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We perform random walk simulations on binary three-dimensional simple cubic lattices covering 
the entire ratio of open/closed sites (fractionp) from the critical percolation threshold to the 
perfect crystal. We observe fractal behavior at the critical point and derive the value of the 
number-of-sites-visited exponent, in excellent agreement with previous work or conjectures, but 
with a new and imprOVed computational algorithm that extends the calculation to the long time 
limit. We show the crossover to the classical Euclidean behavior in these lattices and discuss its 
onset as a function of the fractionp. We compare the observed trends with the two-dimensional 
case. 

I. INTRODUCTION 

In a recent paper] (referred to as paper I) we examined 
the behavior of random walks on percolation clusters in two 
dimensions, a good test case for fractal behavior both in the 
static (size and shape of clusters) and in the dynamic (diffu
sion of a particle) sense. We tirst investigated the case of the 
critical percolation threshold, where we found the value of 
the spectral dimension (:::::4/3) and verified the validity of the 
relation involving the Hausdorff dimension::::: 1.9. We then 
covered the region around the threshold where we found and 
verified the validity of the universal critical exponents. Sub
sequently we covered the entire regime from the critical 
point to the perfect lattice limit, establishing the crossovers 
from the fractal to the Euclidean limit. This was done, using 
simulation data, by monitoring several random walk proper
ties as a function of time. 2-4 Our data has the advantage first 
of using relatively large lattices and second of extending to 
the long time limit. In the present paper we extend these 
ideas to three-dimensional1attices. The renewed interest in 
this case stems from the fact that the 2D and 3D random 
walks differ in their behavior. In fact, the 3D lattice is a 
simpler case, because here (S N >, the average number of dis
tinct sites visited in an N-step walk, is simply 

(S N) = e . N, three-dimensional, N - 00 (1) 

while for the two-dimensional case, 

(S N > = eN /log N, two-dimensional square lattice. 
(2) 

Here e is a constant dependent on the lattice topology. We 
see that (S N > is directly proportional to N (time) for the 3D 
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case, but has the more complex N /log N dependence for the 
2D case. Therefore, the crossovers may be expected to be 
different. 

For percolating clusters the average number of distinct 
sites visited (S N> in an N-step walk has an asymptotic form 
independent of the lattice topology, given by 

(SN>_N d,/2, N-oo, (3) 

where ds is the spectral dimension5
•
6 with a value in the vi

cinity of 4/3. There has been a pronounced interest9 in the 
exact value of ds ' and the most recent calculations2 indeed 
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FIG.1.SN vsN for binary three-dimensional simple cubic lattices. Random 
walk may originate on any cluster. Top to bottom:p = 1.00, 0.75,0.50,0.40, 
0.35,0.34,0.33,0.325,0.32,0.3175,0.315,0.3117. 
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show that its exact value in two dimensions is 2%-3% lower 
than the originally proposed value of 4/3. The scaling rela
tion (see paper I)' is 

SN(t-+ OO,p)=td,.l2/[~ _1)t ,/(2V-P+I'I} (4) 

with the crossover time t • being 

t • -I p - Pc 1- (2v - P + 1'1. (5) 

We now use the three-dimensional values of the expo
nents8 v (correlation length), /3 (the percolation probability), 
andJl (conductivity exponent). We also investigate the range 
of the effective /values for the prange P = 0.31 (slightly be
low Pc) to P = 1.00 (a perfect lattice), defined by SN -N f. 

II. METHOD OF CALCULATIONS 

We used the recently improved I algorithm for Monte 
Carlo simulation techniques to monitor several random 
walk properties on three-dimensional lattices. AU details are 
given in paper I. The size of the lattice used is 
160X 160X 160( = 4X 106 sites) with a maximum value of N 
of 200 000 steps. All lattices are generated using the cluster 
growth technique; therefore random walks may originate on 
any-size cluster, and not just on the infinite percolating clus
ter. Using this method only one random walk realization is 
executed on each lattice. Most of the calculations were per
formed with the DEC random number generator RAN. 
Also, our results were compared to the expected values in the 
perfect lattice limit to ensure that the random walk proceeds 
properly and we find excellent agreement. 

m. RESULTS AND DISCUSSION 

For the three-dimensional simple cubic lattice the criti
cal percolation threshold isS Pc = 0.3117. We include results 
that are averages of 1000 realizations on the following lat
tices:p = 0.3117,0.315,0.3175,0.32,0.325,0.33,0.34,0.35, 
0.4, 0.5, 0.75, 1.00. Figure 1 shows the crossover for the 
simple cubic lattice site percolation case. Using the equation 
S N ex N f we see that log S N is linear with log N, while the 
slope of the appropriate curve gives the/ exponent. From the 
Pc = 0.3117 curve we derive a slope of/= 0.53, giving d; 
= 1.06, which is the exponent that describes random walks 

on all size clusters. Assuming ads = 4/3 for random walks 
on the largest percolating cluster one gets 10 (d - /3 / v==d H, 

the Hausdorff dimension), 

d;=d.[2- d ]=1.07, 
d -/3 /v 

(6) 

where d is the Euclidean dimensionality; here d = 3, 
/3 = 0.44, and v = 0.88 for the simple cubic lattice.8 Thus, 
these simulation results are in excellent agreement with the 
reported5

•
6 predictions for the three-dimensional lattices. 

We note thatthe "theoretical" valued; = 1.07 has an uncer
tainty of up to 2 % due to the uncertainties in the critical 
exponents. Thus we cannot test the value of ds = 4/3 to the 
same precision we did for the 2D case (I). We also note that 
for the size oflattice used in this study (L = 4 X 106 sites) our 
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FIG. 2. Plot of SNIN d
;12 vs N with the d; exponent being an adjustable 

parameter. Here d; = 1.04, 1.05, 1.06, 1.07, and 1.08 (top to bottom). Ran
dom walks on any-size cluster at: (a) p = 0.31, (b) P = 0.3117, and (c) 
p = 0.315. 
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FIG. 3. Plotofd (log SN)/d (log N)vsN for random walks on any-size cluster 
atp = 0.3117. 

results are free from any finite size caused false revisitation 
corrections for N up to approximately N = 1.5 X lOS steps. 

The P = l.OO curve gives an I value of I = 0.99, very 
close to the asymptotic value of 1.0. For all intermediate 
values of P the lines are again curved upwards (see paper I) 
showing the crossover from fractal to Euclidean behavior. 

d' 
In Fig. 2 we plot S / N 'vs N for random walks at three 

CJ 
CJ 

ro 

CJ 
CJ 

(\J 

CJ 
CJ 

CD 

:s ~ ,.,.,." , .... " .' 
C) -0.50 0.80 

I 

2.10 

z 
y 

I 

z 

3.40 
I 

4.70 
I 

6.00 

FIG. 4. Scaling plot SNIN d
;12 vs iplpc - 1)No.303 for walks on any-size 

cluster. Here d; = 1.06. The different symbols correspond to different p 
values:p = 0.31, 0.3117,0.315, 0.3175, 0.32, 0.33, 0.34, and 0.35. Note that 
the p = 0.31 values are below the threshold and, thus, appear to the left of 
the line x = O. The N values shown are: 2000, 42 000, 82 000, 122 000, and 
162000. 

different lattice concentrations: (a) P = 0.31, slightly below 
Pc; (b) at Pc = 0.3117 exactly; and (c) atp = 0.315, slightly 
above Pc' In each case we plot five different values of d ;, 
d; = 1.04, 1.05, 1.06, 1.07, and 1.08 in order to see its vari
ation. In this plot the y axis is really the proportionality con
stant in Eq. (3) and we observe that only in the Pc = 0.3117 
case does it give a fairly constant value while at p > Pc the 
curves give an increasing value for this constant and at p <Pc 
they produce a decreasing value. Simply explained, in the 
first case we again (see paper I) have a manifestation of the 
crossover to highp concentration, while in the latter case we 
see the first evidence for the "saturation" of the finite clus
ters 11 , the problem of random walks on a "dust." The impor
tant point to notice in these figures is that using our new 
algorithm even extremely small deviations from criticality 
show these trends. In addition, we again get the best agree
ment for d; = 1.07, within about 2% uncertainty. As a 
further test in Fig. 3 we plot d (log S N )/ d (log N) vs N and as 
expected we get a straight line but with a high random noise. 
This noise is inherent in the differential way of producing 
this plot but what is important here is not the local fluctu
ation but the overall straight horizonta11ine which on the y 
axis has a value ofl = 0.53, i.e., twice this value gives again 
the d. = 1.06 exponent. 

The scaling of data is given in Figs. 4 and 5. Using 
Eq. (4) we set d; = 1.06, v = 0.88, /3 = 0.44, 
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FIG. 5. Extended scaling plot: SNIN d
;12 vs(plpc - 1)No.303. Same as Fig. 

3 (contracted) but with the addition of curves for p = 0.4, 0.5, 0.75, and 1.00 
(left to right). Note that the p = 0.4 curve "merges" with the lower p scaling 
curves of Fig. 4. However, the p = 0.5, 0.75, and 1.0 curves seem to deviate 
from it. 
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FIG. 6. Plot of 2108 SN/lOg N vs N for random walks originating on any 
cluster. Bottom to top: p = 0.3117, 0.31S, 0.317S, 0.32, 0.325, 0.33, 0.34, 
andO.3S. 
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FIG. 7. Plot of2/vsp for walks originating on any-size cluster. Squares
from long time limit (N = 200 000 over N = 100 000). Triangles-from 
short time limit (N = 4000 over N = 2000). 

J.l = (1/2)[v(3d - 4) -.8] = L98. Hence, 2v -.8 + J.l = 3.3. 
In Fig. 4 many different values of p and N are used to pro
duce a scaling curve quite satisfactory. In Fig. 5 we see that 
scaling is valid only up to p = 0.35 while scaling breaks 
down for p = 0.40 and above. Therefore the idea of scaling 
and the validity of the correlation length 5 and the critical 
exponents v and.8 are limited to the interval 0.3117 <p<0.35. 
Thus, these two figures provide us both with a verification of 
the universality hypothesis around the critical point and the 
region of validity of this universality. 

Figure 6 gives us the value of the effective d; exponent 
for a wide p range. The p = 0.311. 7 curves are almost straight 
(horizontal), as expected, while the higher p curves give us 
the crossover in the direction of the Euclidean behavior. Val
ues of up to p = 0.35 are used in these curves, since above 
p = 0.35 all curves show a sharply increasing ds exponent. 

In Fig. 7 we show the behavior of2[ as a function of p for 
two different limits, the early time limit (N = 2000 steps) and 
long-time behavior (N = 2X lOS steps). First we notice that 
2[increases rather fast as p increases from the critical point 
Pc = 0.3117. The curves remind us of the sharp rise in the 
"percolation-type" curves for the formation of the largest 
cluster at the critical point. This trend is only a manifestation 
of the earlier observed behavior that the fractal region is 
rather narrow close to Pc and one approaches rather quickly 
the classical behavior. We also notice that the rise in the 2[ 
value is much sharper at longer times that at short time, an 
observation similar to that for the two-dimensional lattices 
(see Fig. 6 of paper I). 

Concluding, we presented long time random walk simu
lations on simple-cubic lattices exactly at the critical perco
lation threshold and above it, up to the perfect crystal. Our 
results confinn the scaling, crossover, and universality hy
pothesis of random walks on fractal structures. Further
more, we were able to define the region of validity of the 
above assumptions and show in detail the transition to the 
classical. behavior. 
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