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In the present work we treat in detail the problem of multiple visits in lattice random 
walks. We show that this problem is closely related to the well-studied property of 
the number of distinct sites visited at least one in an n-step walk. With simple algebraic 
manipulations we provide new analytical solutions for the mean number of sites visited 
exactly a certain number of times, and the mean number of sites visited at least a certain 
number of times. We find that the moments of these quantities vary asymptotically 
with time. The resulting exponents exhibit constant gap scaling. Computer simulations 
are given that are within excellent agreement with the derived expressions. 

1. Introduction 

The problem of multiple visits (occupancy)during a 
random walk with jumps only to nearest-neighbor 
lattice points is quite old [-1-5], but still unsolved 
in its full context. For  a particle that performs a ran- 
dom walk in discrete time-steps (n) the occupancy 
of a lattice site is defined as the number of visits (r) 
that the particle has made to that site. The occupancy 
problem refers to the average value of the number 
of lattice sites with r such visits. Two distinctly differ- 
ent expectation numbers arise here as these sites may 
have: (1)  exactly r visits in an n-step walk, or (2)  
at least r visits in such a walk. A special limiting 
case of the latter property is the number of sites visited 
at least once (i.e. r =  1) during an n-step walk, the 
famous S,, a property that has attracted considerably 
more attention over the years [-1 10], probably be- 
cause of its greater relevance to problems of physical 
and/or chemical character, such as in excitation 
transfer in solids [-9], in biological systems and in 
trapping [10], etc. However, as it was pointed out 
recently [11], S, is useful only when exploring con- 
cepts that refer to the overall range of an area or 
volume, since this range is related to a trapping prob- 
ability, a cross-section probability for reaction, etc. 
It gives no information on such characteristics of the 
walk as the revisitation probability, the distribution 
of steps in the visited area, etc. Clearly it is properties 

1 and 2 mentioned above that fill in this gap. On 
the basis of these occupancy properties it was thus 
found [-11] that it is possible to recast the S, formal- 
ism in a scaling-type picture via the newly defined 
information dimension of a random walk process. 
This is a more generalized form since in addition to 
periodic lattices it is valid for disordered ones as well, 
e.g. fractals (with different numerical exponents). 

The systematic formalism and techniques devel- 
oped for these ideas are certainly due to Montroll 
[-2, 3]. He employed a certain form of Green's func- 
tion, the so-called random walk generating function, 
from which he was able to derive the asymptotic 
properties of S, using a Tauberian theorem. Then, 
by casting the generating function in the proper form 
practically all random walk problems were re-defined 
and solved for: recurrence and first passage times, 
the occupancy characteristics, the number of visits 
to a given lattice point, etc. For  all these properties 
only the leading terms were given, which in some 
cases sufficed and in some did not. Therefore, several 
works followed in the literature [6-8] that provided 
explicit correction terms and somewhat revised ex- 
pressions for the above properties, but mainly for S,. 
In this work we discuss these forms for the problem 
of multiple occupancies, and we solve it exactly in 
terms of other well-known random walk parameters. 
We perform all necessary Monte-Carlo computer sim- 
ulations as additional verification. In Sect. 2 the theo- 
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retical formalism is developed, the required expres- 
sions are derived together with a discussion of pre- 
vious achievements in studies of these properties. In 
Sect. 3 the details of the numerical calculations are 
explained. In Sect. 4 we discuss the problem of the 
moments of these quantities, and we derive a recursive 
formula for the moments of all orders. Finally, in 
Sect. 5 our results are given in several figures with 
a discussion and conclusions. 

2. Theory 

The mean number of distinct sites visited at least r 
times in an n-step walk is S(r, n), while the mean 
number of distinct sites visited exactly r times is 
V(r, n). Both S(r, n) and V(r, n) were firstly given by 
Montroll and Weiss [3] in approximate forms as fol- 
lows: 

S(r, n)= n(1 __f) fr-1 (1) 

V(r, n)= n(1 _f)2 f f -  1 (2) 

where f is a function of n and the lattice geometry 
only. It is rather obvious from Eqs. (1) and (2) that 
V(r, n) and S(r, n) are directly related as: 

V(r, n) = (1 -- f)  S(r, n). (3) 

It is well known that the order of approximation in 
these expressions varies with the dimensionality and 
with n: in 3-dim lattices the expressions are rather 
satisfactory for small n, while in the 2-dim case this 
happens for extremely large n. Various improvements 
have thus appeared recently, especially for the 2-dim 
case [6, 7], that now provide the full S(1, n) behavior 
with an agreement of the order of 0.1% when com- 
pared to the most sophisticated Monte-Carlo simula- 
tion data. Thus, Henyey and Seshadri [6] worked 
out the 2-dim case: they expanded exactly the S(1, n) 
function in a series with all logarithmic corrections. 
The resulting integrals were evaluated using a contour 
integration and the saddle-point technique. Their re- 
sult is: 

S(1, n) = [A n/ln B n] ~ [C/0n  B n) j] (4) 
j=0 

where A, B and C are given constants that depend 
on the geometry of the 2-dim lattice. The first 20 terms 
in the series in Eq. (4) were also given [6], but in 
practice one needs only the first 6 or 7 terms to 
achieve satisfactory convergence for S(1, n). 

Similarly, for 3-dim lattices Blumen and Zumofen 
[8] improved the Montroll-Weiss treatment for 
S(1, n) leading to: 

S(1, n)=an+bnr (5) 

where a, b, and c are constants depending on the 
lattice geometry. For simple cubic lattices 
a=0.659463, b=0.573921, and c=0.5827. Equations 
(4) and (5) have provided considerable improvement 
over the original Montro11-Weiss work. They have 
been tested by their authors, by us, and several others 
with extensive computer simulations, and it is general- 
ly believed that they provide an accuracy of the order 
of 0.1%. Still they are limited in that they describe 
only the first term in (1), i.e. the special case when 
r = 1. We extend here this work to include any values 
of r and n by making the appropriate combination 
of (1) and (2), and by making use of the improvements 
given in formulae (4) and (5). 

In Fig. 1 we can easily see that (2) is only a very 
rough approximation. Here V(r, n) is plotted as a 
function of r for a given n, together with simulation 
results. We observe in this logarithmic plot that both 
the theoretical prediction and simulation results pro- 
duce straight lines, but with considerably different 
slopes, both for the 2-dim and 3-dim cases. One is 
tempted then to introduce a correction term that 
would leave the form of the original equation intact, 
but would affect only its slope. We thus make the 
assumption - certainly to be tested later on - that 
the correction is given by two variables, x and y, in- 
serted in the exponents of (2). 

By taking the logarithm of both sides the proper 
V(r, n) equation would have the following form: 

In V(r, n) -- x In In (1 -- f)2] + y (r -- 1) In (f)  (6) 

where x and y are the necessary correction parame- 
ters. It is also true that: 

V(r, n) r = In(1 _f)2]x  ~ r r 
r r 

=[n(1-f)2]X(l  + 2c + 3c2 +4c3 +...) 

= n  (7) 

where c=f f .  From the above summation we obtain 
the equation: 

[n(1 _ f )z ]x  = n(1 _fy)2 (8) 

which shows a non-linear dependence between x and 
y and allows us to eliminate one of the two parame- 
ters (x or y). We thus write: 

V(r, n)= n(1 _ f f )2  ( f 0 r -  1 (9) 

where x has been eliminated. Equation (9) is a prefera- 
ble form since it contains the correction term (y) in 
variable f only, as opposed to x which appears in 
both n and f. Following the Montroll-Weiss [3] for- 



133 

4 .  

3 .  0 �9 

0 

. o 

, T , 
O. 4. 8. IP. 16. 20. 

Number of visits 

Fig. 1. Logarithmic plot of V(r, n) as a function of r for 2-dim and 3-dim lattices. The solid lines are solutions of (2) (with the f values 
from (10) and (11)); the circles are simulation results, filled circles: 3-dim, empty circles: 2-dim (see text for details of procedures). Here 
n = 10000 steps 
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malism f is given by: 

f =  1 - [n/In(n)] (Z-dim) (10) 

f =  1 -  [Zn(1/3)~/ln(n)] (3-dim). (11) 

It has also been shown I-4] that f is directly con- 
nected to the probability for return to the origin, since 
f=1/[1-P(0 ,1)] ,  and it is clearly a function of n 
only. In order to obtain y at this point we could 
easily make a fitting by using our simulation results. 
Actually only one numerical result would be required, 
V(1, n), and we would thus have: 

y = In [1 - (V(1, n)/n)~]/ln(f). (lZ) 

However, since y=y(n) this form is not general and 
therefore not very useful. We avoid this difficulty by 
noticing that the sum of the number of points that 
have been occupied exactly r times gives: 

V(r, n)= n(1 _ i f ) 2  ~ ( fO , -  1 
r r 

=n(1 - f O  

= S(1, n). (13) 

Thus y can be directly obtained from the relationship: 

y = In [1 - S(1, n)/n]/ln(f) (14) 

and we arrive at the desired form by simply eliminat- 
ing y(n) between (9) and (14). The result is: 

V(r, n)= IS(l,  n)2/n] [1 - S ( 1 ,  n)/n] r- 1. (15) 

Equation (15) is a function of n and S(1, n) only. F rom 
the recent works mentioned earlier we now have exact 
forms for S(1, n), also tested by numerical simulation. 

F rom this discussion it is rather obvious that (1) 
may now be written as: 

S(r, n)= n(1 - fO (fY)'- ' (16) 

S(r, n)= S(1, n) E 1 -  S(1, n)/n] (17) 
r - - 1  

S(r, n)=S(1,  n)-  ~ V(i, n). (18) 
i = l  

Equation (17) is the desired form for S(r, n). 

3. Numerical methods 

Monte-carlo random walk simulations are used as 
independent tests of the formalism presented. Lattices 
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are generated in 2-dim square lattice geometry (size 
300 x 300), and in 3-dim simple cubic geometry (size 
100 x 100 x 100). We monitor a random walk process 
by using an index on each lattice site, signifying the 
number of visits for this site at any given instance. 
This index is initially zero for all sites. A particle is 
placed at random on the lattice and starts performing 
a random walk. Every time it steps on a site the occu- 
pancy index is incremented by one for this particular 
site, and the process is repeated. The value of this 
index at the end of each realization is the V(r, n) value. 
All other details, such as direction of motion, cyclic 
boundary conditions, random number generators, etc. 
are the same as in our past studies of random walks 
[12]. The average is taken after 1000 realizations, sep- 
arately for each r value. Five values of n are examined: 
2000, 4000, 6000, 8000, and 10000 steps. Checks are 
made to ensure that there are no artifacts due to finite 
size (artificial revisitation) etc. by appropriately sum- 
ming the V(r, n) for all values of r. Obviously this 
results in S(1, n), whose numerical value is well 
known, and agrees excellently (within 0.1%) with our 
calculations. Also the mean-square displacement 
R2(n) is calculated and found to be in very good 
agreement with past studies. All simulation algo- 
rithms are implemented in Fortran and Pascal, and 
executed on a Vax computer. 

4. M o m e n t s  

We shall employ the concept of moments for the 
quantities we studied as it is customarily used in mul- 
tifractality [13]. The curious question to investigate 
is how do these moments scale with time. To do this 
we must first derive the appropriate formula that ex- 
presses the moments directly as a function of time 
and other random walk parameters. The expression 
for the moments of the V(r, n) quantity is: 

Mq = ~ r q V(r, n). (19) 
r 

Using (15) we get: 

Mq =n(1 - w )  2 ~ r q w ~-1 (20) 
r 

where w = 1 -S(1 ,  n)/n. Obviously using this formula: 

Mo = S(1, n). (21) 

M 1 = n  22 

In order to calculate the higher order moments we 
observe that: 

d w r 
~ q + l : Z l ' q + l w r - l : 2 r  q 

dw 
r r 

d 
= Z dww (rq wr) 

r 

d 
= d w  [ Z  rq wr] 

Y 

d 
-dw [w y~rqwr-1] 

r 

d 
- d w [w Zq]. (23) 

Using (23) the moments then are given by the recur- 
sive formula: 

Mq = n(1 - w) 2 Zq 

= n ( 1 -  w)e d~w (W Sq- O 

= (1 -- w)e ~ w  [(1 _~Ww)2 Mq- 1] (24) 

or similarly: 

Thus, we have derived a recursive formula for all mo- 
ments, with only the zeroth order moment being nec- 
essary to generate the series. This is: 

Mo = n (1 - w). (26) 

Table 3 contains in the second column the first few 
moments as derived using formula (25). Assuming 
that the moments vary asymptotically with time, i.e. 

Mq = ~ r q V(r, n) ~ n r (27) 
r 

it is an interesting question to test the dependence 
of the z (q) scaling exponents. A few of these moments 
are shown in Fig. 6, where z(q) is given directly as 
the slope in a log-log plot of M vs. n. The M e moments 
here are calculated using the explicit forms in Table 3. 
The slopes are given in the last two columns for the 
2-dim and 3-dim lattices. From this Table we surmise 
that within the calculated accuracy of two significant 
figures the z(q) in both cases can be considered to 
differ by a constant amount, as q varies, and therefore 
we may argue that this is a case of constant gap scal- 
ing. 
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Fig. 2. V(r, n) as a function of r for 2-dim square planar geometry. The solid lines are solutions of (15); the circles arc simulation results. 

Several different n are shown: i0000, 8000, 6000, 4000, and 2000 steps (top to bottom) 
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Fig. 3. V(r, n) as a function of r for 3-dim simple cubic geometry. Lines and circles are as in the previous figure 
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Fig. 4. S(r, n) as a function of r for 2-dim square planar geometry. The solid lines are solutions of (17); the circles are simulation results 
using (18), with the V(r, n) values taken from the previous calculations. Several different n are shown: 10000, 8000, 6000, 4000, and 2000 
steps (top to bottom) 
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Fig. 5. S(r, n) as a function o f r  for 3-dim simple cubic geometry. Lines and circles are as in the previous figure 

@ 

6. 



5. Results and discussion 

Figures 2 and 3 show the solutions of (15) for V(r, n) 
as a function of r for several n using the appropriate 
f, i.e. from (10) and (11), respectively. Since (15) is 
a smooth function of r we plot V(r, n) continuously 
and not only at the r = integer points. The simulation 
data are only at the r = integer values. Excellent agree- 
ment is shown to exist with the simulation data over 
the whole r range. Since the S(1, n) formulae are now 
satisfactory for any n, we also observe that this carries 
through to V(r, n), and excellent agreement is also 
found for any n. For comparison purposes Tables 1 
and 2 provide typical values for V(1, n), S(1, n), as 
well as the y(n) function. We see in these Tables that 
the agreement is of the order of 0.1% or better. 

We also notice the following: the V(r, n) curves 
in the 3-dim case fall off much more rapidly than 
the 2-dim case. This is simply a manifestation of the 

Table 1.2-dim square lattice 

n V(1, n) V(1, n) S(1, n) S(1, n) y(n) 
Theo- Simu- Theo- Simu- 
retical lation retical lation 

2000 226.7 224.8 673.3 673.8 0.7702 
4000 393.3 390.4 1254.2 1255.2 0.7903 
6000 545.2 543.2 1808.7 1812.8 0.8007 
8000 688.7 687.0 2347.2 2353.2 0.8075 

10000 826.3 824.3 2 8 7 4 . 4  2881.7 0.8112 

Table 2. 3-dim simple cubic lattice 

n V(1, n) V(1, n) S(1, n) S(1, n) y(n) 
Theo- Simu- Theo- Simu- 
retical lation retical lation 

2000 904.7 905.2 1345.2 1346.2 6.4457 
4000 1788.5 1786.2 2674.7 2673.6 7.0010 
6000 2669.1 2669.0 4001.8 4002.4 7.3446 
8000 3547.9 3543.7 5327.6 5325.4 7.5880 

10000 4425.7 4423.2 6652.6 6652.3 7.7783 

Table 3. Moments and scaling exponents 

q M z(q) z(q) 
2-dim 3-dim 

0 n(1 --w) 0.902 0.993 
1 n 1 1 
2 n ( l+w) (1 - -w)  -1 1.116 1.010 
3 n ( l + 4 w + w 2 ) ( 1 - - w )  -2 1.235 1.022 
4 n ( 1 + 1 1 w + l l w Z + w 3 ) ( 1 - - w )  -3 1.355 1.035 
5 n ( l + 2 6 w + 6 6 w Z + 2 6 w 3 + w 4 ) ( 1 - - w )  -4 1.474 1.047 
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Fig. 6. Plot of M (moments of the V(r, n) quantity) vs. n for q = 3 
and 4. Results for walks on 2-dim and 3-dim lattices are shown. 
The recursive formula (25) and the analytic expressions in Table 3 
are used to make this plot. The resulting slopes of the straight 
lines are also given in Table 3. Similar lines are received for any q 

well-known fact that as the dimensionality goes up 
motion becomes more "free", the probability of es- 
cape increases drastically, and the particle returns less 
and less in previously visited areas. 

Figures 4 and 5 show the solutions of (17) for 
S(r, n) as a function of r for several n using the same 
parameters as in Figs. 2 and 3. Generally, the same 
quantitative conclusions are reached as for the V(r, n) 
function. 

Summarizing, we have provided exact analytic so- 
lutions for V(r, n) and S(r, n) for perfect lattices in 
2 and 3 dimensions. This has been possible due to 
the highly improved formalism for S(1, n), the ran- 
dom-walk parameter for the number of sites visited 
at least once in the walk. Our method has been to 
connect the expressions for S(r, n) and V(r, n) to the 
S(1, n) formalism. Excellent agreement has been found 
with computer simulation data that were produced 
to test the new formulae. Furthermore,  we find that 
the moments of the V(r, n) quantity do scale well with 
time in a "fractal-type" scaling law (Fig. 6), and the 
scaling exponents exhibit a constant gap scaling. 

References 

1. Erdos, P., Taylor, S.J.: Acta Math. Acad. Sci. Hung. 11, 137 
(1960) 

2. Montroll, E.W.: Proc. Syrup. Appl. Math. Am. Math. Soc. 16, 
193 (1964) 



138 

3. Montroll, E.W., Weiss, G.H.: J. Math. Phys. 6, 167 (1965) 
4. Barber, M.N., Ninham, B.W.: Random and restricted walks: 

theory and applications. London: Gordon and Breach 1970 
5. Weiss, G.H., Rubin, R.J.: Adv. Chem. Phys. 52, 363 (1983) 
6. Henyey, F.S., Seshadri, V.: J. Chem. Phys. 76, 5530 (1982) 
7. Zumofen, G., Blumen, A.: J. Chem. Phys. 76, 3713 (1982) 
8. Blamen, A., Zumofen, G.: J. Chem. Phys. 75, 892 (1981) 
9. Argyrakis, P., Kopelman, R.: Chem. Phys. 57, 29 (1981); 78, 

251 (1983) 
i0. Montroll, E.W.: J. Math. Phys. 10, 753 (1969) 
11. Argyrakis, P.: Phys. Rev. Lett. 59, 1729 (1987) 
12. Argyrakis, P.: In: Structure and dynamics of molecular systems. 

Daudel, R., Korb. J.P., Lemaistre, J.P., Maruani, J. (eds.), p. 209. 
Dordrecht: Reidel 1986 

13. Amitrano, C., Coniglio, A., Liberto, F. di: Phys. Rev. Lett. 57, 
1016 (1986) 

G.L. Bleris, Panos Argyrakis 
Department of Physics 313-1 
University of Thessaloniki 
GR-54006 Thessaloniki 
Greece 


