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Abstract: Tumor hypoxia was discovered a century ago, and the interference of hypoxia with all
radiotherapies is well known. Here, we demonstrate the potentially extreme effects of hypoxia het-
erogeneity on radiotherapy and combination radiochemotherapy. We observe that there is a decrease
in hypoxia from tumor periphery to tumor center, due to oxygen diffusion, resulting in a gradient
of radiative cell-kill probability, mathematically expressed as a probability gradient of occupied
space removal. The radiotherapy-induced break-up of the tumor/TME network is modeled by the
physics model of inverse percolation in a shell-like medium, using Monte Carlo simulations. The
different shells now have different probabilities of space removal, spanning from higher probability
in the periphery to lower probability in the center of the tumor. Mathematical results regarding the
variability of the critical percolation concentration show an increase in the critical threshold with the
applied increase in the probability of space removal. Such an observation will have an important
medical implication: a much larger than expected radiation dose is needed for a tumor breakup
enabling successful follow-up chemotherapy. Information on the TME’s hypoxia heterogeneity, as
shown here with the numerical percolation model, may enable personalized precision radiation
oncology therapy.

Keywords: hypoxia heterogeneity; tumor radiotherapy; inverse percolation shell model monte-carlo
simulations; oncology radiation modelling

1. Introduction

A tumor and its tumor micro-environment (TME) usually have a center, a periphery,
and a density gradient in-between. Tumor center: Whether at a tumor’s original location,
at a colony due to metastasis, or in a xenograft animal model due to implantation, tumors
usually have a center-of-mass made of tumor cells. These cells extend out to a periphery,
which may be well-defined or fuzzy, with a “clean” or fractal-like boundary. There is also
usually a density gradient between the center and the periphery. Here, we study models
that mimic those properties. Furthermore, while these models may primarily apply to
the “physical” mass distribution of the tumor cells, they may also apply to some other
property of the TME, such as its chemical component distribution, e.g., its acidity (increase
of H+ or lowering of pH), oxygen content (depletion of O2 or hypoxia), or extracellular
potassium ions (excess of K+ or hyperkalemia) [1]. The understanding of such a mass
distribution, density gradient, or connectivity network may have important implications
for understanding the tumor biology and for its medical treatment. Notably, both therapy
and imaging are often affected by tumor penetration difficulty, either by the drug or by the
imaging contrast agent [2]. As an example, treatment by chemotherapy may be optimal
only at the tumor periphery, because the progress of the drug into the tumor center may be
hampered by the TME’s acidity. In addition, the hypoxia, i.e., O2 concentration depletion,
at the center of a tumor is likely to differ from that at its periphery. Such depletion, while
always reducing the effectivity of any radiation therapy, may also affect its combination with
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chemotherapy, as discussed below. Similarly, the distribution of the TME’s hyperkalemia
may affect the success of immunochemistry, but this will be discussed elsewhere. The
Monte Carlo simulations presented here are aimed at studying the consequences of such
density gradients on the network’s break-up, whether related to the network of the tumor
cells, the TME’s acidity (pH), or its O2 concentration. Notably, the information on such
distributions may guide therapy options, i.e., whether chemotherapy, radiation therapy,
combination therapy, or surgery would be the best route. Here, we limit the discussion to
combination therapy involving radiation as the first step, followed by chemotherapy. This
discussion may also rationalize existing protocols derived empirically [3].

Historically the earliest, and still most common, tumor treatment employs drugs,
i.e., chemotherapy [3]. Notably, the drug doses are limited by their notorious side effects.
However, tumors tend to resist chemotherapy by using one of their “chemical weapons”,
specifically, the acidity of the TME [4–8]. This “acidosis” (low pH) of the TME has been
discovered over a century ago by Warburg [9]. Most drug molecules may decompose due to
such acidity. Thus, currently, tumor treatment often starts with radiation therapy, followed
by chemotherapy [3]. Presumably the rationale is to break up the extended network of the
tumor cells, and their TMEs, into isolated “clusters”. Such break-up would enable some
of the drug molecules to avoid the acidic TMEs, and thus stay intact until reaching the
tumor cells, and eventually kill them. A mathematical model describing such break-up of
the tumor network, or of its TME network, is the main topic of this study. We also derive
pictures illustrative of the tumor tissue, and its TMEs, after varying radiation doses, under
a variety of simulated hypoxia anisotropy conditions.

In a randomized two-component lattice model, the formation of an extended network
of one given component was studied mathematically first by Hammersley, in terms of a
percolation model [10,11]. The latter describes highly nonlinear, i.e., catastrophic, behavior,
e.g., phase transitions in physics. Geometrically, it describes the break-up of some connected
network. The break-up of such an extended network is mathematically equivalent to its
formation process and is thus called inverse percolation [12]. Either the network formation
or its break-up occur at a “critical concentration” of the relevant component. This “critical
concentration” has occasionally been derived analytically, but mostly requires the use of
Monte Carlo simulations [10,11]. We here consider a tissue lattice made of two components,
live and dead tumor cells, where the dead cells are the result of radiation therapy. As the
radiation kills cells randomly, at least to first approximation, such a percolation model
should be appropriate. However, there is an additional consideration. Tumors also have
a “chemical weapon” against radiation therapy: Hypoxia, the absence of tissue oxygen.
Again, the low concentration of oxygen in the TME has been known over a century, due to
Warburg [9]. The hypoxia is the result of the tumor cells’ enhanced metabolism, due to their
accelerated growth and multiplication. We note, however, that the chemical mechanism
of cell-kill by radiation relies on the presence of O2 molecules. Specifically, the radiation
energy excites the O2 molecules from their “triplet” ground state into their higher energy
“singlet” state. “Singlet oxygen” has been called “killer oxygen”, as it produces the so-
called “reactive oxygen species” (ROS) that kill cells [13]. One typical ROS member is
the OH radical molecule; another is the singlet oxygen molecule. Notably, the oxygen
depletion will be highest at the tumor’s center and lowest at its periphery, where the oxygen
molecules are replenished by diffusion from the nearby, oxygen-rich, normal tissue. We
thus employ a model where the radiation cell-kill may be most effective at the tumor’s
outer shell (periphery) and least effective at its center. This gives rise to a new percolation
model, employing a lattice with shells of different probability regimes. We thus apply
an originally random distribution of tumor cells, with a shell-to-shell density gradient of
kill probability. As a first step towards illustrating this approach, we use a simple two-
dimensional “onion-like” shelled lattice model. We show that the “critical concentration”
for the live tumor cell network break-up is higher than for a normal lattice. The potential
ramifications for radiation and chemotherapy are discussed. We give graphical illustrations
of our preliminary insights regarding radiotherapy efficacy. These insights still need to be
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tested in a computationally more intensive three-dimensional model. In the future they
may be tested on specific geometries characterizing specific tumors and their TMEs, thus
enabling personalized precision radiation oncology therapy.

2. Method of Simulations

The system we use is a square lattice, where each site has four (4) nearest neighbors.
This system has been well studied in the context of the percolation problem, in which the
lattice has “filled” and “open” sites, randomly distributed, with a concentration (probabil-
ity) p of filled sites. This system has been shown to undergo a higher-order phase transition
at the “critical point” pc = 0.5927. Usually, one starts with an empty lattice and starts filling
the sites randomly until the critical point is reached, which is the point where, for the first
time, a spanning cluster (connected network) appears that is connected throughout the
lattice from one end to the other [10,11]. In our case, we work with the inverse problem,
i.e., we start with a fully occupied (filled) lattice, taking out sites randomly, until the same
critical point is reached; in this case, it is the point where, for the first time, the spanning
cluster disappears, so that the ends of the lattice are not connected anymore. This has been
called “inverse percolation”.

In this work, the new objective is a case where the sites are not removed with equal
probability, in contrast to the classical case, so as to reach the critical point, but instead they
are removed, in each shell of the lattice, with different removal probabilities; specifically,
with a higher probability, the closer they are to the periphery of the lattice, and with a lower
probability, the closer they are to the center of the lattice. Thus, the lattice is divided into
several shells (zones), each shell having a different probability for the removal of a site. An
example is shown in Figure 1, where the lattice is divided into five (5) square shells. Each
site of the lattice belongs to one of those shells, according to its distance from the center.
The lattice shown in Figure 1 is of size 200 × 200, and the boundaries of the five shells are
marked. Inside each shell is denoted the probability of removal of a site, when chosen.
Using a uniform random number distribution, we select an occupied (filled) site of the
lattice. That site will be removed with probability denoted in the corresponding shell. If the
site is not taken out then a new site is chosen. Whenever the site is removed, we check with
the CMLT algorithm [14] whether the largest cluster percolates. The criterion used is that
sites at all ends of the lattice, either up/down or right/left, belong to its largest cluster, i.e.,
are all connected. Thus, in the current work we remove sites one-by-one and we identify
the critical point exactly when the largest cluster seizes to percolate. We then calculate the
density of the still-remaining occupied sites, which gives us the percolation threshold of
this Monte Carlo realization. This procedure for sequentially removing occupied sites with
a certain probability is repeated until the critical point is reached. In the present case, where
the probabilities for removal are different, we expect the pc to differ from the “normal”
(non-shelled square lattice) percolation threshold (pc = 0.5927) [10].
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Figure 1. Division of a 200 × 200 lattice into shells. We show the probabilities of removal for every
zone for r = 0.1.

3. Mathematical Results

In Figure 2, we plot the percolation threshold pc of the lattice as a function of r. We
define the parameter r as the rate of reduction of the probability for removal from one
shell to its next shell towards the center. We set the probability for removal of a site in the
outer shell as 1. Thus, for r = 0.1, and for the case of five shells, the list of probabilities for
removal in the five shells will be p = [0.66, 0.73, 0.81, 0.9, 1], where 0.66 is the probability of
the innermost shell, and 1 is the probability of the outermost shell. See the distribution of
these probabilities in the different shells in Figure 1.

As expected, as r increases, the lattice percolates at larger values of pc. This is reason-
able, as in our algorithm many attempts of removing a random closed site of an inner shell
will fail, resulting in having fewer inner sites and more outer sites being removed. Thus,
the maximal (all connected) cluster will likely stop existing in the periphery, as a result
of having removed more sites from there. We observe that for r = 0, pc = 0.5915, which
agrees within error with the known critical value of 0.5927. We also see that there is a linear
increase of pc with r. The best fit of the straight line is shown in the figure and has a slope
0.315. Table 1 contains the critical threshold values pc as a function of r.
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Figure 2. Percolation threshold, pc, of a 1000 × 1000 square lattice as a function of r, the rate of
reduction of the probability for removal from one shell to its next shell, for 100 realizations.

Table 1. Threshold values pc as a function of r.

r pc

0 0.592
0.1 0.608
0.2 0.642
0.3 0.676
0.4 0.709
0.5 0.738
0.6 0.764

In Figure 3, we show the occupied sites of the lattice when the largest cluster percolates
for r = 0 and r = 0.4. The largest cluster is presented in Figure 4, for r = 0 and r = 0.4. Finally,
in Figure 5, we present the schematics of lattices just below the critical threshold, at
p = 0.5900.
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(a)

(b)

Figure 3. Occupied sites of the lattice (blue dots) when the largest cluster percolates for (a) r = 0,
(b) r = 0.4.
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(a)

(b)

Figure 4. The largest cluster at the critical threshold for (a) r = 0, (b) r = 0.4.
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(a)

(b)

Figure 5. Occupied sites of the lattices at p = 0.5900 for (a) r = 0, (b) r = 0.4.

4. Discussion

In terms of radiation therapy and interference by the TME hypoxia, the following
tentative conclusions can be drawn:

1. Whether the “occupied sites” (blue in Figures 3–5) symbolize tumor cells or their
TMEs, the percolation model simulations provide a useful intuitive picture of the
consequences of different doses of radiation. At some dose, the tumor/TME network
falls apart. This is a catastrophic, phase-transition-like, phenomenon, for which the
percolation model was created historically. A small change (say an increase) of dose
can have a large effect on therapy: the benefits of radiation are not linear with dose.
Notably, its drawbacks are not discussed here.

2. With respect to the follow-up chemotherapy, to avoid the interference of TMEs’ acidity
(acidosis) with drug sustainability, we are looking for guidance by the “unoccupied
sites” (white in Figures 3 and 4). To enable intact drug diffusion into the tumor, a clear
(white) path would be helpful. An example is shown in Figure 4a, where it would be
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easy for the drug molecules to reach most of the remaining tumor network. However,
note that the (white) “clear” areas are still full of smaller TME “clusters”, which are
not shown. The analogy is a minefield where most mines were bombed out.

3. The “shell model” results, essentially those for r = 0, are highly illuminating. A look
at Figures 3a and 4a shows that the blue areas are now concentrated towards the
center. The consequence would be that the chemotherapy drugs are prevented from
reaching the tumor center, despite that the preceding radiotherapy is “poking holes”
in the “minefield” of the acidic TMEs. This illustrates the major effect of the hypoxia
heterogeneity, i.e., the limited oxygen diffusion into the tumor (and TME). We can see
that even with partial oxygen diffusion (r > 0), only the tumor periphery may become
amenable to successful follow-up chemotherapy, rather than the entire tumor, thus
essentially enabling tumor regrowth.

4. Note that with just 41% of cell-kill (Figure 5a), the network of tumor cells (or TMEs) is
all broken up into small (mathematically ”finite”) clusters. Medically, that is where
chemotherapy should be effective, as the “minefield” has been rarefied and the drug
molecules should be able to reach the tumor cells. Note also that just a “smidgeon”
below 41%, with 40.7% cell-kill, we still find a connected network (Figure 4a, r = 0,
where pc is 0.5927). This illustrates the potentially sharp boundaries between sufficient
and insufficient radiation dose.

5. On the other side, with hypoxia anisotropy, even with the same percentage of radiative
cell-kill, the picture is totally different (Figure 5b). While at the periphery, the now-
open (white in Figure 5b) channels are wider, the opposite happens towards the center.
The channels do appear to be “closed” (blue in Figure 5b). The drugs will be blocked
from reaching the tumor center’s cells, allowing for tumor regrowth. Therefore, a
naïve expectation, say from Figure 2, where the critical concentration increases with
r, which symbolizes hypoxia (i.e., an expectation that in the presence of hypoxia
anisotropy less cell-kill will be required for tumor network break-up) is wrong. In
actuality, the opposite seems to be the case. With 41% of cell-kill (Figure 5b), the tumor
center appears to be dense enough to withstand any drug penetration of the TMEs.
Thus, while the hypoxia anisotropy may assist chemotherapy at the periphery, it
seems to resist it at the tumor center, with a bad resulting outcome of tumor regrowth.

Overall, the above points might help direct strategies for overcoming the above
illustrations of radiotherapy interference by hypoxia and hypoxia heterogeneity: From
having a patient breathe 100% O2, to targeted nanoparticles that provide the ingredients
needed for producing ROS [13].

We realize that the studied square lattice model, while helpful mathematically, will
hardly ever represent a real tumor. However, similar studies can be performed on realistic
and even patient-specific tumor geometries. We envision such future studies that will
enable personalized precision radiation oncology therapy.

5. Conclusions

Demonstrated above is the significant role that may be played by the tumor hypoxia
distribution, i.e., hypoxia heterogeneity, on the effectivity of radiotherapy or combination
radio- and chemotherapy. Thus, potential information on this hypoxia heterogeneity and
its correlation with radiation treatment may be helpful, such as when obtained from in vivo
photoacoustic imaging of xenografts [1].
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