveling wave (breadth) is formed in all direc-
tions away from the original point, but it covers only the
region of the cluster. It follows all the random paths of the
percolation cluster, its bottlenecks, and all types of clusters
regardless of any peculiarities that might occur. This pro-
cess is continued until the first reacting particle is encoun-
tered. This particle is by definition the nearest neighbor. Its
distance is recorded and used to obtain P(r). It is obvious
that the distance between two particles whose direct path is
blocked by a site that is not part of the cluster is calculated
around this site and not over it.

The above techniques are just a fewof the ones used to
simulate chemical reactions. The literature I have cited
contains several alternate approaches (see Ref. 5 for exam-
ple). There is a wealth of current problems that are being
investigated by several groups interested in modeling
chemical reactions. Their goal is to develop more-realistic
models and to make a direct comparison with experimental
data. For example, frequently the different reactants do not
have the same mobility, as the simple model discussed in
the text assumes. Because an encounter between particles
does not always lead to a reaction, it would be more realis-
tic to assume a reaction probability of less than unity, de-
pending on the conditions. A more-realistic model also
might assume the presence of an interparticle interaction
and that reactions would occur depending on the distance
between reactants and on the strength of the interaction.
More-sophisticated models also could include a bias in the
particle motion, such as the incorporation of an electrostat-
ic charge on each particle. The field of chemical reactions is
rich, and the possibilities of future investigations are practi-
cally endless.

Suggestions for further study

(1) Use the techiques discussed in the text to write a
program to simulate the batch reaction 4 + 4 =0 on a
d = 1 lattice. Use a line of length L = 10" sites and cyclic
boundary conditions; i.e., set L(10001) = L(1). Begin
with 4, = 1.0; that is, fill all lattice sites with 4 particles.
Plot the quantity (1/4 — 1/4,) on log-log paper as a func-
tion of time (number of steps) and calculate the slope of the
resulting straight line. Compare the slope with the number
of visited sites of exponent. [Recall that S(7)~1'/? for
d = 1.] How well do the slopes compare?

(2) Do the same problem on a d = 2 lattice. Compare
your results to the behavior of S(¢), where S(¢) ~1/log ¢

for d = 2. How well do the slopes compare? Can you recon-
cile the difference? Next, do the same problem with
A, = 0.01. What slope do you obtain? What can you con-
clude about the initial density dependence?

(3) Do the same problem on a d = 3 lattice. What is
the value of the exponent? How does it compare with the
S(1) exponent, where S(¢) ~find = 3.

(4) Investigate the time dependence of the “rate con-
stant” k for the above three cases. Which one of the three
cases yields a real constant?

(5) Verify the result (7) for the nearest-neighbor par-
ticle distribution on a d =1 lattice. Then begin with
A, = 0.1 and modify your program for problem (1) to
compute the nearest-neighbor distribution after 10, 100,
and 1000 steps. What shapes do the four curves have? Are
your results in qualitative agreement with Fig. 2?

(6) Prepare a pictorial of the 4 + Breactionind = 2
to observe the well-known segregation effect in batch
mode. Use a graphic screen or a hard copy plotter to follow
the reaction. Prepare a lattice of size 100X 100 sites, and
use empty circles for A and filled circles for B. (If you have
a color monitor, use different colors for the 4 and B parti-
cles). Observe the system at ¢ = 0, i.e., before the reaction
begins. You should see a completely random positioning of
the two species. Now let your program perform the reac-
tion, and show the particles after 100, 1000, and 10 000
steps. You should begin to see how clusters of open and full
circles are formed. After segregation occurs, which parti-
cles are now able to react?
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