
Journal of Statistical Physics, Vol. 63, Nos. 1/2, 1991 

Trapping Without Traps by Correlated 
Random Walks 
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Correlated random walk of particles in the infinite cluster of percolating lattices 
in two dimensions is investigated. For infinitely strong forward correlations (no 
change of direction except at the boundaries) trapping of the particles in small 
regions of the infinite cluster is observed. 
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The detailed understanding of transport  of particles or energy in disordered 
systems in condensed phases has been a problem of prime interest 
recently.(1 3) It has been visualized from quite different points of view, such 
as, for example, from studies of dynamics of a lattice gas or the noncrys- 
talline character of a solid in materials research, etc. A systematic approach 
for the study of disorder in solids has been provided by the picture of frac- 
tal structures. The scaling laws that were found to hold in these structures 
have certainly improved our understanding of transport  in these complex 
systems. We have explicit expressions for the main features of random walk 
on a fractal, as, for example, it is given by a percolation cluster exactly at 
the critical threshold. As more complicated systems were investigated 
experimentally (4'5) more sophisticated models were necessary for their inter- 
pretation. One such model is that of correlated random walk where the 
moving particle retains the memory of its previous move regarding its par- 
ticular direction. A forward correlation is introduced when the probability 
for a move in the same direction as the previous one is higher than in the 
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other directions. For strong forward correlation the particle may move in 
the same direction for long times before scattering to some other direction. 

We are interested in the behavior of correlated walks in models with 
randomly blocked sites, especially at the percolation threshold. (6) There it 
has been shown that correlations of moderate strength do not change the 
universal behavior of the mean square displacement/7) To characterize the 
influence of correlations, the efficiency may be introduced, which is simply 
defined as the ratio of the number of distinct sites visited over time. The 
principal results of the past work were that correlated motion enhances the 
efficiency of a random walk on a perfect lattice, while it decreases this 
efficiency in highly disordered systems. (5's'9) The same trend appears for the 
mean square displacement, i.e., it increases with increasing correlation in 
perfect lattices, but decreases in highly disordered lattices, as compared to 
normal random walks. Of course, if the concentration of randomly blocked 
sites is increased beyond a critical point, all transport becomes restricted to 
small finite clusters regardless of the degree of correlation present. These 
trends have been qualitatively explained in terms of the spatial constraints 
imposed on the transport. In the case of perfect lattices retention of direc- 
tional memory helps the particle to move further away from the origin. For 
the percolation cluster we have a very ramified structure where the effect of 
correlation results in producing a back-and-forth motion, while the simple 
random walk is more efficient in escaping from bottlenecks, dead ends, etc. 

In this note we report an interesting observation for the case of the 
infinitely strongly correlated motion on a fractal, the two-dimensional per- 
colation cluster at the critical point. Namely, we observe that for this case 
the particle is fully "trapped" in some small-size region of the infinite 
cluster and stays there "forever," i.e., independent of time. This is shown 
both by the behavior of S,,  the number of distinct sites visited, and of R 2, 
the mean square displacement, respectively. If correlation is large but not 
infinite, this trapping is not observed, (9) but a time dependence of these 
quantities appears. 

Our previous studies (5) concentrated on a rather limited range in the 
values of the correlation parameter. The main unexpected result had been 
the decrease in the transport efficiency for highly disordered lattices. Here 
we deal exclusively with the limiting case of infinitely long correlation 
(ps= 1.00) having as a consequence the effective "trapping," which has not 
been observed before. 

The quantitative measure of correlation in our model is given by the 
probability py, which is the probability for a step in the same direction as 
the preceding one, while 1 - p f  is the probability for steps in all other 
( z -  1) directions combined (z is the coordination number). Thus pf  is in 
the range 1/z <<. p/~< 1. The case py= 1/z refers to the uncorrelated case, 
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while Pr = 1.00 gives the case of infinite correlation, the topic of our note. 
We investigate the infinitely correlated walk by numerical simulation. 
Analytical treatments have been made for perfect lattices (8) (Pi < 1), or in 
the form of effective medium theory, ~I~ which applies away from the per- 
colation threshold. Our algorithm proceeds as follows: A binary lattice 
(open-closed sites) is constructed exactly at the critical percolation 
threshold Pc. We use p< = 0.593 and employ the cluster multiple labeling 
technique (l j) to construct the infinite cluster. A particle is placed at random 
on this cluster and performs a random walk with the correlation parameter 
pf= 1.00. This means that the particle initially chooses a direction of 
motion and moves on a straight line until it reaches the boundary of the 
cluster. At this point it simply loses memory and chooses a new direction, 
and again moves on a straight line without any interruption until it hits the 
boundary again. This process is repeated for 2.5 x 105 steps. 

Figure 1 shows the behavior of S,  as a function of time (number of 
steps) for this model of infinite correlation (pf = 1.00) on a two-dimen- 
sional percolation cluster at p = p c  =0.593. We observe that very early 
(below 10,000 steps) a constant value of S, is reached which is about 
S = 60 sites. In no part of this curve (apart from the constant value) do we 
observe any power-law behavior, as we would expect for uncorrelated 
random walk, for which S, obeys the form 
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Fig. i. PLot of Sn as a function of time in log log scale for the limit of infinite correlation, 

pf = l.O0. Lattice size is 500 x 500 sites. These results are averages of 2000 realizations of the 

percolating cluster. 
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where d~, is the spectral (fracton) dimension of the process. This is 
obviously a consequence of the fact that the particle is trapped in some 
region of the cluster as these "wall-to-wall" distances are traversed. Once it 
is placed in the cluster the particle cannot escape from a restricted region, 
even though the cluster is infinite. It simply cannot find the narrow way out 
of this region due to this form of scattering, which only takes place at the 
"walls." Once Ps becomes smaller than 1.00 then the situation drastically 
changes and Eq. (1) is obeyed asymptotically. 

The question arises as to how large in size are these regions of 
trapping. In Fig. 2 we present the complete distribution of Sn at the long- 
time limit. We observe that this distribution has a maximum much below 
{S ) ,  at about S = 20 sites, and a long tail at its right side. The distribution 
of quantities due to disorder is an important concept for a disordered 
system, (12) which was investigated recently for random chains. (~3) Here we 
have another system where the typical behavior of a quantity does not 
coincide with its mean value. To determine the precise form of the distribu- 
tion we plotted it in Fig. 3 in a linear-log scale. The figure suggests an 
exponential form of the distribution, although there seem to be small devia- 
tions. We have also plotted the data in a log-log scale; clearly there is no 
simple power-law decay of the distribution present. An exponential form of 
the distribution, 

p ( S ) ~ e x p ( - S / a )  (2) 
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Fig. 2. Complete distribution of Sn for n = 5 x 104 steps. ]0,000 realizations were utilized for 
this plot, and the interval AS = I site. 
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Same plot as in Fig. 2, but in linear-log scale. 
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would entail that all moments of the number of sites visited exist, in contrast 
to a power-law decay, which leads to divergent moments. Of course, a more 
complete examination of the distribution is desirable and it is currently 
being worked out. 
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