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Abstract

We examine the behavior of probabil-
istic neural nets with the inclusion of
chemical markers and with Gaussian fluctua-
tions on the firing threshold. We use the
known probabilistic theories and we perform
Monte-Carlo computer calculations on a
variety of neural nets with a wide range of
parameters. We find that the two methods
are in excellent agreement. Our results are
both in qualitative and quantitative agree-
ment with previous similar studies.

1. Introduction

Over the past twenty years neural nets
have been a subject of intensive studies
from several different points of view. An
area with considerable importance is that
of biological nets, i.e. models of nets
that try to imitate the human (or other
Tiving) brain structure and functions in an
effort to understand such vital processes
as learning, memory, understanding, feel-
ing, etc. Widely used models (not an ex-
haustive Tist) include 'he early pioneer
work (McCulloch & Pitcs, 1943) of as-
semhlies of neurons as logical decision

elements, the mathematical formalism
(Cajaniello, 1961) of "neuronic
equations", and the probabilistic neural

structures (Wilson & Cowan, 1971; Griffin,
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1963; Harth
1970), that

et al., 1970; Anninos et al.,
monitor the activity, i.e. the
fraction of neurons that become active per
unit time, and they have all been quite
successful towards our understanding of the
above mentioned functions. In these models
a network is made of a large number of
neurons (the elementary unit), which are
interconnected according to some rules. As
each unit has several connections, and
there is a large number of units, it is
quickly realised that the number of connec-
tions grows very fast, making the task of
calculations quite difficult. But it should
be realised that it is exactly this compli-
cated connectivity structure that produces
the collective properties that neural nets
possess. An isolated unit (one single
neuron) is incapable of producing any of
the results described below, it is the sum
of all units working together that produce
these observations.

The probabilistic nets initially were
gquite simple (Harth et al., 1970; Anninos
et al., 1970), but later got more involved
(Anninos & Kokkinidis, 1984; Kekkinidis &
Anninos, 1985; Anninos et al., 1984; An-
ninos & Kokkinidis, 1987; Adamopoulos & An-
ninos, 1989) and incorporate today several
advanced characteristics met in neural net-
works. Their theoretical basis is the bino-
mial distribution, as one tries to at-
tribute some specific properties to a frac-
tion of units out of the total population.
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The mathematical formalism may be qguite in-
volved, but it is straihgtforward (Anninos
et al., 1970). Alternatively, we can con-
struct a computer simulation model and
apply standard Monte Carlo technigues in
our search for the net properties. The two
methods are wused interchangeably, and in
all cases where direct comparision can be
made the agreement is satisfactory.

In section 2 we describe the details
of our model, giving emphasis to two
features: (a) the chemical markers, and (b)
noise with chemical markers. In section 3
we present our results, and in section 4
the conclusions of the present work.

2. Description of the model

Each netlet is made of a collection of
neurons with a total number A. Each neuron
at some instance may carry an electrical
potential, which it passes on to the
neurons that it is connected to. This
potential is of the order of a few mV and
it is characterized as excitatory
(inhibitory) if it dincreases (decreases)
the neural overall potential due to its
connections with other neurons. The average
number of neurons receiving excitatory
postsynaptic potential (EPSP) is p*, while
that receiving inhibitory postsynaptic
potential (IPSP) is u . The fraction of
neurons that are inhibitory, out of the to-
tal is h (O<h<l). A1l potentials are in-
stantly summed up and compared to a
threshold value 6. If the sum is greater or
equal to 8 then the neuron will fire in the
next time sequence. If it is smaller than 8
then it will be idle. Time is measured in
units called synaptic delays, 1, and a
neuron that is firing at a particular in-
stance cannot fire immediately after for a
period called refractory period, which is
usually assumed to be one (1) synaptic
delay. The size of the PSP produced by an
excitatory (inhibitory) unit is K* (K7).
The dynamics of a netlet is monitored by
inputting a certain initial signal at time
t=0 to some units in the netlet, and ob-
serving its propagation throughout the net-
let and the results it produces.

(a) Neural Networks with Chemical Markers

In earlier studies on probabilistic
neural nets consisting of discrete popula-

tions of formal neurons, it has been as-
sumed that all neurons have the same prob-
ability of connection with any other neuron
in the net (Harth et al., 1970; Anninos et
al., 1970). This is not the case under con-
sideration. Here, it is assumed that the
nerve connections are set up by means of
chemical markers carried by the individual
cells, according to the theory of neural
specificity (Sperry, 1943, 1963; Prestige,
1975). According to this theory each neuron
makes synaptic connections only with those
neurons in the network which carry markers
with the highest chemical affinity to its
own. Thus, the whole network is divided to
neural subpopulations, each of them charac-
terized by its own marker.

. The basic assumptions and definitions
of the model are similar to those of pre-
vious work (Harth et al., 1970; Anninos et
al., 1970). The elementary unit in this
model is again the neuron, which is a bis-
table element. It can be either in the
resting or in the active (firing) state.
The transition from the resting to the
firing state of the neuron occurs when the
sum of postsynaptic potentials (PSPs) ar-
riving at the cell exceeds a certain criti-
cal value, the threshold 6 of the neuron.
PSPs may be either excitatory (EPSP) or in-
hibitory (IPSP), shifting the membrane
potential closer to or further away from 6,
respectively. A neuron may be either ex-
citatory with all of its axon branches gen-
erating EPSPs or inhibitory with all of its
axon branches generating IPSPs.

If a neuron fires at time t, it
produces the appropriate PSPs after a fixed
time interval 1, the synaptic delay. PSPs
arriving at a neuron are summed instantly,
and if this sum exceeds 8, it will cause
the neuron to fire immediately. Firing is
momentary and causes the neuron to be in-
sensitive to further stimulation for a time
interval called the refractory period.
Postsynaptic potentials, if below 0, will
persist with or without decrement for a
period of time called the summation time,
which is assumed to be less than the synap-
tic delay. It was also been assumed here
that the refractory period is greater than
the synaptic delay, but less than twice the
synaptic delay. If a number of neurons
fire simultaneously at time t, then all
neural activity resulting from this initial
activity will be restricted to times t+r,
t+271,..., etc.
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The dynamic variable that is usually
monitored in the model under consideration
is the level of activity an, i.e. the frac-
tion of neurons that are active in the net-
let at t=nt, which is a scalar quantity and
does not specify which particular neurons
are firing in the netlet. The activity a
at time t=nt will depend exclusively on the
firing record of the netlet at t=(n-1)r.
The expectation value <ap.1” of the ac-
tivity at time t=(n+l)7, is the average
value of a,,; generated by a collection of
netlets with identical structural
parameters and the same a,. It is also as-
sumed that all subsystems in a netlet with
different markers are assigned the same
fraction of active neurons a, .

In this model the impar%ant constraint
of markers, gives rise to ordered patterns
of nerve connections. The interconnections
between the neurons are assumed to made up
at random, just as in the previous model.
However active connections are considered
to be only these that belong to cells which
carry the same type of marker. Thus, the
total number of A neurons js divided into
several subpopulations. Neural connection
exist at random with no restriction among
all cells, but the EPSP (and IPSP) are
carried only to the connections that belong
to the same marker. Connectien between
neurons of different marker are inactive,
i.e. they carry no signal. If My, Mpy....,
my are the fractions of neurons in a net-
work of N markers corresponding to each
subpopulation, then myHpt. .. ... +my=1.

The gquantity <a +1> is calculated
similarly to previous Studies (Harth et
al., 1970; Anninos et al., 1970). Let apA
be the active neurons at time t in a netlet
with A neurons and N markers. Let also ms,
hay ([G=1,2:3;. = N)EBE iThe: fhactiionetut
ngurons and the fractions of inhibitory
neurons, respectively, carrying the jth
marker in the netlet. Then, it follows that
at t=(n+l)T will appear Aa,p:*(1-h;)m;
EPSPs and Aanpj'hjmj IPSPs in %he sd%ne%
with j marker.

The expectation value of the activity
<apyq> for the netlet at time t=(n+l)r is
given by (Anninos & Kokkinidis, 1984):

e
<apyp> = (1-ap) Imy & (1 - £ P )0 5 (1)
j=1 1=0 L=0

This equation results by adding all prob-
abilities for all combinations of
thresholds and PSPs that produce firing.
Pp g5 Oy j» are the probabilities that a
neﬂﬂon of “the jth marker will receive L-
EPSPs and I-IPSPs at time t=(n+l)7, and
they are given by:

PLoj = exp[-apuy*(1-hy)ms] :
[aguy™ (1-hg)my1+/L!

(2)
QI,j = exp(—anuj"hjmj){anuj'hjmj)l/l!

The upper Timit I x,j in the sum is the
total number of ac%1V% inhibitory connec-
tions of the netlet in the subsystem of the
jth marker, and is given by:

Imax,j = Aanpj'hjmj (3)

The n; in the upper Timit in the inner sum
is th® minimum number of excitatory inputs
necessary to trigger a neuron which has
received I inhibitory inputs and carries
marker j. It is given by:

nj = ul(85+1Ky7)/K;*] (4)

The function u[x] is defined as the smal-
lest integer which is equal to or greater
than x. With the same considerations as in
previous studies (Harth et al., 1970; An-
ninos et al., 1970) we may study the
dynamics of a netlet with N markers which
is attached to a cable of afferent fibers
receiving sustained inputs. It is assumed
that these fibers may be axons of A

neurons in another netlet with the same
structure, and for simplicity A=A, . We
define p," (H, ) as the number of neurons
(same for each subsystem), with which an
external excitatory (inhibitory) neuron
makes its synaptic contacts in the netlet
if it carries the same marker; o is the
fraction of external active fibers, carring
action potentials at a particular instance.
The expectation value of the activity
<a..1> at time t=(n+l)t is given by
(Anninos & Kokkinidis, 1984):

<apy1> =

m
(I—an) ij L I
J=1 M=0 I=0 L=0 (5)
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Here Ry ; is the probability that a
neuron of th Jjth marker will receive M-
PSPs from external neurons and is given by:

. ¢ L oM :
RH,j = exp(-opg mj}(uuo mj) /M (6)

The uper Timit Hmax,j is given by:

Mmax,j = Auoug‘mj (7)
and nj is giveﬁ by:
nj = ul(85+IKJ FMK }/Kj+] (8)

(b) Noisy Neural Nets with Chemical Markers

Consider a probabilistic netlet
similar to the one previously discussed
which may be iseolated or attached to a
cable of afferent fibers. It has been shown
in the past that such a netlet may exhibit
sustained steady-state activity even if it
is isolated. This activity is sometimes
referred to as endogenous or spontaneous
activity. Here, the term "spontaneous
activity" is used to describe the firing of
neurons occuring independently of the ac-
tivity of other neurons, i.e. without trig-
gering by the activity of other neurons. It
is clear now that in an isolated netlet ex-
hibiting spontaneous activity there are
generally two components in its steady-
state activity: the spontaneous activity or
"noise", and the activity of neurons trig-
gered by the preceding activity of the net-
let.

The model for the origin of such spon-
taneous activity is mathematically simple.
The PSPs which in the previous model were
assumed to be zero in the absence of
presynaptic activity, are now allowed to
undergo spontaneous random fluctuations,
somewhat similar to the random end plate
potentials originating from the spontaneous
release of synaptic transmitter substance
in motorneurons (Katz, 1966). PSPs gen-
erated by presynaptic activity will be
added linearly to these fluctuations, the
total PSP determining again whether or not
a neuron will fire. The random PSPs are
functionally equivalent to fluctuations in
the threshold of the neuron. Furthermore,
it is assumed that these fluctuations of
the neural firing thresholds may be posi-
tive or negative, and they have a Gaussian

distribution. The spontaneous activity of
the netlet is then described by a single
parameter, the standard deviation & of the
Gaussian distribution.

In this model the basic assumptions
about the structure - including the concept
of chemical markers - and the unit
properties are similar to those in the pre-
viously discussed model. The dynamical
variable of interest in the model is again
the level of activity a,. The activity of
the netlet a, at time t=nt will depend now
exclusively on the firing record of the
netlet at time t=(n-1)T and on the level of
the spontaneous activity in the netlet. In
the case of a neural netlet of N markers
My, My, M3,...,My, where m: is the fraction
0% neurons with the jth ma#ker, the neurons
in each marker have Gaussian distributed
thresholds with standard deviations &;
(j=1,2,3,...,N). In such an isolated net]e%
which 1is completely quiescent at one in-
stant, the activity in each subpopulation
one synaptic delay later will be entirely
due to spontaneous firing of these neurons.
These spontaneous activities aps,
(3=1,2,32= 5sN) 2t accordingudos thist moge).
will correspond to the fractions of neurons
of each subsystem m:,(j=1,2,3,...,N) whose
threshold at t=0 is” less than zero. Thus,
they are given by the equations:

15 ()
= J exp(-x2/2)dx, (3=1,2,3,...,N)
Yon “8;/5;
(9)

where B8: is the average value of the
thresho]& of the jth marker.

The expectation value of the activity
of such a netlet at t=(n+l)v, is given by
(Anninos, Kokkinidis & Skouras, 1984):

N Imax,j Lmax,j

<an+1>=(1~an}i mj ¥ i PL,jQI,jTﬁj{ejJ
Jj=0 1I=0 L=0
(10)

This equation results by adding all prob-
abilities for all combinations of
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thresholds and PSPs that produce firing.
PL ., Qp. 3, are the probabilities that a
gﬁgn neu’r‘]m of the jth marker will reseive
L-EPSPs and I-IPSPs, respectively, at time
t=(n+1)7. They are also given by equations
(2): The upper limits in the sums Imaxj
are given by (3) and the Lpay j by: ’

+
Lmax,j = Aanpj (l-hj)mj (11)
The Tx:(0:) is defined as the probability
that ?e %stantaneuus neural threshold is

equal or less than the value BJ- in the sub-
system of the jth marker:

1 o0
Tﬁj === exp[-xz/z}dx (12)
Y2n * (85-85)/3;

3. Results

The plot of <a 1> vs a, for a netlet
with four markers, q%h]owing equation (1),
is given in figures 1 and 2 for a certain
combination of the netlet parameters. The
curves in figure 1 represent the total ac-
tivity of the netlet. We include all three
cases of activities, i.e. classes A, B and
C. Class A refers to nets for which an ac-
tivity egual to zero is not a stable state,
but they produce sustained activity for any
jnitial activity a,<1.0. They exhibit one
stable steady-sta%e slightly below the
value a,=0.5. Class B includes nets that
have a %hresho1d activity a,>0, for which
any initial activity above it causes the
nets to produce sustained activity. Except
the quiescent - at zero activity - stable
steady-state they include one unstable
steady-state, and above this another stable
state. Class C refers to nets which show
monotonically decreasing activity for all
initial activities. In this third case the
whole curve 1% the <ap, ;> vs a, diagram is
below the 45 line. The solution of equa-
tion 1 (solid lines) and the computer
simulation data (crosses) are in excellent
agreement, as expected. Figure 2 shows the
activities for each marker and the total
activity of the netlet for a net of class
B.

The expectation value <ap 1> vs a, for
the case of zero refractoriness is given in
figure 3 for a netlet with two markers, in

1_8<

o

Figure 1. Expectation value of the total neural activity < a_,> Vs
preceding activity a, for isolated netlets with four markers,m =0.1,
m,=0.2, m =0.3, m,=0.4, with ha:h°=hc=hd=0,u;=ub‘=uc'=u“‘:20 K=,
refractory  periods r=r,=r=r=1.A[(A class)m =1,=n=1,~1:8.(B
class).n,=n,=1,=1=2; C. (C class), n=m,=T|=1=3- The solid lines
are obtained by means of equation (1), whereas the crosses are

- results of computer simulation of a netlet of 1000 neurons.

Figure 2: <a_> vs 4, for a class B (n,=n,=n=n,=2jnetlet with four
markers a, b, ¢ and d, with the same parameters as in the fig 1.The
curves a-d represent the activities of each marker whereas T gives the
total activity of the netlet. Solid lines are obtained by equation (1), while
the crosses are results of computer simulation.
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Figure 3: <a_,>vsa, fornetiets with iwo markers, m =0.7,m,=0.3,with
h,=h=0, 11.=20, 11,7=65, 8 =8, 8, =3, K*=1, refractory periods r =r,=0,
g =0.The curves aand b represent the activities of each marker
whereas T the total activity of the netlet. Solid lines represent theoretical
values, while the crosses are results of computer simulation of a netlet
of 1000 neurons.

the same method as the previous two
figures. We observe that because r=0 the a
and b marker curves do not come to zero at
a,=1.0. As a consequence the curve for the
sum of all markers may show up to the num-
ber of markers (here 2) stable steady-
states. In the above three figures there
was no additional external sustained input
in the nets. Now we examine the case of a
sustained input, o. Similar plots can be
obtained (not shown-here). The condition
<ap.1>=a, for steady state (Harth et al.,
19%; Anninos et al., 1970) also applies
2re, leading to phase diagrams and mul-
tiple hysteresis loops as shown in figure
4.

On the basis of the above formalism
we now examine the time dependence of the
neural activity. Thus, here we monitor the
total activity of the net as a function of
time, for several time units (here t=15).
At time t=0 the net is presented with some
initial activity. Figures 5-7 show the
results for nets belonging to class A, B,
and C, respectively. Each net includes four
markers, and the values of parameters are
the same as in figure 1. In each figure we

3.6

Figure 4:Phase diagram and hysteresis curves fora netlet with two
markes, @ and b, with sustained inputs. Parameters:m =07,
m,=0.3, h=h =0, p <20, u~=65, 0. =9, 0,=3, r =,=0, K*=1(the same
asinfig 3) Kz=0.5, p #=10. Sofid lines represent stable steady states
whereas dotied lines unstable ones.

2.0 1 1 1 1 i 1 L e |y 1 L i
1] 2 2 =] 8 1@ 12 14

t=at

Figure 5: Time dependence of tolal activity a_ for the A class (B=1)
netiet with the four markers a,b,c and d of figure 1, forinitial activities
0.01,01,0.2,03,04,05,06,0.7, 08,and0.9.

plot ten different initial activities ag,
in the whole interval ap=0 to 1, resulting
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Figure 6: Time dependence of fofal activity a, for the B class (8=2)
netlet with the four markers a.,b,c and d of figure 1, for initial activities

0.02, 0.05,0.075,0.1,0.2, 0.5, 0.6, 0.7, 0.8, and 0.8.
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Figure 7:Time dependence of fotal activitya_for the C class (8=3) netlet
with the four markers a, b, ¢ and d of figure 1, for initial activities 0.02,
0.1,0.2,0.3,04,05,06,0.7, 0.8and0.9.

in ten different curves. We observe that in
figure 5 all initial activities collapse to
the same value, a=0.48, after approximately

t=10 synaptic delays. This is because this
case (class A) corresponds to a stable
steady-state. In figure 6 we notice that
the first three initial activities after a
few time steps become eventually zero,
while the rest reach a stable steady-state.
This is because the first three are below a
threshold value, as this net helongs to
class B. Finally in figure 7 we notice that
all ten curves lead to a zero activity as
this net belongs to class C.

We now treat the cases of neural nets
with noise (fluctuations) in the value of
the threshold. The behavior of a net with
two markers and a Gaussian fluctuation with
6=1.77 is shown in figure 8. A plot of the
expectation value <a, 1> vs a, is given. We
see that the results for the two markers
are similar to those without noise, as in
figure 3.

As in the previously discussed noise-
less model, we may also study the dynamics
of a noisy netlet with N markers which is
attached to a cable of afferent fibers
receiving through it sustained inputs from
another netlet with the same structure. If
o is the fraction of external active
fibers, i.e. those carrying action poten-
tials at a particular instant, the expecta-
tion value of the activity <dpy1> at
t=(n+1)T is given by (Anninos et al. 1984);

<ap, 1> = (1-ap)

N Mmax,j Imax,j Lmax,j

my T L L P 0 Ry T5i(05)

j=0 M=0 1=0 L=0
(13)

Here Ry ; (the probability that a given
neuron 1in-the subsystem of the jth marker
will receive M-PSPs from external neurons),
is given by equation (6), and the upper
limit in the sum M., s by equation (7).

The condition €§%+1>=an for steady-
states of activity may also be applied
here, Tleading to phase diagrams and hys-
teresis curves of the type shown in figures
9 and 10.

4. Conclusions

In this paper we used neural nets in
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Figure 8: <a_,>vsa for netlets withtwo markers,m_= 0.7 7y, =0.3,
with b, =0.0105, h, =0, 1 =16, j1,"=65, 6 =7, B,=3, ne=1, refractary
periodsr =1, =0,5=0,6<= 1.77. Thecurves a and b represent the
activities of each marker, whereas T the total activity of the netlet.
solid lines represent theoretical values, while the crosses are results
of computer simulation of a netlet of 1000 neurons.

Figure 9: Phase diagram and hysteresis curves for a netlet with two
markers & and b. The steady-states of activity a_ have been plotted
against 8. Parametersim_ =0.7, m = 0.3,h =0.0105h = 0, i =18,
1,=65,6.=7, 6,=3. K=1, refractory periodsr_=r, =0, =0, Solid linas
represent stable steady - states whereas datied lines unstable ones.
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Figure 10: Phase diagram and hysteresis curves for a netlet with two
markers a and b, receiving sustained inputs. The steady - states of
activity a_have been plotted againsts. m,_=0.7, m,=0.3,h_=0.0105,
h, =0, p2=18, =65, 8 =7, 6,=3, K=1, K==0.5, p*=10, refractory
periodsr, =r, =0, & = 1.77. Solid lines represent stable sleady - states
whereas dotted lines unstable ones.

the spirit of mathematical modaols
frequently reported in the literature. We
went beyond the simple picture to include
explicitly separate domains of subpopula-
tions characterized by chemical markers, as
intracellular communication is restricted
to occur among neurons that exhibit similar
chemical affinity. The calculatiens in this
work, as they are exhibited by a series of
figures, show similar behavior as in the
case with no markers, i.e. different
classes of nets are also observed, classes
A, B, and C, according to the response of
the initial value of the activity. The time
evolution of the activity is followed,
again leading to similar type of behavior.

Finally, we utilized a model that in-
cludes fluctuations with a normal distribu-
tion on the threshold for the firing
mechanism of the neurons. Again, we ob-
served similar behavior as with the cases
of constant firing threshold.
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