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RECOMBINATIONKINETICS IN LOW DIMENSIONS
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Computer simulations predict very anomalous delayed luminescence decays for low-dimensional
materials. Classical kinetics theory fails because excitons, electrons and holes have no
convection. The mode of stirring plays a very important role in the rate of reactions.

The laws of chemical reaction kinetics are seen that constant stirring produces the

customarily used for recombination kinetics, classical result, the effects of partial

This implies time—independent rate constants stirring are not yet clear, since partial

(K). For instance, for the triplet exciton stirring is characterized, in part, by diffusion

fusion process A + A + A
2 , leading to delayed and, in part, by classical behavior. This is

fluorescence, one gets investigated in the current work.

F = KP
2 K = constant (1) In Fig. 1 we compare the A + A + A

2±with the

where F designates the delayed fluorescence and A + B + AB+ reactions for the 1-dim topology.

P the phosphorescence. This relation has been We observe that trends of the A + A reaction are

questioned
1 in experiments with isotopic mixed paralleled in the A + B reaction: The non-

naphthalene single crystals at low temperatures. constant K = K(t) in the diffusion-limited case

Further corroboration is given by computer and the constant K in the well-stirred case.

simulations, where a chemical reaction is In Fig. 2 we investigate the effect of

simulated using random walk models for the stirring on the reaction rate. There is no

reacting species,2 showing that K = K(t) goes conventional method of such stirring available

down monotonically with time for low-dimensional and the consequences for the rate coefficient

reaction spaces. This is the case when the are not immediately obvious. We tried several

reacting-particle motion is diffusion-limited, models, covering the whole range from no stir-

We monitor the diffusion limited process of ring (a), to the case of a well-stirred reaction

reactions by introducing the idea of stirring (b), where all particles are stirred constantly,

the reactants during the course of reaction. i.e. at each time-step. Intermediate mechanisms

Stirring has an effect of breaking up the non- include: (I) Stirring of all particles once

random spatial and temporal distri-butions every 400 steps (c); (11) stirring of a fraction

caused by the reaction. While it is easily (1%) of particles only (d), randomly chosen;

_____________________________ and, finally, (III) the case of local stirring
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FIGURE 1 FIGURE 2

1-dim lattice, rate coefficient as a function of 2-dim, A + B reactions. Rate coefficient as a
time for the following cases: (a)W : A + A function of time for different modes of stirring
reaction, diffusion-limited; (b)O : A + A (see text). Initial density p

0 = 0.05 for each
reaction, well-stirred; (c) A: A + B reaction, of A and B.
diffusion-limited; (d) +: A + B reaction, well-
stirred. The initial density p = 0.05 (for the
A + A reaction) and p = 0.05 f

8r each of A and
B (for the A + B reac~ion). for the time domain of no stirring the reaction

parallels the diffusion-limited case, as

expected, while after the cormiiencement of

but stays in its close neighborhood, as for stirring the correlation is lost and K increases

example within a maximum range of 5 sites away momentarily. Thus it is shown that the rate

from its original position. We observe for the coefficient of a reaction depends on the

A + B, two-dim ruaction of this figure that mechanism of stirring used. Experimentally,

model (d) is almost similar to the diffusion- partial stirring of excitons may be achieved,

limited case (a) while model (e) is similar to for example, via thermalization from the guest

the well-stirred one (b). These observations system to the host band.4
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