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order to stabilize the system energy, Vz has to decrease by AV2 
to move to the hatching region. Therefore, the energy of the 
system will be stabilized by the decrease of Vz even if V, increases. 
This is the underlying mechanism in the dynamic hydrogen 
bonding which was elucidated in section IIA. Indeed, in Figure 
4, we have shown the vibronic attraction using the change of the 
binding potential energy as R decreases from 2.729 to 2.660 A. 
Consequently, the contraction of lattice spacing suggested by 
Anderson and Lippincott will be explained by this vibronic effect.* 

C. Isotope Effects. In this subsection, the isotope effects are 
explained. Apparently, the isotope effect of the dynamic potential 
energy E is solely due to e. In Figure 11, we shall show the e which 
has been obtained as the eigenvalue of eq 12 for each case H+ 
and D+. It should be noted that the derivative de/dR corresponds 
to the vibronic attractive force for the N-N bond. There are two 
regions: (I) R > 2.65 A, where the attractive force of H+ is greater 
than that of D+, and (11) R C 2.65 A, where the attractive force 
of D+ is greater than that of H+. The origin of the clear separation 
into I and I1 may be explained as follows. 

Using the analytical parameters of the potential, the force may 
be decomposed into two terms: 

de de dV1 de dv2 +- -  
dR dVl dR dV2 d R  
- = - -  

Now, in the region I, the H+ is bound little with respect to the 
top of the barrier (see Figure 7a). In this region, the vibronic 
force de/dR given by eq 16 may be approximated as 

de de dvz 
dR dV2 dR 

N - -  - 

because we find from Figure 4 that the relation IdVl/dRI << 
IdVz/dRI holds in R = 2.729 A. On the other hand, from Figure 
9, we have the following relationship: 

Combining eq 18 with eq 17, one can see directly that the at- 
tractive vibronic force is stronger for H+ than for D+ in region 
I, because dV2/dR is considered the same for both H+ and D+. 

Next, in region I1 where R is less than 2.65 A, the H+ is not 
tightly bound. In this region, the first term of the vibronic force 
de/dR, which was omitted in eq 17, should play and important 
role because we known JdVl/dRI I IdVz/dRI in Figure 4. On the 

other hand, from Figure 9, we have the following relationship: 

The combination of eq 19 with eq 16 leads to the result that a 
more drastic weakening of the attractive force of H+ occurs as 
compared with that of D+ in the region 11. In the region, a 
contraction of the lattice spacing may be brought about when D+ 
is substituted for H+. This can be called the inverse isotope effect 
and might be connected to the experimental results3 that were 
mentioned in the Introduction. 

111. Concluding Remarks 
In the present paper, we have studied the mechanism of the 

dynamic hydrogen bonding induced by the zero-point vibration 
of proton. A large isotope effect has been observed for the lat- 
tice-binding force. The criterion of the “attraction” of the lat- 
tice-binding force has been given. In our model system, the 
“lattice” distance R is contracted from the “static” equilibrium 
distance %p = 2.729 A to the dynamic equilibrium distance 2.660 
A by the vibronic effect, and this effect is larger in H+ than in 
D+. The theoretical origin has been clarified by the distinct 
relationship between the barrier height in proton tunneling and 
the binding potential of the lattice as a function of the lattice 
distance. Moreover, the inverse isotope effect has been predicted 
in a range of rather small lattice spacings and may be applicable 
to explanation for the experimental In this relation, it 
is worthwhile mentioning that X-ray analysis, or the more powerful 
neutron diffraction analysis, cannot distinguish the following two 
cases: (a) the case in which the proton oscillates in a symmetric 
single-minimum potential a t  the middle point, and (b) the case 
in which it is distributed at random in a symmetric double-min- 
imum p ~ t e n t i a l . ~  Therefore, more accurate experimental work 
is recommended in order to validate the present theory. 

Because the problem treated in this paper is universal for general 
proton dynamics,” further application for the corresponding fields 
should be enhanced in future. 
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Monte Carlo simulations of diffusion- and/or convection-controlled homoreactant (A + A) and heteroreactant (A + B) binary 
kinetics are given for one-, two-, and three-dimensional lattices and for disordered fractal lattices (percolation clusters in 
two and three dimensions). The rate laws are compared for different degrees and methods of convective stirring, including 
global versus local stirring in space and continuous versus periodic stirring in time. The results are parametrized in terms 
of the fractional time exponent of the reciprocal reactant density. 

Introduction 
T~ stir well is the universal instruction for chemical reactions. 

However, efficient convective stirring is not always possible. This 

is especially true for heterogeneous reactions, surface reactions, 
solid-state reactions, and reactions in viscous and/or restricted 
domains. It is difficult to stir such reactions. Thus, the distinction 
between well-stirred and self-stirred reactions is of both theoretical 
and practical interest. In addition, most solid-state ”physical” 
reactions, e.g., electron-hole recombination or exciton-exciton 
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annihilation, are self-stirred, diffusion-limited reactions. Also, 
many biological and biophysical reactions, such as fluorescence 
quenching, are mostly in the self-stirred regime. Here we give 
characteristic examples for two extreme cases of “diffusion-limited” 
reactions, the constantly and totally stirred reaction and the totally 
unstirred reaction, as well as for various cases of intermediate 
stirring. The unstirred reactions are still “self-stirred” via diffusion. 
It has been shown’ that diffusive (self-) stirring is quite efficient 
in homogeneous, three-dimensional space. However, for low- 
dimensional and/or heterogeneous media, self-stirring is inefficient. 
We concentrate thus on low-dimensional and “fractal” spaces, 
where self-stirring is synonymous with “understirring”. 

The traditional formalism for homogeneous reactions2 expresses 
the rate constant K in terms of the cylindrical volume V swept 
out by the reacting molecules (cross section a times mean distance 
1) per unit time: 

The Journal of Physical Chemistry, Vol. 93, No. 1, 1989 

K = dV/dt d V  = a dl  ( l a )  

K = a dl/dt (1b) 
For diffusion-limited reaction kinetics the equivalent Smoluchowski 
approach2*’ replaces the mean velocity dl/dt by the diffusion 
constant (D), for long times 

K = a‘D t - (a’ = constant) (2) 
In a microscopic model where the Brownian motion is described 
in terms of molecular random walk,“ dV/dt is naturally sub- 
stituted by the volume which the walker sweeps out in unit time: 

K = b dn/dt (3) 
where b is the “volume” of the walker and dn/dt is the number 
of such volumes swept out in unit time. For instance, on a cubic 
lattice, with unit cell volume b, the walker sweeps out dn unit cells 
per unit time dt. The question arises, How does one count dn? 
Is it (I) the total number of unit cells swept out by the walker, 
or is it (11) the distinct number of such cells swept out, on the 
average? While for a well-stirred system (convection-stirred) the 
first approach (I) is correct, for a system that is only “self-stirred” 
by molecular diffusion, the second approach (11) applies.’ In a 
three-dimensional, isotropic system (like a cube) the difference 
between (I) and (11) is less than a factor of 2 (1.5164 for long 
 time^).^ However, for lower dimensional systems the difference 
becomes dramatic (many orders of magnitude) and, moreover, 
K becomes a function of time (even at  t - m) in case 11. Thus, 
the problem is of much interest to heterogeneous reactions (e.g., 
surface reactions), where convection stirring (on the surface or 
inside the pores) is not a likely process. 

We give here simulations of the rate constant for the reaction 
A + A - 0  (4) 

A + B - + O  (5) 
where the reaction product is either a photon (exciton annihilation 
reaction) or a species that leaves the active surface (as A2t or 
AB?). The simulations are performed for cubic lattices, square 
lattices, two- and three-dimensional critical percolation clusters, 
and a one-dimensional lattice. We demonstrate the effects of 
various modes and degrees of stirring via the conventional time 
evolution of the macroscopic (global) reactant densities and the 
related, fractal, time exponents. In a forthcoming publication we 
will present the microscopic (local) picture in terms of nearest- 
neighbor distribution functions. 

as well as 
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Method of Calculations 
All computer simulations are performed using well-known 

Monte Carlo methods. First, lattices are generated as follows: 
for the case of a perfect lattice all sites are identical; for percolating 
clusters binary lattices are generated, the cluster distribution is 
performed, the largest percolating cluster is isolated, and all other 
clusters are erased. The binary concentration is chosen as pc = 
0.595 (2-D), andp, = 0.315 (3-D). Typical sizes are 10000 sites 
(1-D), 200 X 200 (2-D), and 40 X 40 X 40 (3-D). A certain initial 
particle population is placed at  random on the lattice, with only 
one particle allowed to occupy a lattice site; typically, the initial 
particle density po is 0.05 particle/site, for each species present. 
In the case of the A + A reaction the particles carry no label, 
while in the case of the A + B reaction each particle a t  time t 
= 0 is labeled either A or B. The diffusional motion is simulated 
by allowing each particle to perform a random walk with steps 
leading to its nearest-neighbor sites only. If during this walk a 
particle comes to a site that is occupied by another particle in the 
case of the A + A reaction, the two particles react, A2 is generated, 
and the 2A particles are annihilated. In the case of the A + B 
reaction the same thing happens if the encounter is between an 
A and a B particle, while nothing happens if two A or two B 
particles collide. In this event, while there is no reaction between 
the two like particles, the particle that attempted to move returns 
to its original position and consumes one time step altogether. 
Similarly, the generated AB species leaves the system. 

In the diffusion-limited case, after the reaction starts, the 
particle density is monitored as a function of time without any 
interference in the reaction process. In the well-stirred case after 
each time step all remaining particles rerandomize their positions. 
This is done by simply removing all particles and repositioning 
them randomly on the lattice without any memory of their previous 
positions. Similarly, the particle density is monitored as a function 
of time. 

We have devised three models for the intermediate cases be- 
tween the diffusion-limited and the fully stirred ones. (I) Periodic 
stirring: Stirring occurs periodically in time only; i.e., all particles 
are stirred once every several hundred steps, typically here once 
every 400 steps. (11) Partial stirring: Stirring occurs constantly 
but only for a certain percentage m of the remaining particles 
(randomly chosen). The fraction m is an adjustable parameter 
which is varied in these calculations between m = 0.01 and m = 
0.1. (111) Local stirring: In this mode all particles are constantly 
stirred (i.e., repositioned on a different site), but each particle is 
allowed to relocate only f n  sites away in each direction. This 
is done by retaining memory of its previous position. Again, n 
is an adjustable parameter which is varied here between n = 1 
and n = 200 (1-D) and n = 1 and n = 5 (2-D and 3-D). 

For each case usually 500 realizations are performed and the 
results are averaged over these. 

Results and Discussion 

obviously 
The classical rate equation for the reaction A + A - 0 is 

-dp/dt = Kp2 (6) 

and the integrated rate equation is 
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where K is a constant, p is the reactant density a t  time t, and po 
that a t  t = 0. 

The above implies efficient stirring. For self-stirred reactions 
it has been shown in recent years that Kin  eq 6 generally becomes 
time dependent even for long times4v5 and that eq 7 takes the form 

p-’ - = kot-l (8) 
where f is a fractional exponent, 0 < f < 1. For instance, for the 
reaction of eq 4 

f = d,/2 d, < 2 (9)  

where d, is the spectral (fraction) d imen~ion .~  For d, > 2, f = 
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F i i  1. Density plot for the A + A reaction as a function of time. Here 
l / p  - l /po is plotted vs t for the 1-D reactions. The diffusion-limited, 
fully stirred, and the periodically stirred (once in 400 steps) reactions are 
shown. 
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Figure 2. Density plot (similar to Figure 1) for 1-D A + A reactions with 
partial stirring. Here m = 0, 0.01, 0.03, 0.1, and 1.0. 

1; d, = 2 is a marginal dimension. For the reaction of eq 5 it has 
been claimeds-" that 

For d, > 4, f = 1 again, and d, = 4 is a marginal dimension. 
Equations 9 and 10 imply random initial conditions for the A and 
B reactants. If, however, A and B are produced pairwise, e.g., 
AB - A + B, eq 9 applies1* rather than eq 10. 

Figures 1-9 give the trends for the global density dependence 
as a function of time. 

Figure 1 shows a plot of 1/p - l /po for a 1-D reaction. The 
diffusion-limited curve is not absolutely straight, since there is 
a difference between the short-time and long-time limits?-" The 
short-time limit gives a slope (see eq 8) f = 0.57, while the long 
time gives f = 0.5 1. The fully stirred case gives a slope that is 
very close to 1 .OO (f = 0.98) for the whole range. The periodically 
stirred case shows a wavy curve with a sudden rise occurring at  
every point of stirring. The trends are rather clear: when all 
remaining particles are stirred, this has an effect of breaking up 
the spatial and temporal correlations in particle positions that have 
been built up during the course of the reaction. If this stirring 
is constant, no such correlations are built up, and, therefore, the 
classical result (f = 1) is expected. When periodic stirring takes 
place, the correlations are built up to the point of stirring, a t  which 

f = d,/4 d, < 4 (10) 
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Figure 3. Density plot for 1-D A + A reactions with local stirring. Here 
n = 0, f5, f10, f50, *loo, and f10000. 
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Figure 4. Density plot for 2-D A + A reactions, similar to Figure 1. 

time stirring causes their breakup. This order of events is then 
repeated. 

Figure 2 shows the effects of partial stirring on the 1-D reaction 
(model 11). A crossover effect is seen here: the exponent f changes 
from f = 0.5 (no stirring) to f = 0.65 ( m  = 0.01), f = 0.89 ( m  
= 0.03), f = 0.98 (m = 0.05, not shown), and f = 0.98 ( m  = 0.1 
and 1.0). The curves in Figure 2 are shown progressively for 
shorter times, since for small values of m (e.g., m = 0.01) no 
particles are stirred when their total number falls below m-' /2 .  

Figure 3 shows the effects of local stirring (model 111) on the 
1-D reaction. Again we observe a crossover behavior here as n 
increases. The exponent f changes from f = 0.5 (no stirring) to 
f = 0.63 (n = f5), f = 0.69 (n = *lo), f = 0.90 (n = * 5 0 ) , j  
= 0.97 (n = *loo), and f = 0.98 (n = f10000,  i.e., the whole 
lattice). 

Figure 4 shows the results for a 2-D reaction. The same trends 
hold here as previously. Here, for the unstirred case, f = 0.84 
for the short-time limit and f = 0.94 for the long-time limit. The 
well-stirred case has f = 0.99, while the periodically stirred case 
shows the same wavy curve but with much smaller fluctuations 
than in the 1-D case (Figure 1). This is expected since the 
difference in thefvalues is much smaller now: franges from 0.50 
to 0.98 in one dimension but from 0.90 to 0.99 in two dimensions. 

Figures showing the effects of partial and local stirring for the 
2-D reactions are given in the supplementary material. (See 
paragraph at  end of paper regarding supplementary material.) 
We note here that it takes a much smaller n (n = * 5 )  to reach 
the classical behavior in 2-D than in 1-D, where one needs n = 
*200. This is, of course, due to the different nature of the two 
dimensionalities (in 1-D n = * 5  means 10 sites but 100 sites in 
2-D). 
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Figure 5. Density plot for 3-D A + A reactions (similar to Figures 1 and 
4). 
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Figure 6. Diffusion-limited behavior for the A + A reactions as a 
function of dimensionality, for 1-D, 2-D, 3-D perfect lattices and 2-D, 
3-D fractal lattices (percolating clusters). For the fractal lattices 
(maxiclusters) the myopic ant model has been used. The associated 
exponents are given in Table I. 

TABLE I: f Values for the A + A Diffusion-Limited Reaction 
lattice f (short time) f (long time) 

1 -D 0.57 0.51 
2-D fractal 0.59 0.63 
3-D fractal 0.57 0.63 
2-D 0.84 0.94 
3-D 0.98 0.98 

Figure 5 gives the results for 3-D reactions. The diffusion- 
limited case has f = 0.98, while the well-stirred case hasf= 0.99. 
There are hardly any consequences due to periodic stirring, as 
we see from the corresponding curve in this figure. Also, when 
the effects of partial stirring and local stirring were studied, we 
found that all values were bounded by the resultsf = 0.98 and 
0.99. 

Figure 6 gives a summary for the 1-D, 2-D, and 3-D diffu- 
sion-limited cases, together with the results for the fractal lattices. 
The latter are binary lattices (in 2-D and 3-D) at  the critical 
percolation threshold (maxicluster only). Table I gives a summary 
of the reaction exponents for these processes. As expected, the 
f values for the reactions on fractal lattices approach the well- 
known value off = *I3, for both 2-D and 3-D. This is a mani- 
festatiod of the result that the random walk property S, behaves 
the same in both dimensionalities in the fractal lattices, a truly 
unique observation in critical phenomena. 

Figure 7 is similar to Figure 1 but for the A + B reaction. The 
diffusion-limitedfvaries here fromf = 0.40 (short time) tof = 
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Figure 7. Density plot for 1-D A + B reactions, plotted in a similar 
fashion as the A + A reactions (Figure 1). 
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Figure 8. Diffusion-limited behavior for the A + B reactions as a 
function of dimensionality, for 1-D, 2-D, 3-D perfect lattices and 2-D, 
3-D fractal lattices (percolating clusters). For the fractal lattices 
(maxiclusters) the blind ant model has been used. The associated ex- 
ponents are given in Table 11. 

TABLE 11: f Values for the A + B Diffusion-Limiied Reaction 
lattice f (short time) f (long time) 

1 -D 0.40 0.32 
2-D fractal 0.39 0.45 
3-D fractal 0.35 0.45 
2-D 0.72 
3-D 1 .oo 

0.32 (long time). The fully stirred case shows a totally classical 
result,f= 1-01. The periodically stirred case shows the wavy curve 
of the A + A reaction. However, here we observe that this effect 
is more pronounced, due to the inherent segregations-l0 that takes 
place in the A + B reaction, but is absent in the A + A reaction. 
Figure 8 and figures in the supplementary material show for the 
A + B reaction the cases seen for the A + A reactions in Figures 
2-6 (and in the supplementary material). Some quantitative values 
are given in Table 11. We note that in Figure 8 the 2- and 3-D 
percolation cluster curves do not overlap, in contrast to the A + 
A case (Figure 6). Qualitatively, however, the A + B behavior 
follows the A + A behavior. Quantitatively, the effect of stirring 
is more pronounced in the A + B case. Due to the segregation 
of A and B particles in the diffusion-limited thefvalues 
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and McC0nnel1'~J~ and others." The deviations from eq 8 
manifest themselves as a time dependence off. [The time de- 
pendence offfor d = l follows that exact solution;16 for d > 1 
it is not so obvious.] Our interest here is focused on the effects 
of mixing. As complete stirring gives the classical result, it ob- 
viously erases all crossover phenomena (Figures 1-5, 7, and 9). 
However, even a small degree of stirring can have drastic effects 
on the crossover phenomena. (See the inversion of curvature for 
1% stirring in Figure 9.) 

Complete stirring assures random (Poissonian, Hertzian1*J9) 
distributions of reactants. Incomplete or no stirring, at low di- 
mensions, gives rise to nonrandom (partially ordered) kinetic 
distribution~.~-''~l~~~~ Such distributions have been derived and 
will be given in a subsequent paper, together with a more complete 
interpretation of the kinetic data. 

Our overall conclusion is that "a little stirring goes a long way". 
In addition, the nature of the stirring is important. We have 
demonstrated the effects of global versus local stirring and con- 
tinuous versus periodic stirring. The dimensionality of the medium 
is quite important; in low dimensions the effects of understirring 
are drastic. Finally, for heteroreactant (A + B) kinetics, un- 
derstirring leads to reactant segregation in low dimensions. 
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The excitation of NF(b'Z+) by the energy-transfer reaction between HF(v=2,3) and NF(a'A) has been observed in a flow 
reactor at room temperature. The HF(u=2,3) molecules were generated by reaction of F atoms with a fuel, and NF(a'A) 
was generated by the reaction of excess F atoms with HN3. By simultaneous observation of the HF(u=2,3), NF(alA), and 
NF(b'Z+) concentrations via their emission intensities, a rate constant of (0.5-1.5) X lo-'' cm3 molecule-' s-' was established 
for the vibrational-to-electronic energy-transfer reaction. This value is in general accord with the rate constant deduced 
from the reverse step, the quenching of NF(b) by HF(u=O) at 300 K. 

Introduction 
In 1970 Clyne and White' observed chemiluminescence from 

the NF(blZ*-XIZ+) and NF(a'A-X'Z+) transition from the 
reactions of NF, with H,  N ,  and 0 atoms. They suggested that 
NF(b) was produced by electronic energy transfer from some 
energetic species generated from NF2 radicals. Herbelin and 

k!:$ 
HF(v=2) + NF(a'A,v=O) - 

HF(u=O) + NF(b'Z+); A",' = -298 cm-' ( l a )  
k::! 

HF(v=3) + NF(a'A,u=O) - 
HF(v=l)  + NF(b'Z+); AHo' = 41 cm-' ( lb )  

Cohen, reexamined the H/NF2 system and concluded that energy 
transfer between electronically excited HF(a'A) and vibrationally 
excited HF(uL2) was responsible for formulation of NF(b'x+): 

There is a good energy match for HF(u=2,3) with the energy 
defects being as shown for reactants and products in the J = 0 
state, and reaction 1 has become the benchmark for both practical 
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