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Self-stirred vs. Well-Stirred Reaction Kinetics 
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For low-dimensional reactions (on surfaces or in pores) and solid-state reactions the stirring mechanism is usually limited 
to self-stirring, Le., self-diffusion. Simulations of A + A - A2t reactions show classical behavior for well-stirred reactions 
but drastic nonclassical behavior for self-stirred reactions in low-dimensional systems: (1) one-dimensional system, (2) square 
lattice, (3) two-dimensional percolating cluster, (4) three-dimensional percolating cluster. In contrast, a three-dimensional 
isotropic system (cubic lattice) shows a near-classical behavior even for self-stirred reactions. Different universalities in kinetic 
behavior are shown for the well-stirred and for the self-stirred reactions. 

Introduction 
While most homogeneous reactions are easy to stir, and usually 

are well-stirred, this is not the case for most heterogeneous re- 
actions. The combination of solid surfaces and low-dimensional 
topologies characterizes most heterogeneous reactions. It is 
difficult to stir such reactions. Thus the distinction between 
well-stirred and self-stirred reactions is of both theoretical and 
practical interest. In addition, most solid-state “physical” reactions, 
e.g., electron-hole recombination or exciton-exciton annihilation, 
are self-stirred, diffusion-limited reactions. Also, many biological 
reactions and biophysical reactions, such as fluorescence 
quenching, are mostly in the self-stirred regime. Here we give 
characteristic examples for two extreme cases of “diffusion-limited” 
reactions, the constantly and totally stirred reaction and the totally 
unstirred reaction. 

The traditional formalism for homogeneous reactions1V2 ex- 
presses the rate constant K i n  terms of the cylindrical volume V 
swept out by the reacting molecules (cross section a times mean 
distance 1 )  per unit time: 

K = dV/dt d V  = a dl  (1) 

K = a dl/dt ( la )  

For diffusion-limited reaction kinetics the equivalent Smoluchowski 
approach2v3 replaces the mean velocity dl ldt  by the diffusion 
constant ( D ) ,  for long times 

K = a’D t - m (a’ = const) (2) 
In a microscopic model where the Brownian motion is described 
in terms of molecular random walk,” dV/dt is naturally sub- 
stituted by the volume which the walker sweeps out in unit time 

K = b dn/dt (3) 

where b is the “volume” of the walker and dn/dt is the number 
of such volumes swept out in unit time. For instance, on a cubic 
lattice, with unit cell volume b, the walker sweeps out dn unit cells 
per unit time dt. The question arises: How does one count dn? 
Is it (I) the total number of unit cells swept out by the walker 
or is it (11) the distinct number of such cells swept out, on the 
average? We show here that, while for a well-stirred system 
(convection-stirred) the first approach (I) is correct, for a system 
that is only “self-stirred” by molecular diffusion, the second ap- 
proach (11) applies. In a three-dimensional, isotropic system (like 
a cube) the difference between I and I1 is less than a factor of 
2 (1.5164 for long  time^).^ However, for lower dimensional 
systems the difference becomes dramatic (many orders of mag- 
nitude) and, moreover, K becomes a function of time (even at t - m )  in case 11. Thus the problem is of much interest to het- 
erogeneous reactions (e.g., surface reactions), where convection 
stirring (on the surface or inside the pores) is not a likely process. 

We give here simulations of the rate constant for the reaction 

A + A + O  (4) 
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where the reactian product is either a photon (exciton annihilation 
reaction) or a species that leaves the active surface (as A2t). The 
simulations are performed for cubic lattices, square lattices, two- 
and three-dimensional critical percolation clusters, and a one- 
dimensional lattice. 

Description of the Model 
Two component lattices are generated by using the CMLT’ 

for the cluster counting in two- and three-dimensional cases, while 
the one-dimensional case is simply a line of one component sites. 
The one-dimensional lattice was made of 10000 sites. The 
two-dimensional lattice was 200 X 200 while the three-dimensional 
was 40 X 40 X 40. Particles are placed at  random at  t = 0 on 
the largest cluster only with an initial density po = 0.02. For the 
percolating clusters we use occupational probabilities p = 0.60 
(two-dimensional) and p = 0.32 (three-dimensional). Notice that 
po is taken to be the number of particles divided by the total 
available number of sites, which at p = 1 is the lattice size, while 
at the percolation threshold it is much smaller. All particles move 
at random, simultaneously, at each time step, and a check is made 
at  the end of each such step to find if any two particles occupy 
the same site. If they do they are both removed from the system; 
otherwise, their motion continues. Thus the only criterion for 
particle-particle annihilation is the occupation of one site by two 
particles a t  the end of each step. Notice that if three particles 
occupy one site, only two are removed; also, if two particles cross 
each other during their motion they both survive, since they never 
occupy the same site simultaneously. 

In the diffusion-limited case a certain initial po is generated 
and the particle density is monitored as a function of time. In 
the well-stirred case after each time step all remaining particles 
rerandomize their positions. This is done by simply removing all 
particles and repositioning them randomly on the lattice without 
any knowledge of their previous positions. Similarly, the particle 
density is monitored again as a function of time. The reported 
results are averages of 50-100 runs. 

Results 

obviously 
The classical rate equation for the reaction A + A - 0 is 

-dp/dt = Kp2 ( 5 )  
and the integrated rate equation is 

p-’ - po-’ = Kt (6) 
where p is the reactant density at time t and po that at t = 0. Using 
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Figure 1. Rate coefficients K fc : one-dimensional lattice: (1) (squares) 
well-stirred reaction rate coeffii::nt Kws; (2) (octagons) self-stirred re- 
action rate coefficient (multiplizd by 10) pL X 10; (3) (triangles) re- 
duced rate coefficient for self-stirred reaction, KrDL. N is the number of 
time ticks. 
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Figure 2. Rate coefficient Kws for well-stirred reactions: (1) (plusses) 
on cubic lattice; (2) (octagons) on square lattice; (3) (triangles) on 
two-dimensional percolation cluster (guest occupation probability 0.60); 
(4) (X  signs) on 3-dimensional percolating lattice (guest occupation 
probability 0.32). 

the number of steps N in lieu of the time t ,  we get as our oper- 
ational definition of the rate constant 

K = N-I(p-1 - po-') (7)  
On the other hand, for diffusion-limited reactions with no external 
mixing, we have shown before5v6 that the above classical expression 
should be replaced by a reduced rate constant 

(8) K, = S-'(p-' - P O - ' )  

where the "reduced time" S is really the average number of distinct 
sites visited by the random walker A (in N steps). From eq 7 we 
get Kws for well-stirred reactions and PL for diffusion-limited 
reactions. Similarly KrDL stands for the reduced rate constant 
derived for diffusion-limited reactions (eq 8 ) ,  etc. 

The best illustration of the nature of our results can be seen 
from the simple case of the one-dimensional lattice. Figure 1 
shows the instantaneous values of ps, PL, and KFL as a function 
of time (N). As expected classically, for the well-stirred reaction 
Kws is constant in time. Moreover, its value is practically unity 

Figure 3. Rate coefficient PL for self-stirred (diffusion-limited) reac- 
tions. Lattices and designations as in Figure 2. 
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Figure 4. R e d u d  rate coefficient KPL for self-stirred (diffusion-limited) 
reactions. Lattice and designations as in Figure 2. 

(the density p is defined as particles per site, see below). In stark 
contrast, for the diffusion-limited reaction (self-stirred only) KDL 
decreases monotonically with time. Moreover, its values are much 
smaller than unity (note change in scale). However, now the 
reduced rate constant K Y L  is constant in time (for longer times). 
Moreover, its asymptotic value again is of the order of unity. For 
the self-stirred reactions it may thus be prudent to replace the 
classical K with a reduced K,. However, the inescapable fact is 
that (for the self-stirred reaction) the classically defined K is not 
constant in time but rather a monotonically decreasing function 
of time. 

A similar story is seen for the other simulated low-dimensional 
systems (while the three-dimensional cubic lattice is a special case). 
Figure 2 shows the behavior of well-stirred reactions for a cubic 
lattice, a square lattice, and percolating clusters in both two and 
three dimensions. We note that we consider both percolating 
systems to be effectively low-dimensional, judging by their ef- 
fective dynamic dimension ("spectral dimensi~n"~,~) ,  which is only 
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Figure 5. Reduced rate coefficient Krws for well-stirred reactions. 
Lattices and designations as in Figure 2. 

1.33. Like for the one-dimensional lattice, we see again the time 
constancy of Kws for all systems. Furthermore, we again see it 
assume a value close to unity. Figure 3 shows diffusion-limited 
(self-stirred) reaction simulations for the same systems as Figure 
2. For the three low-dimensional systems we see, as in Figure 
1, that pL decreases monotonically in time. Only for the cubic 
lattice is PL constant in time. Moreover, for all shown topologies, 
KDL is significantly below unity (as in the one-dimensional case). 
Again, for diffusion-limited (self-stirred) reactions we show the 
reduced rate constant K, (see Figure 4). As for the one-di- 
mensional case, we see K:L approach (asymptotically) constancy 
in time. Its value is again of the order of unity. Finally, in Figure 
5, we see a reduced rate constant Krws plotted vs. time. No 
constancy in time is approached (except for the cubic lattice). 
Moreover, its values increase with time (except for the cubic lattice 
case). Thus the definition of KrWs is not very fruitful. It has the 
appearance of an explosive reaction, but this is misleading, as the 
traditional Kws is simply constant in time. 

Discussion and Summary 
Diffusion-limited reactions are usually fast and have no sig- 

nificant activation energy. Often it is stated that a diffusion-limited 
reaction is one where “the kinetics are not reaction limited”; Le., 
the rate limiting factor is the mere bringing together of the 
reactants. In this sense both our “well-stirred” and “self-stirred” 
models describe diffusion-limited reactions. However, most specific 
literature models for diffusion-limited  reaction^^.^^^ do not include 
convective stirring but only self-stirring. On the other hand, both 
the “classical” theories of chemical kinetics’ and the diffusion- 
limited onesz3 are effectively “mean field” theories where a random 
distribution of reactants is assumed or implied (neglecting some 
of the many-body correlations). The randomization approach 
obviously fits the well-stirred case. The self-stirred case (diffusion 
but not convection) has been addressed recently more e~pl ic i t ly .~ 
Our results give a direct comparison of both cases and bear out 
previous intuitive or implicit notions. 
Our simulations establish two separate “universalities” for the 

two modes of reaction. Our specific algorithm for the well-stirred 
case results in a rate constant K of about unity for all topologies. 
For the self-stirred case we corroborate a very different kind of 
universality, i.e., a K that is constant in reduced time but not in 
real time. The obvious exception is the isotropic, three-dimensional 
(cubic) lattice where the two universalities merge, Le., reduced 
time and real time are proportional and, moreover, of the same 
order. 

The combination of diffusion and reaction (no convection) 
generates a nonrandom spatial distribution, and this leads9 to the 
time dependence of K. An analysis and comparison of the 
pair-correlation functions, for the two cases, will be given sepa- 
rately. While the nonrandomness of the distribution for these A 
+ A reactions is significant, the deviations from randomness are 
not as drastic as for the A + B reaction.l0,” The results of a 
more complete study over a range of percolation lattices and the 
related cross-over behaviors (from fractal to classical) will follow. 
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Microcrystalline cadmium, indium, copper, and zinc sulfides were generated in situ on the surfaces of bilayer lipid membranes 
(BLMs) prepared from bovine-brain phosphatidylserine (PS), glyceryl monooleate (GMO), and a synthetic, polymerizable 
surfactant [n-C15H31C0,(CH2)2] 2N+(CH3)CH2C6H4CH=CH2, C1- (STYRS). Semiconductor-containing BLMs remained 
stable for days. Semiconductor formation on the BLM surface was monitored by optical microscopy, voltage-dependent 
capacitance measurements, and absorption and intracavity-laser-absorption spectroscopy. Band gap excitation of GMO- 
BLM-incorporated CdS resulted in the development of photovoltage. Irradiation of CdS incorporated into BLMs formed 
from STYRS (using a 350-nm cutoff filter) led to absorption losses due to the styrene moiety in the surfactant. Apparently, 
CdS sensitized the photopolymerization of STYRS BLMs. 

Introduction 
The importance of organizing small, uniform colloidal semi- 

conductors in systems which favor efficient light harvesting and 
vectorial charge separation has been recognized.’g2 Semiconductor 

particles have been incorporated into reversed micelle~,32~ polymer 
surfactant vesicles,lO*”  clay^,'^,^^ Vycor glass,16 and 
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