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Energy transport in disordered media is studied by use of random walks, through a new entropylike
function Iy which results in an information dimension D; of a random-walk process. D; is calculated
and compared to the fractal dimension for two-dimensional square lattices. It is found that a fractal lat-
tice has a much broader (by a factor of 5) site-visitation distribution than a perfect lattice. The above
parameters contain more information than the usual random-walk parameters, and provide a new pic-
ture and characteristic quantities where random walks are used to simulate transport properties.

PACS numbers: 72.90.+y, 02.50.+s, 05.40.+j

In recent years a large interest has been developed in
the properties of disordered lattices, mainly because they
provide the most plausible model for amorphous and
technologically oriented materials.! A random two-
component binary lattice to a good approximation
possesses this property because of the inherent random-
ness introduced in its preparation. Moreover, such lat-
tices have been shown to have a structure that is de-
scribed by a critical fractal exponent, while a dynamic
effect on such structures, such as a random-walk process
by a particle, is described by the spectral dimension (ex-
ponent), with considerable effort being devoted (and
justifiably so) to their exact numerical values.?

The fractal dimension of a percolation cluster is found
by the consideration of several sections of the lattice with
a different linear size A each time, and then by the calcu-
lation of the number of sites M that belong to this cluster
in each section.!™® The fractal (Hausdorff) dimension is
defined as

Dy =In[M )1/ (), (1)

For a particle performing a random walk of /V steps on
a percolation cluster, the spectral (fracton) dimension D;
is defined as

Ds;=21n(Sy)/InN, 2)

where Sy is the number of distinct sites visited at least
once in the walk. The quantity Sy gives an overall mea-
sure of the spread or the range of the particle motion.
Thus, it has been used in the past to simulate exciton
transfer in guest-host and guest-trap systems,* in the
chlorophyll action in photosynthetic units of plants,’ in
chemical reactions,® and other solid-state applications.’
In all these cases the parameter of interest was the
overall range of the random walk, since this range is
directly related to a trapping probability, a cross-section
probability for reaction, etc., while it makes no difference
how many times a particle has visited the same site. To
collect this new information one introduces the quantity
ir, which is the number of times that site k has been

visited in this walk. The range of k will be 1 < k < Sy,
so that all visited sites are accounted for. Also X, ik
=N. Then the probability Py of visiting the kth site is
Pk =ik/N. Then,

D; =IN/II‘1N, 3)
where
Sy
IN = Z Pk lnPk. (4)
k=1 .

Dy is called the information dimension. Its definition is
based on the new function Iy which, because of the form
PlInP, bears out an entropylike character. Iy is a mea-
sure of the relative probability that each site is accessed
at some time in the walk. More generally, the informa-
tion dimension is a property of any random variable with
a probability measure implied in it. If all sites have ex-
actly the same probability of visitation then Py =1/Sy
and

Sw
In=— Z (?l/SN)In(l/SN) =1nSN, (5)
k=1
and therefore Eq. (4) is reduced to Eq. (2), i.e., D;=D;.
Also in the trivial case of Py =0 the product P InPy is
taken to be 0. It is expected that Iy will show charac-
teristic scaling for these processes.

The functions and distributions are calculated by mon-
itoring random-walk simulations as a function of time.
Lattices are generated in two-dimensional square topolo-
gy, first perfect and then random according to a given
occupational probability p, where p ranges from p.
= p=1.00, p. being the critical percolation threshold.
For the square lattice, I use p. =0.593 (site percolation
problem), I isolate the largest cluster using a cluster
multiple labeling technique (CMLT),? and all subse-
quent work is performed on this cluster. I monitor
several random-walk properties, such as Sy, the number
of distinct sites visited at least once, and R#, the mean-
square displacement, which are found to be in very good
agreement with past studies. 27 1 also monitor here if,
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the number of times that site X has been visited as a
function of time, for each and all lattice sites. I use both
the myopic- and the blind-ant models.® In the blind-ant
model when the particle is on the perimeter of the per-
colation cluster an attempt to move outside this cluster
consumes one time step. In the myopic-ant model such
an attempt consumes no time at all, a new attempt is
made until the particle moves to a regular cluster site.
Since this is a study of multiple visitations by a single
particle, I felt it important to investigate both models.

In Figs. I and 2 I plot the site-visitation distributions
for the perfect lattice and for the percolating lattice, re-
spectively, curves a. The x axis labeled i is the number
of occupations (visits) i on the lattice sites. The y axis is
the number of sites w; with the correspending i occupa-
tions. I call this the w; distribution. This result is de-
rived as follows: For each realization, first the i, func-
tion is calculated and then the w; distribution is formed.
Finally, the average of 1000 distributions from 1000
separate realizations is taken. We notice that curves a
have exponential line shapes; when plotted on semiloga-
rithmic paper, they yield exact straight lines with slopes
—0.34 (p=1.0) and —0.05 (p=p.). We observe that
all visited sites do not have the same visitation probabili-
ty; instead, sites with a small number of visits abound,
while sites with a large number are scarce. These distri-
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FIG. 1. Site-visitation distribution for a perfect square two-
dimensional lattice (p =1.00). Data are for N =10000 steps,
on a 300x300 lattice, averaged after 1000 realizations. The
lines are only visual aids. Curve a, w distribution {x1); curve
b, W distribution (x1); and curve ¢, Z distribution (x1).
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butions are qualitatively the same for any N I tried. We
also observe that w in the perfect lattice falls off much
more rapidly than in the fractal lattice (in spite of the
change of scales). These curves give an average “l1/e”
value of i==3 (perfect lattice), and ;=15 (fractal lat-
tice). Therefore, I conclude that not only does Sy dras-
tically decrease as one approaches p., but at the same
time the w distribution becomes about 5 times broader.
Physically, this means that around p., even though Sy is
smaller than it is on the perfect lattice as a result of the
effective geometrical restrictions (lower dimensionality),
the particle motion is spread more evenly on the visited
sites than on the perfect lattice, where the degree of fre-
quent revisitation is much higher.

The total probability of visiting a site i times, Q;, is
given by

Q:=W/N, (6)

where W;=iw;. The W; distribution is shown in Figs. 1
and 2, curves b. We observe that at p=p., the curve is
broader than at p =1.0 by about a factor of 7. A max-
imum appears at i==3 (perfect lattice) or at i=18 (frac-
tal lattice).

With the definition (4), I expand as follows:

INE_(I/N)ZI-Z['FHIN, (7)

where Z;=iw;Ini. The Z; distribution is also given in
Figs. 1 and 2, curves ¢. We see that Z depends on both i
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FIG. 2. Site-visitation distribution for a square two-di-
mensional lattice at the critical percolaticn threshold (p=p.),
for the myopic-ant model. Data are for N=10000 steps, on a
300x% 300 lattice, averaged after 1000 realizations. The lines
are only visual aids. Curve a, w distribution (x1); curve b, W
distribution (% 10); and curve ¢, Z distribution (x20).
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and w;, i.e., on W;. Because of the shape of the W distri-
bution, only sites with relatively few visits (small i) con-
tribute appreciably to Z and, therefore to Iy. From the
maxima in Figs. 1 and 2, we see that this happens at
about /=5 (perfect lattice) and at about =30 (fractal
lattice), i.e., there is a difference by a factor of 6 between
the two cases.

In Fig. 3 we have an information plot of I as a func-
tion of time for the perfect lattice and at p=p,. The
least-squares values of the slopes of the straight lines
give D;=0.89+0.02 (perfect lattice) and D;=0.62
#+0.02 (fractal lattice). We see that in the latter case
the blind- and myopic-ant models give identical slopes,
leading to the same dimension. This agreement is in ac-
cord with previous studies, "® where these two models re-
sult in the same exponent, as a result of the fact that the
exponent is derived from ratios of the Sy quantities (or
slope of the Sy plot), and not from the Sy absolute
values, which are certainly different in the two models. I
now compare these with values derived with different
methods. For a perfect lattice as a result of the logarith-
mic and the other correction terms,’

SN=a1N/ln(a2N)+a3. (8)
From this equation the perfect lattice dimension

D =0.89, for the range of NV studied here. For the frac-
tal lattice (at p=p.)"'? for d=2 the spectral dimension

D;=1.30, but Dy=4% for d=3. The random-walk ex-
ponents are Dg/2 [Eq. (2)], ie., 0.65 (d=2) and %
(d = 3). We thus see that for the perfect lattice the two
methods coincide, while for the fractal lattice the infor-
mation dimension D; is somewhat lower than the spec-
tral dimension L. Intuitively, there is no reason for
these sets of exponents to coincide to the same value, but
it is certainly a striking feature that this happens in the
case of a perfect lattice while a small deviation is ob-
served in the fractal lattice.

A similar type of approach with an entropylike func-
tion was recently introduced!! in related work for growth
models, diffusion-limited—aggregation and Eden models.
The exponents resulting from the entropy function of the
generated clusters were also found to be lower than the
usual fractal exponents, but no random walks were re-
ported in these structures.

Summarizing, this work has shown that the informa-
tion dimension Dy, through the function Iy, presents an
alternate approach to the well-known sets of fractal ex-
ponents [Egs. (1) and (2)] in studies of random walks
and their applications. It is a function that is used in
dynamical systems in many areas of physics.!? In addi-
tion to Sy, which was first derived”’ through D;, we re-
cover now the w; and W, functions, and thus quantita-
tively explain the decrease of Sy as one goes from the
perfect to the fractal lattice. Dj scales surprisingly well
for all lattices (Fig. 3), thus resulting in exponent values
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FIG. 3. Iy as a function of time (logarithmic form) for the same data as in the previous figures. The lines are the best fit from a
linear least-squares method. Here curve a is for the p=1.00 lattice, curve b is for the p=p. lattice, myopic-ant model, and curve ¢

is for the p =p, lattice, blind-ant model.
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comparable to the fractal exponents. Also, the exponen-
tial function w; (Figs. 1 and 2) is found to obey scaling
laws, both in the perfect and in the fractal lattice cases.
The analytical behavior of the w; function and the prob-
lem of multiple visits in all dimensionalities is an extend-
ed but old ! problem. It is more tractable in the case of
perfect lattices, but just as interesting in the case of
disordered lattices at the critical point, as well as in the
crossover (fractal-to-classical) region. It is far from be-
ing solved in all contexts discussed here. Work is
currently in progress along these lines, and the results
will be published elsewhere.
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