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Random-walk simulations on square-lattice percolation clusters are performed for (a) all clusters
at criticality; (b) the largest cluster at nominal criticality; and (c) the largest cluster at exact criticali-

ty for each realization (new method).

The short-titne correction-to-scaling exponent is obtained:

=—0.48 (for N < 10° Monte Carlo.steps). The scaling exponent appears to be in better agreement
with the recent Aharony-Stauffer conjecture for the spectral dimension (d;=1. 309) than with the

Alexander-Orbach-Rammal-Toulouse con]ecture (d;=

I. INTRODUCTION

The problem of establishing fractal, or fracton,
behavior in binary lattices of several dimensionalities has
been dealt with by many authors!—® from different discip-
lines over the last year, utilizing a variety of methods,
thus showing an unusually high interest in its natute and
potential applications. In particular, after the original
conjectures of universal critical exponents,! ~* several au-

thors®=71011 ysed Monte Carlo simulation techniques to

test the hypothesis that these exponents really. exist as well
as derive their values. This is still a very active fizld of
research.?

For binary lattices fractal behavior can be observed in a
self-similar structure which is realized only at the percola-
tion threshold, where other critical properties have also
been observed in the past, such as the correlation length,
the average size of a cluster, etc. For several static prop-
erties exponents such as v, y, B, etc., have been derived
and their values have been tested by numerical simula-
tion.!2 The fractal dimension is® D =d —B/v, where d is
the embeddmg Euclidean dimension. For d =2, one has®
B=-%, v=1%, and thus D=3. Work on dynamic prop-
erties in these structures, such as those described by ran-
dom walks, only began recently. The random walk is
characterized by a spectral (fracton) dimension d;, which
inter alia relates the mean number of distinct sites visited
Sy to the number of random steps N via SNNN ¥
While originally it was conjectured!’? that d = 3 . it has
later been suggested® that d; =2D /(D +1)= 1=, which is
about 2% lower. Also of interest is the transition from
the critical point to a regular lattice characterized by full
translational symmeiry, something often termed as the
crossover>®1%11 from fractal-to-Euclidean behavior.

We calculate here a correction-to-scaling exporent w
for short-time behavior. At the same time we optimize
the scaling exponent d;. We use three approaches to the
Monte Carlo simulation, one of them is new. Our results
are consistent with a negative derivation from —‘;- for the

{
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~here are generated in a new manner.

0 (blocking, nonallowed or closed sites).
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=1.333).

They also support one previous
simulation result for w, based on the simulation of the
mean-square displacement, but seem to disagree with
another previous simulation based, like ours, on Sy.

In this study we provide a new method of generating

“exactly percolating clusters, described below. Consequent-

ly, dynamical simulations are performed on such clusters.
We calculate several random-walk properties using this
method, as well as two previcus ones, and establish again

“here the fractal behavior of these critical structures. Fi-

nally, we applied these results to the short-time behavior
of a random walk on a percolating cluster and established
the deviations from the asymptotic limit. We find that
these deviations dorninate in the region up to 1000—2000

"steps whereas the long-time behavior seems to dominate

from that point on.

II. METHOD OF CALCULATIONS

in all calculations up to now no exact realization of a
percolating cluster has been attained, but several indirect
approximations were used. In most cases, a lattice was
nominally assigned the critical percolation concentration

. ,, but in the actual numerical computation, due to sta-

tistical fluctuations, no exact realization of the P, value
can be attained, with the result that some realizations are
well above the percolation threshold while others have not
percolated at all. For these cases only the average value
of this threshold in a large number of realizations can be
achieved, thus making it more difficult to establish fractal
behavior. To compensate for the above problem some in-
direct approaches were used. Realizations that were
found to start on small finite clusters were excluded!?
from the averaging process and thus some partial im-

" provement could be attained. However, the basic problem

rernained.

Unlike all previous studies,””!>* all binary lattices
A lattice has two
types of sites with identities: 1 (allowed or open sites) and

All random,
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walks are performed on the terrain of sites having the
identity 1, and no steps are allowed on sites of nature 0.
Randomness is introduced by allowing all 0’s and 1’s to
occupy sites as dictated by a random-number generator.
In all work up to now, a relative ratio {or concentration) is
specified for each realization. The new method consists
of the following: Initially the value of O is assigned to all
sites. Then we change the identity of only one site from 0
to 1. The location of this site is chosen at random. We
then perform the cluster distribution, we isolate the larg-
est cluster, and ask whether it has percolated or not. The
criterion that we use for percolation is as follows. Sites
belonging to this maximum cluster must be present at
both ends of the lattice, i.e., either at the right and left
boundaries or at the upper and lower boundaries. If the
lattice has not percolated we change another O site to 1
and repeat the same process. Right at the point where
percolation occurs we stop and store this particular lattice
in the computer memory. All subsequent work is done
using this lattice.

In this method we do not need to nominally specify the
overall relative concentration ratio, as was done in the
past. We have the advantage of generating clusters that
are exactly at the percolation threshold, permitting us to
perform each individual realization of a random walk
(and not just the average) at precisely the proper point.

The cluster distribution is performed by using a new,
very efficient algorithm based on the cluster-multiple-
labeling!® technique (CMLT), and it is extremely fast
compared to all previous work. The computer-time costs
are higher due to the repeated calculation of cluster distri-
butions, but the improved cluster-multiple-labeling tech-
nique has made it feasible. As a rough estimate, the costs
now are about three times as much as the conventional
methods, such as the cluster-growth technique. It now
takes typically 15 sec of CPU time on the Digital Equip-
ment Corporation VAX11/750 computer with 550
Mbytes (105X 8 binary digits) of memory to perform one
run with parameters as in Fig. 3 (see below).

IIL. RESULTS

The following figures contain our results. In Fig. 1 we
plot Sy as a function of N. For comparison purposes we
use three different approaches. Case (a): A square lattice
with nominal concentration P,=0.5931, where a random
walk may originate at any allowed (open) site in the lattice
with equal probability. This calculation is done using the
cluster-growth technique reported elsewhere,'* and, for
all practical purposes, the lattice can be thought of as hav-
ing an infinite size. Case (b): A square lattice with a nom-
inal concentration P,=0.5931, with a size of 300
X300=9 10* sites where the random walker originates
on the largest percolating cluster only. Cyclic boundary
conditions are used, and if the lattice for a particular real-
ization has not percolated then it is rejected. Case (c): A
-square lattice, using the method described in the preced-
ing section. The actual average concentration was found
to be 0.5947 (compared with the nominal value of 0.5931).
The size was 200X 200=4X 10* sites, and cyclic boundary
conditions were employed.
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FIG. 1. Plot of Sy vs N for three different types of calcula-
tions at the critical percolation threshold: case (a), squares, 5000
runs; case {b), triangles, 5000 runs; case {c), crosses, 10 000 runs;
see text for discussion. The topology is that of a square lattice.

We observe that case (a) differs considerably from case
(b). This is expected because in case (a) the contributions
from walks that start in small finite clusters tend to lower
the overall Sy value, but are excluded from case (b). It
gives’ a scaling power d; =d,(2—d /D). There is only a
small difference between cases (b) and (c) that shows
above N =100, and progressively increases. This is also
expected because both cases involve random walks on the
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FIG. 2. Similar to Fig. 1 but in log-log scale. The point
designation is also the same. The continucus lines are straight

lines to show the deviation of the points from linearity.
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FIG. 3. Plot of Sy/NYvs N. (a) Case (a) of text with 27" =1.20, 1.21, 1.22, 1.23, 1.24, 1.25, and 1.26 (top to bottom). (b) and (c)
Cases (b) and (c) of text, respectively, with 2/ =1.27, 1.28, 1.29, 1.30, 1.31, 1.32, and 1.33 (top to bottom).

largest percolating cluster only.
To test the validity of the asymptotic conjecture,

Sy~N%", N-> (1)
we plot the following: InSy versus InN, Fig. 2. Ve ob-
serve that the data are almost fit on a straight line, but
there are certainly apparent deviations observed for the
range examined. It has actually been hypothesized™'s'?
that Eq. (1) is valid only in the asymptotic limit of large
N, and that correction terms to the scaling law are neces-
sary to describe the shori-time behavior. We believe that
the deviations from a straight line in Fig. 2 are due to this
effect. o
To further elucidate this point we now plot SN/Nf asa

function of N, where f=d; /2 is given a range of possible
values for the largest cluster walks, and similarly
f'=ds /2 for walks on all clusters. The results are given

© in Fig. 3. In Fig. 3(a), for case (a), we see that at N (where

Sy /N7 is supposed to be a constant of N) the best value
for 2f" is between 1.23 and 1.24 (lines nearest to horizon-

~tal). In Figs. 3(b) and 3(c) we find, likewise, for cases (b)

and (c), that 2f=1.29, with case (c) showing a smoother
behavior. The: Alexander-Orbach-Rammal-Toulouse con-
jecture gives 2f =-§* and 2f’'=1.260, while the Aharony-
Stauffer conjecture gives 2f=-1.309 and 2f'=1.237. Qur
results clearly agree better with the latter conjecture. We

. believe that our case (a) simulations are statistically the

best, because they are not sensitive to the exact location of
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FIG. 4. Plot of (Sy/Nf—a) vs N, where 2f=1.29 anc

a=1.184 for the points of curves in Fig. 3{c). The slope (giving

the exponent o) is taken from a straight line drawn at small N.

the percolation threshold. The case (b) simulations are
quite sensitive to this point while the case (¢) simulations
should be less sensitive to it. We note here that from in-
dependent simulations'® on all clusters for long times
(N =2Xx10%) we obtained 2f'=1.235, in excellent agree-
ment with our present results (and with the Aharony-
Stauffer conjecture). The 2f values there are obtained by
a different approach (“discarding method”), giving
2f=1.30, also in very good agreement.

We also see from all three cases [Figs. 3(a)—3(c)] that
for N> 10°, the long-time behavior seems to have been
approached, while for N < 10% the short-time corrections
to scaling are very important. We now focus on the
short-time regime and try to derive the correction to scal-
ing. It has been assumed recently that these correction
terms are included in the universal relation by the follow-
ing formula:

Sy ~Nf(14-4N®), 2

where o is a negative number, so that the contribution of
the second term in parentheses goes to zero for large N.
Rewriting Eq. (2),
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if~l+AN‘” (3)

or

S ®

W—a:bN , 4)
where a and b are constants. Here a represents the con-
stant Sy /N7 value for large N, which as seen from Fig. 3
has the value a=1.18. Therefore, if we plot Eq. (4)
directly in logarithmic form we will recover immediately
the  exponent. This is done in Fig. 4 using the data of
Fig. 3(c). We consider the slope of the curve at early
times, because this is where the correction term predom-
inates. At the straight-line segment in Fig. 4 the slope is

0=—0.48+0.08 .

We note that forcing an exponent 2f =+ gives a=0.99
and o= —0.47, showing that ® is not as sensitive to f as,
obviously, @ is. This is in good agreement with the
correction term reported recently by Pandey et al;’ giving
w=—0.45+0.05 and a=0.99 from the scaling of the
(R%) calculation. Rammal'’ gives a value of o= —+,
which is inconsistent with our simulations.

IV. CONCLUSIONS

For the mean number of distinct sites visited on a two-
dimensional percolating cluster (square lattice), the scalmg
exponent (spectral dimension) is 1.30 + 0.03, which is in
much better agreement with the Aharony-Stauffer conjec-
ture (1.309) than with the Alexander-Orbach-Rammal-
Toulouse conjecture (+). The short-time correction to
scaling is about —0.48, in good agreement with the
Pandey-Stauffer-Margolina-Zabolitzky work. For these
short-term simulations the new method of simulating ran-
dom walks on the largest cluster at exact criticality for
each realization appears to be superior to the conventional

- method of simulation at nominal criticality.
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