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ARTICLE INFO ABSTRACT
Keywords: We studied the evolution of the European Patent Office (EPO) patents applicants’ collaborations
EPO Patents network network, within a 35 years span of data (1978-2013). Focusing on the Giant Component (GC)

Giant component formation process over many time-windows, distributed throughout the data timeline, we found

Percolation . that the features governing this phenomenon are indicative of emerging globalization in the ap-
Network evolution . N . . . L. . N .
Globalization plicants’ collaborations. The timeline appears to be divided into three regimes, corresponding to

three states of the network’s evolution. In the early years state, the GC takes long to form and the
instant of its creation is easily pinpointed, while it features geographically segregated groups of
applicants with technologically similar activities. In contrast, in the late years state, the GC forms
quickly, the exact point of its creation is harder to spot, the applicants’ activities are more dis-
parate technologically, while their inter-regional collaborations are significantly increased. The
middle years are an intermediate state between the two extreme of early and late years. Moreover,
we concluded that the critical patents, which induce the GC’s formation, are typically introduced
by large-sized applicants and also that top patent-producing applicants are likely to submit criti-
cal patents, albeit at a lower rate than their overall patent submission. Lastly, we uncovered the
crucial role that Japan plays in the network’s coherence, through its prominent participation in
the GC and the critical patents.

1. Introduction

Innovation is widely regarded as a major contributing factor to economy growth and job creation. A plethora of theoretical and
empirical studies support the notion that innovation, in many ways, has a positive effect on productivity and growth (Caballero and
Jaffe, 1993; Cainelli et al., 2004; Cassiman et al., 2010; Crépon et al., 1998; Geroski et al., 1993; Geroski, 1989; Griliches, 1958;
1964; 1980; 1986; Griliches and Mairesse, 1983; Hall, 2011; Hall et al., 2009; Harhoff, 1998; Klette, 1996; Klette and Johansen, 2000;
Klomp and Van Leeuwen, 1999; Landau and Rosenberg, 1986; Loof and Heshmati, 2002; Mansfield, 1961; 1962; 1965; Medda and
Piga, 2014; Mohnen and Hall, 2013; Parisi et al., 2006; Raymond et al., 2015; Romer, 1986; Solow, 1957). Consequently, fostering
innovation is important in improving the living standards and welfare of people and nations

However, innovation alone does not suffice for promoting well-being; adequate diffusion and adoption of the corresponding
knowledge is also required (Damijan and Kosteve, 2015; Hall and Khan, 2003; Mansfield, 1961; Vasilyeva et al., 2021). Diffusion of
the innovation’s outcome is a prerequisite for boosting productivity and, consequently, growth (Gurbiel, 2002; Moreno and Surifiach,
2014; Surinach et al., 2011). An effective way to achieve diffusion of knowledge is through the collaboration between all potential car-
riers of innovation, i.e. inventors, firms, research institutes, ete. Becheikh et al. (2006), performed a systematic review of the relevant
literature, from 1993 to 2003, and concluded that networking is a remarkably good determinant of innovation. This conclusion was
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based on the fact that the majority of the studies examined, found networking to have a beneficial effect on innovation. The rest of the
studies reviewed by Becheikh et al. found the effect to be insignificant, while none revealed a notable negative effect. Furthermore,
knowledge flow is often trapped within regional and firm boundaries. Promoting collaborative ties between regions and firms has
been shown to significantly increase the chance of knowledge escaping these boundaries (Singh, 2005). Moreover, there is a growing
need of forming collaborative ties between the carriers of innovation, which have become more collective and distributed over the
past decades (Kerl and Moehrle, 2015; Khan et al., 2013; Teece, 1992; Tether, 2002). Plausible motives driving this behaviour include
common purpose, pooling resources, tackling difficulties and reducing the risks related to the innovation process, as well as keeping
up with the fast pace of technological change and increasing competitiveness (Brown and Eisenhardt, 1995; Kerl and Moehrle, 2015;
Stock et al., 2002; Tether, 2002).

Apart from networking and forming collaborative ties, another feature which effect on innovation output has been widely inves-
tigated is firm size. While in 1934, Schumpeter (1934) suggested that small size favours innovation output, he contradicted it eight
years later (Schumpeter, 1942). This triggered a major debate that led to a series of theoretical and empirical studies, which reach far
into the recent years. Indicatively, Tether in Tether (1998) questions the validity of a belief that small-sized firms are more efficient
innovators than large ones (Acs and Audretsch, 1990), which emerged in the early90ss. This belief was prompt by a group of empir-
ical studies (Acs and Audretsch, 1990; Cogan, 1993; Kleinknecht et al., 1993; Pavitt et al., 1987; Santarelli and Piergiovanni, 1996),
which all find that small-sized firms produce a higher number of innovations per thousand employees, than large ones do. Moreover,
in Becheikh et al. (2006), while the majority of the relevant studies reviewed are suggestive of a positive correlation between size
and innovation output, there is also a number of studies indicative of a negative, negligent, or even a complex relationship.

Overall, the subject of size vs. innovation output is regarded rather inconclusive, and the relationship between these two features
is not considered straightforward (Revilla and Fernandez, 2012; Rogers, 2004), but complex, in spite of the fact that most studies
reveal a positive correlation (Becheikh et al., 2006). Therefore, many studies tend to examine a more specific aspect of the subject,
as the effect of the size on innovation, with respect to networking (Rogers, 2004; Tether, 2002), or with respect to the technological
regimes (Revilla and Fernandez, 2012). Another aspect that is particularly interesting is the effect of size on how radical the produced
innovations are. In Minguela-Rata et al. (2014), it is found that small-sized firms commonly engage in more radical innovations,
while large-sized in more incremental ones. This result is attributed to the fact that small-sized firms are considered more flexible and
adaptable to technological changes than the more rigid large-sized ones. Similarly, Stock et al. (2002) used data from the computer
modem industry and inferred that small-sized, adjustable firms exhibit higher rate of technological change in the performance of
their products.

All of the above motivated us to analyze the patents data from a network perspective, highlighting aspects that promote - or inhibit
- collaboration. Patents data, although not short of weaknesses, are recognized as a useful means of determining technological advance
and innovation (Griliches, 1990; Lo6f and Heshmati, 2002; Pavitt, 1985) and have thus been used in many pertinent studies (Caballero
and Jaffe, 1993; Crépon et al., 1998; Fleming et al., 2007; Hall, 2011; Ma and Lee, 2008; Pilkington, 2004; Schilling and Phelps, 2007;
Zhang et al., 2017). A patent serves as a reflection of the underlying innovative procedures that led to the corresponding invention.
Furthermore, patent data are stored in readily available and up to date databases, comprising information about the inventions, such
as their date and type, and about the people, institutes and firms involved, as well as their collaborations and interactions. Therefore,
by studying the network of collaborations formed by all those involved in the production of a patent, we implicitly investigate
aspects of the relationship between these collaborative activities and innovation. The nodes of the network are the patent applicants,
representing the firms/inventors working on a project that led to a patent application, filed at the EPO. A link between a pair of nodes
(applicants) is drawn, when the applicants have at least one joint patent application. The network of patent collaborations studied
is a social network and, more specifically, an affiliation network (Albert and Barabasi, 2002; Barabasi et al., 2002; Newman, 2001b;
Newman et al., 2002).

Clearly, having a network with many small isolated components does not promote collaboration and the diffusion of knowledge
as much as a network having a giant component (GC) would® Forging co-operative arrangements for innovation is found to correlate
positively with higher levels of innovation (Kerl and Moehrle, 2015; Tether, 2002). There is also evidence implying that a network
with short path lengths and increased aggregation of isolated components into bigger ones, has a positive effect on future patent pro-
duction and therefore on innovation (Fleming et al., 2007; Schilling and Phelps, 2007). Furthermore, it has been found that the most
productive European researchers increase their research output, by forming a dense core of strong ties between them, coupled with a
large network of collaborations with geographically distant researchers (Hancean et al., 2021). Moreover, Bettencourt et al. (2009) in-
troduce and explore the very interesting idea that critical (red-bond) patents - the addition of which results in the formation of the
network’s GC, at the percolation threshold - represent a highly innovative moment in the course of scientific events.

In view of the above, the GC of the patents collaboration network is an excellent standpoint from which to study the interplay
between collaboration and innovation. The availability of many years of patent data enables us to perform a dynamical analysis, and
study the GC’s formation in many different snapshots of the network, over time. Thus, we can examine questions pertaining to the
GC'’s existence, as well as to the conditions that could possibly influence - promote or hinder - its formation over time. On that basis,
the basic questions explored in this study are:

e Does the GC exist in every snapshot and if yes, how long does it take to form?

* Do the conditions the GC’s formation change over time?

! The GC of a network is a connected component which size is proportional to the number of the network’s nodes (Albert and Barabési, 2002;
Barabasi et al., 2002; Newman, 2001b; Newman et al., 2002).
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- Do the technological areas of the patents influence the GC’s formation?
- Does the geographical origin of the applicants influence the GC’s formation?
e Are the major patent contributors (large-sized applicants) more likely than the ones with medium to small contributions
(small/medium-sized applicants) to produce a critical patent?

Probing into the latter question would be an indirect contribution to the size vs. innovation output problem, assuming that the
larger the size of an applicant the more patents is capable of producing (Tether, 2002). Overall, investigating the above questions
would be one more step towards unraveling the complex role that social collaboration networks play in promoting economic growth
and innovation.

Our results are indicative of a three-part division of the available timeline regarding specific characteristics of the GC formation
and of the two major groups of applicants (largest and second largest connected components of the growing network) immediately
before the percolation threshold. The system appears to undergo a shift in its state as it advances through time. It appears to move from
a state of slow, clear-cut percolation transitions, marked by technological similarity and geographical confinement of the two groups,
to a state featuring faster, although more incremental, transitions that hallmark technological complementarity and geographical
interplay, having passed through a middle, transitive state. Furthermore, our analysis suggests that top patent-producing applicants
are likely to introduce critical patents, although not as likely as would be expected according to their overall patent output. Also the
vast majority of red-bond applicants are found to be large-sized firms. Lastly, our findings highlight the key-role played by Japan to
the EPO patent network and predominantly to its GC.

The remainder of this paper is structured as follows. Section 2 offers basic information on percolation theory, which lies at the
heart of this analysis. Section 3 outlines our analysis and the methodology we followed, and presents all our results. Section 4 explores
the interpretations and certain implications of our results. Finally, Section 5 summarizes our key findings.

2. Percolation theory fundamentals

In physics, percolation theory models the behaviour of systems with metric structure, such as lattices embedded in space, or non
embedded networks, in which their sites/bonds, or nodes/links, are occupied with a probability p (Ben-Avraham and Havlin, 2000;
Bunde and Havlin, 2012; Cohen and Havlin, 2010; Dorogovtsev and Mendes, 2002; Grimmett, 1999; Newman, 2018; Stauffer and
Aharony, 2018). Lattices are mainly used to model phase transitions, e.g. the conversion of water into ice and vice versa. Networks
model many infrastructures like the Internet, power grids and transportation systems, as well as social relations. In such systems, as
the probability p increases the occupied sites start to form clusters. At low p values, there are many small-sized, isolated clusters;
as p increases, the clusters become fewer and greater in size, as many of them have merged together. When many clusters have
merged into one, at a certain p = p, called the percolation threshold, the largest cluster’s size becomes proportional to the size of
the system and the cluster which becomes a “spanning cluster” is called a giant component. The emergence of the spanning cluster,
signifies that the system has underwent a phase transition, analogous to the transition from water to ice. Percolation theory studies
the emergence of the spanning cluster with respect to the probability p. In percolation phase transition, the spanning cluster emerges
at the percolation threshold of a critical probability p.; below that threshold it does not exist, whereas above the threshold it does.

A similar concept is also applicable in non embedded networks (Barabasi et al., 2002; Cohen and Havlin, 2010; Dorogovtsev and
Mendes, 2002; Newman, 2018; 2001b). As in the case of lattices, in static networks the analogous of the spanning cluster would be
a connected component that contains a finite constant fraction of the network’s nodes. This connected component is called the Giant
(connected) Component (GC). Similarly, site percolation in networks can be described as the random removal of a network’s nodes
and corresponding edges, with probability p. As more nodes are being removed, the network disintegrates into a sea of finite clusters.
The phase transition (also known as percolation transition) between these two phases, i.e., the one in which a giant component exists,
and the one in which the network is entirely fragmented and non-functional, is defined by the percolation threshold p,.

3. Method of calculation - Results

In this section we outline our investigation and the methodology we followed in order to explore all the questions posed in
the Introduction, and present all our results.

3.1. Basic analysis of the static network

One of the hallmarks of the patents data? is the fact that the vast majority of the patents are filed by individual applicants. Out
of the 2,502,311 patents included in the 35 years of data, just 6.2% (154,474 patents) result from collaborative activities. A basic
analysis was performed on the extracted aggregated, static network. It was found to have 429,359 nodes (applicants), consisting
of 306,238 isolated nodes (components of size 1) and 123,121 nodes that are connected by 151,474 links (patents). The degree
distribution, with a slope of -2.33 and the component size distribution, with a slope of -3.89 are depicted in Fig. 1. The maximum
and average degree are 852 and 4.05, respectively, whereas the average path length and the network diameter are 5.53 and 27. The
Largest Connected Component (LCC) is made up of 34,214 (28%) nodes and 69,246 links. The Second Largest Connected Component
(SLCC) consists of a mere 93 applicants. The isolated applicants of the patents network were omitted in all parts of the subsequent
analysis for which they were impertinent.

2 For details about the data used, see Appendix B.
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Fig. 1. (a) Degree and (b) component size distributions of the aggregated, static network.
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Fig. 2. Size of a) the largest (red) and b) the second largest (black) connected components of the growing network, throughout the available timeline
(1978 - 2013).

3.2. Basic analysis of the growing network

In this subsection we introduce the “time-window of sliding origin” concept that enables us to perform a preliminary dynamic
analysis on the network. Specifically, we study the conditions of the GC formation in multiple points in the 35 years of the data
timeline and find the first evidence of changes in said conditions over time.

3.2.1. The emergence of the giant component (GC)

The massive difference between the L.CC and the SLCC hints that the LCC is also the Giant Component (GC) of the network. The GC
of a network is a connected component which size is proportional to the number of the network’s nodes, in other words the GC grows
with the network (Albert and Barabasi, 2002; Barabasi et al., 2002; Newman, 2001b; Newman et al., 2002). Fig. 2 depicts the sizes
of the largest and second largest connected components of the growing network, over the 35 years of the data. To obtain this result,
we replicated the network’s growth, i.e. we progressively added the patents to the system, in a non-descending chronological order.
Once a new patent, with at least two applicants® is submitted, it contributes to the network’s growth by either adding new nodes
(applicants) to existing components, forming new components, or merging existing components into bigger ones. Fig. 2 confirms that
the LCC is in fact the GC of the network, as it clearly grows with the network.

The growth process was found to be consistent with that reported in similar previous studies (Bettencourt et al., 2009; Liu et al.,
2015; Liu and Xia, 2015; Newman, 2001b; Perc, 2010). Early on, a collection of small-sized components are formed. During this phase

3 All one-applicant patents were previously extracted from the data set, as these represent island nodes or self-loops that do not add to any
component of the growing network.
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Fig. 3. The emergence of the giant component. Starting date of the system’s temporal reconstruction: 1978, LCC: red circles, SLCC: black line. Phase
A: Small-sized, indistinguishable components, phase B: the two major components become discernible, phase C: the percolation threshold, the GC
forms, phase D: the GC outgrows all other components.

all components are indistinguishable with respect to their size. A second phase follows that leads up to the percolation threshold,
during which one can discern two major components of comparable size, growing at approximately the same rate.

At the percolation threshold, a single patent that enters the system introduces a critical link that joins these two components
into one; the growing GC (Albert and Barabasi, 2002; Barabasi et al., 2002; Newman, 2001b; Newman et al., 2002). From this point
onward, the vast majority of new patents join new or existing nodes/components to the GC. Consequently, the evolving GC rapidly
outgrows any other component in the system and a vast gap between its size and that of the Second Largest Connected Component
(SLCC) is quickly forged, as seen in Fig. 2. Fig. 3 highlights the growth process outlined above, depicting the emergence of the GC,
up until approximately two years after the percolation threshold. It appears that it takes approximately five years for the two major
independent groups of applicants to connect and form the GC.

What are the implications of the network’s percolation during the growth process? In a static network, each component represents
an independent group of applicants. The links in a component represent the collaborations between its applicants. Through these
links, diffusion and flow of knowledge can be realized and, consequently, applicants can influence each other, either directly or
indirectly. Nonetheless, knowledge is trapped within the bounds of a component, therefore, the more fragmented a network is, the
less it can facilitate collaboration and knowledge spreading. In a growing network, the addition of the critical patent at the percolation
threshold invokes the birth of the Giant Component, which marks the beginning of the transformation of the system from a sea of
small-sized, independent components - islands of “localized” patent-induced collaborations - to a tangible network that forms the
grounds for more “globalized” collaborations. Thus, it is of great interest to study the circumstances that pertain to the GC formation
and how these change in time.

Performing a temporal analysis on the GC-formation specifics would enable statistical inference and the detection of patterns or
trends likely to reveal useful information about its history and evolution. To this end, we employed the “time-window of sliding
origin” concept, which allows us to exploit all of the available 35 years of patents data. This concept enables us to study aspects of
the GC formation like the variation of time and number of patents required for reaching the percolation threshold, as well as certain
characteristics of the two major groups of applicants, immediately before their union, i.e. immediately before the birth of the GC.

3.2.2. The “time-window of sliding origin” concept and the GC formation throughout the timeline

By starting the temporal reconstruction of the system from June 1978 we make the tacit - and erroneous - assumption that no
patents were filed before this date. Nonetheless, this false assumption allows us to open up a “window” on the temporal evolution of
the system and examine the circumstances pertaining to the emergence of the GC at this particular point in the data timeline.

Clearly, one could start the reconstruction from any arbitrarily chosen date and open up a new window from that date to study
the GC formation. Thus, by progressively moving forward (sliding) the starting date (origin) of the time-window, we end up with a
set of time-windows that form a chain of snapshots of the evolving system. This notion embodies the “time-window of sliding origin”
concept that permits us to exploit all of the available 35 years of data and perform a temporal analysis on the circumstances under
which the GC forms, throughout the available time span.

Fig. 4 depicts the emergence of the GC captured on a sample group of time-windows® It is evident that the time required for the
GC formation varies with the starting date of the window. Specifically, it appears that the GC takes significantly longer to form in
the early windows than in the windows that start later in the timeline.

3.2.3. Variation of time and patents required for the GC formation through time
The findings of Fig. 4 clearly warrants a more detailed analysis. Therefore, we examined the time required to reach the percolation
threshold on a larger set of time-windows densely distributed in the timeline of the data. The results are shown in Fig. 5(a), which

# The earliest date in the data.
5 All percolation thresholds were confirmed by the method described in Appendix C.
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Fig. 4. The emergence of the GC, in different points in time. Each GC corresponds to a different “time-window”, opened up on the system’s timeline.
Red circles: LCC, black lines: SLCC. The circumstances of the GC emergence appear to be changing over time.
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Fig. 5. (a) Elapsed time to percolation and (b) patents filed until percolation vs. starting date of sliding time-window. Both figures hint on a division
of the timeline into at least two - if not three - regimes.

depicts the time elapsed between the starting date of each time-window and the date on which the GC forms vs. the starting date of
the time-window.

It is evident that it takes a considerably larger amount of time for the GC to form when the origin of the time-window falls into
the early years of the timeline, i.e. roughly the first decade (late 70s to late 80s). Regarding the remaining years (late 80s to early
10s), there is an indication of further division into two more regimes (late 80s to middle 90s and middle 90s to early 10s), albeit a
weaker one. The results for the number of patents required to reach the percolation threshold are very similar, as shown in Fig. 5(b).

3.2.4. Qualitative differences during the growth process

The system’s behaviour, during the growth phase leading up to percolation, also reveals qualitative variations that separate the
timeline into at least two - possibly three - regimes. This phase was portrayed in detail in Fig. 3.2.1, for the time-window whose origin
is the first date of the data. In that case, the percolation transition requires a considerable amount of time (circa 5 years), during which
the two largest evolving components grow independently of each other, until the critical patent enters the system and they merge
abruptly, Fig. 3. The resulting component is the network’s GC, which continues to grow and quickly becomes vastly larger than any
other component. As mentioned before, similar descriptions of this growth process have been previously recorded (Bettencourt et al.,
2009; Liu et al., 2015; Liu and Xia, 2015; Newman, 2001b). The exact same qualitative behaviour is observed in all time-windows
with starting dates within the early period (late-70s to late-80s, Fig. 4).

However, this regularity breaks down during the second period (late-80s to mid-90s), as time-windows that reveal qualitatively
different behaviour are noticed sporadically for the first time. In those windows, it appears that the LCC merges with the SLCC® on
more than one occasion, long before the merge that brings on the actual percolation, when both components are still small-sized.
As a consequence, when the percolation threshold is reached, the LCC is already noticeably larger than any other component and
therefore the percolation transition is rather unremarkable.

Overall, the evolving system’s behaviour regarding the percolation transitions, in the three time-periods, can be described as
follows: During the first period all percolation transitions are “clean” and unambiguous and require considerable amounts of time. In
the second and third period, the percolation transitions are typically shorter than those of the first period. Additionally, the second

6 Each time the LCC merges with the SLCC, the component which at that time ranks third (with respect to its size) becomes the new SLCC of the
network.
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period introduces time-windows, which feature step-wise and therefore less dramatic percolation transitions. These gradual transitions
become even more frequent during the third period. Given that we were mainly interested in comparing the characteristics of the
two groups of applicants represented by the two largest components at the percolation threshold, we only considered time-windows
with marked percolation transitions at which the two largest components are of similar size, in all subsequent calculations. At any
rate, these windows are densely distributed throughout the timeline and therefore there is no loss of generality.

3.3. Advanced analysis of the growing network: Investigating the role of the technological areas of the patents and the geographical origin of
the applicants

Three features of the GC formation process have already been examined and were found to change with time. These are: the
amount of time and patents required for the GC to emerge (Fig. 5) and - from a qualitative standpoint - the percolation transitions
and the growth process leading up to it.

To further examine the conditions of the GC’s formation, we investigate the possible involvement of two other features, i.e., the
technological areas of the submitted patents and the geographical origin of the applicants. We define the ”adjacent-pre-percolation”
state as the state of the LCC and the SLCC, immediately before the percolation threshold, i.e. exactly before the critical (red-bond)
patent - the patent which joins them into the GC - is added. Then, we compare the two groups of applicants that correspond to the
LCC and the SLCC in their adjacent-pre-percolation state, in terms of a. the technological areas of the patents and b. the geographical
origin of the applicants, in multiple time-windows.

3.3.1. Technological proximity of the two major GC groups of applicants (LCC and SLCC in the adjacent-pre-percolation state) over time

To assess the technological proximity of the two groups, we utilized the International Patent Classification (IPC)
codes International patent classification (IPC) of the patents. The IPC codes are used by the European Patent Office (EPO) as a
means for classifying the patents with respect to their relative technological areas and conversely, have been used as a tool for de-
termining the technological areas of a patent (Choi et al., 2015; Jun and Lee, 2014; Park et al., 2015). There are four types of IPC
categorization (from the most coarse-grained to the most refined): Section, Class, Subclass and Group (Main and Subgroup). Each
of these categorizations features a set of IPC codes. The Section IPC categorization was used in all calculations, as it is the most
coarse-grained of all, with many patents falling into each of the eight sections and therefore yields the most (statistically) reliable
results. The databases used in this study provide the 8th edition IPC codes, for each patent.

We determined the frequency distribution of the eight IPC sections for the two groups of applicants (LCC and SLCC in the adjacent-
pre-percolation state) that join to form the GC, for multiple time-windows. The degree of similarity/dissimilarity of these distributions
serves as a measure of the technological proximity between these two groups. It was found that the technological proximity varies
over time (Fig. 12 in D). Specifically, in most of the early period time-windows the distributions overlap significantly, in the middle
period they tend to be less comparable and finally in the majority of the late period windows they tend to differ considerably.

In order to quantify the technological proximity of the two groups of applicants, we employed the normalized Euclidean distance,
d, between the two 8-dimensional vectors u and v corresponding to the IPC sections frequencies of the two groups:

1| =)
IV v

wherew =u—i, 0 =v—0,i= # ZL U, 0= % Z,’i] v; and N = 8, the eight IPC sections.

The calculated Euclidean distance, depicted in Fig. 6, varies over time in a way that is once more suggestive of a three-period
division of the timeline. This division is by no means clear-cut, nonetheless, it is evident that high technological distance between the
two components became progressively more probable through the three periods. A plausible approximate partition would be 1978-
1986, 1986-1995 and 1995-2013, shown in Fig. 6 in red, blue and green, respectively, for visualization purposes. This provides us
with a rough estimation of the Euclidean distance in the three periods: from an average of 0.086 with a very low variance (0.001) in
the early windows, to 0.196 with a higher than tenfold leap in its variance (0.013) during the middle ones, to 0.253, which is almost
three times higher than that of the early period and with a higher still variance (0.022), in the late windows.

Both the number of patents required to reach percolation (Fig. 5b) and the technological distance of the two major components
in the adjacent-pre-percolation state (Fig. 6) have been shown to change over time in a manner that separates the timeline into three
regimes. To probe into the relation between these two quantities, the two figures were combined into one, Fig. 7, by eliminating the
common variable, i.e. the time. We used the same approximate partition of the timeline as in Fig. 6 to denote the period of each
time-window (early, middle and late).

In Fig. 7, the points representing time-windows of the same region tend to cluster together, which further supports the findings of
Fig. 5 and 6 regarding the division of the timeline into at least two - if not three - regimes. Moreover, Fig. 7 hints at an association
between the two factors (the technological proximity of the two groups of applicants and the amount of patents required for the
GC formation), which is strong for the time-windows of the early period and quite weaker for the rest of the timeline. In the early
period time-windows, requiring a high amount of patents to reach percolation most likely co-exists with low Euclidean distance (high
technological proximity) between the two major groups of applicants that constitute the GC. For the rest of the timeline, the lower
the amount of patents the more likely high technological distance becomes, however there is still a good chance for low technological
proximity in many time-windows of low amount of patents. Overall, as the system evolves, it appears that it undergoes notable
changes that are reflected in both these factors pertaining to the GC formation. Namely, the average value of both quantities shifts,
as the system moves through the three regimes, according to the following pattern: from a period characteristic of low Euclidean
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Fig. 6. Normalized Euclidean distance of the IPC codes distribution, of the two major components that make up the GC, in their adjacent-pre-
percolation state for multiple time-windows in the available timeline. Red disks, blue squares and green triangles are used to visualize a rough
division of the timeline into the early (1978-1986), middle (1986-1995) and late (1995-2013) periods of the timeline. Low technological distance
is highly likely in the early years. High technological distance appears to be increasingly more likely in the middle and late years.

distance and high number of patents, to a period of medium-high Euclidean distance and number of patents, and, finally, to a period
of higher Euclidean distance and lower number of patents.

Similar results were obtained with the use of Pearson correlation coefficient, r, as a measure of the technological proximity
between the two components that form the GC, when plotted against the number of patents required to reach percolation, Fig. 13
in Supplementary Figures. The null hypothesis is that the two sets (of IPC codes distribution) are independent, with the significance
level set to 0.05.

3.3.2. Geographical interplay between the two major groups of applicants (LCC and SLCC in the adjacent-pre-percolation state) over time

The geographical breakdown of the applicants in both groups in the adjacent-pre-percolation state, for multiple time-windows,
revealed a series of interesting facts. First, the bulk of the applicants in both groups were found to be operating in just three countries,
namely, France (FR), Germany (DE) and Japan (JP), at all times. Applicants from the United States (US) are also present, with a much
lower yet non-negligible contribution. Second, for all time-windows investigated, one of the two groups mostly comprises FR-DE
applicants, while the other of JP ones. Third, the level of geographical confinement of the two groups appears to change over time,
in a way that is once again implying a three-region division of the timeline (Fig. 14 in Supplementary Figures).

In light of these findings, we classified the country occurrences into four categories: all residing in Europe (EU), Japan (JP),
United States (US) and all the rest countries in the world (REST). The percentages of these four categories, calculated for both groups,
illustrate the geographical interplay between the two applicants’ groups. The results, shown in Fig. 8, corroborate the three-part
aforementioned division of the 35-year timeline.

During the first regime (ca. 1978-1986), the applicants in the two groups are clearly segregated, confined either in EU or JP, while
US and rest of the world applicants are practically absent. Unlike the first regime that is effortlessly distinguishable from the rest, the
distinction between the second (ca. 1986-1995) and the third (ca. 1995-2013) regimes is significantly less prominent. Both regimes
exhibit geographical interactions between the two groups, in stark contrast to the complete segregation witnessed during the first
regime. The intensity of these interactions however is much lower in the second regime. In particular, while there is a notable rise in
both EU and US percentages in the “mostly JP” group, only the US percentage rises in the mostly “EU” group; Japanese applicants
are yet absent from this group during the second period. Lastly, applicants from the rest of the world join in the network for the first
time in the last two regimes. The contribution of these applicants is larger in the third regime in both groups, nonetheless it remains
rather small at all times.

These results prompted a supplementary statistical analysis on the geography of the raw patent data from which the network
examined so far was derived. As mentioned before, this is the data set that comprises all patents, excluding the ones with just one
applicant” First, we determined the monthly average of the number of applicants® per patent (Fig. 16 in Supplementary Figures),
which remains remarkably constant, averaging ~2.25 throughout the timeline. This quantity was subsequently broken down into the
four aforementioned geographical categories, EU, JP, US and the rest of the world (REST), in Fig. 9.

During the first ~12-14 years of the timeline, there is a sharp decline in the EU applicants, which coincides with a corresponding
rise in the JP applicants. During the same period, the number of US applicants is pivoting around a low but non trivial value, while

7 These patents result in isolated (island) nodes or self-loops. For results for the network with one-applicant patents included see Fig. 15 in
Supplementary Figures.

8 Given that these are the raw patent data, the applicants in this analysis are not unique, since an applicant can participate in multiple patents,
throughout the timeline.
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Fig. 8. Geographical breakdown of the groups of applicants corresponding to the LCC and SLCC, as captured exactly before the addition of the
critical bond which joins them into the GC (adjacent-pre-percolation state). At (almost) all times, one group consists of mostly EU applicants, while
the other of mostly JP. The depicted rough division of the timeline (two vertical lines) is the same as in Fig. 6 and 7 (EU: blue disks, JP: red triangle,
US: green squares, rest of the world: brown rhombi) The geographical overlap between the two groups of applicants appears to increase over time.

the REST applicants barely exist. For the next 15 years, US and JP applicants participate at approximately the same - quite stable -
rate, while the EU applicants continue to decline, albeit at a much slower rate, which now coincides with a slow but steady rise in the
REST applicants. Finally, for the last 5-6 years the US and JP applicants count fall just enough for the rest of the world applicants to
reach them, whose participation continues its steady rise. Overall, it appears that non-European applicants’ participation in the EPO
patents increases over time, which leads to more opportunities for the formation of inter-continental collaborations.

Finally, to complete this geographical analysis, we look into the static network, i.e. the network that results from all the patents
aggregated over the whole 35 years of data, excluding only the patents with just one applicant® The geographical breakdown of the
applicants in that network and its GC is shown in Fig. 10.

9 As mentioned before, these patents result in isolated (island) nodes or self-loops. For results for the network with these patents included see Fig
17 in Supplementary Figures.
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Fig. 10. Geographical breakdown of the applicants in the network resulting from the time-aggregated data, spanning all available timeline (squares:
the network of applicants, isolated nodes excluded, disks: the GC of the network). US and JP play a significant role in the EPO applicants network.
JP persistently contributes to the network’s coherence.

Fig. 10 complements the findings of Fig. 8 and 9 regarding JP as it corroborates the crucial part that it plays in the core of the
EPO patents network. Unlike the US applicants that submit patent applications indiscriminately, JP applicants principally participate
in patent collaborations that contribute to the GC of the network.

3.4. Are the major patent-contributors more likely to participate in a critical patent?

Last but not least, we explored the question of whether the likelihood of participating in a critical patent increases with the total
amount of patents that an applicant contributes to the network or with its size. The latter is also related to the firm size vs. innovation
output problem (Schumpeter, 1934; 1942) (see Introduction).

To this end, we ranked the applicants with respect to their overall patents production, over several time-windows distributed in
the 35-year timeline and assessed the relative position of applicants participating in the critical-patents. Thus, for each time-window,
we brought the network into the percolation threshold state and determined the percentage of the patents for all applicants having
filed at least one patent'? from the starting date of the time-window to the percolation threshold. For each time-window we calculated
the percentage p, for applicant a according to the formula:

patents filed by applicant a int,
Py = " A
fotal of patents filed int,

x 100 2
where 7, is the time elapsed from the starting date of the time-window to the date of the critical patent (percolation threshold). We

subsequently evaluated the applicants’ rank and percentile rank, according to their patent percentage, which are shown in Table 1
for the red-bond firms of nine representative time-windows in the data timeline.

10 All patents are included in this analysis, even those with only one applicant.
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Table 1
Rank and percentile rank according to patent percentage, for the red-bond firms of nine representative time-
windows in the data timeline.

year of time-window critical patent applicants rank percentile (%)
1978 applicant 1 17 99.75
applicant 2 115 98.30
1983 applicant 1 77 98.91
applicant 2 87 98.77
applicant 3 91 98.71
applicant 4 374 94.70
applicant 5 2044 71.02
1989 applicant 1 2 99.93
applicant 2 10 99.64
1993 applicant 1 38 90.28
applicant 2 521 99.64
1997 applicant 1 29 98.99
applicant 2 586 79.50
2000 applicant 1 189 96.60
applicant 2 584 89.49
2004 applicant 1 58 97.09
applicant 2 109 94.54
2007 applicant 1 5 99.80
applicant 2 249 90.01
2010 applicant 1 71 94.95
applicant 2 71 94.95

The firms in the top 1% were found to submit nearly half the patents (~ 48%) on average, yet, they participate in the red-bond
patents on an average of only ~ 24%. Therefore, we conclude that the top patent-producing applicants do not dominate the production
of red-bond links that bring the GC into existence and induce the network’s coherence, as one would expect, with respect to their
overall patent output. Our results suggest that the reason behind this discrepancy is that many of the firms in this category (the top
1%), have a low percentage of collaborative patents. Thus, the likelihood of them yielding a critical patent is reduced in spite of them
being highly productive on the whole.

Finally, the plausible assumption that the larger a firm’s size the more patents it is capable of producing (Tether, 2002) is overall
corroborated by our results, as the bulk of the top patent-producing applicants are large-sized ones. Additionally, the majority of the
red-bond applicants (Bosch, Toyota, Hitachi, Honda, Nissan, Phillips, to name a few) in this network are found to be large-sized firms,
regardless of their total patent output in each time-window.

These findings have further implications re the firm size vs. innovation-output debate (see Discussion).

4. Discussion

Overall, our results reveal that as the patent network evolves through time, the percolation threshold (on average) comes at shorter
times, requires fewer patents, features increasing inter-regional collaborations and increasing technological distance between the two
major groups of applicants involved. How do all these fit together?

It is plausible to presume that the basic underlying factor in this change is the rise in the inter-continental collaborations and
the resulting globalization, through the decades. Thus, in the early years - when advanced communication technologies were not
yet widespread - geographical distance was most likely hindering inter-continental collaborations and therefore the two groups were
segregated for many years until their eventual union. It is likely that this is the reason behind the high technological similarity
between the two groups as they were forced to function independently for long periods of time. During the transitional phase of the
middle years, a change develops that appears to mitigate the negative effect of distance on inter-continental collaborations. Therefore,
windows of shorter time and higher technological distance between the two groups start to emerge. Lastly, the shortest intervals to
percolation and higher technological distance are seen recurrently in late-years windows, when geographical interplay is at its highest.

This conclusion is in agreement with similar results found by studying patent collaborations with statistical methods (Guan and
Chen, 2012; Ma and Lee, 2008). A number of factors could be identified as plausible contributors to this globalization phenomenon,
such as the vastly available air-travel, the remarkable upsurge in the use of internet and various other socio-economic factors that
forced the applicants to reach out further to build complementing collaborative ties and meet the demands of an increasingly com-
petitive and fast-paced world.

Moreover, regarding the firm size vs. innovation-output debate, our results imply that large firm size favours innovation activities.
First, the assumption that the top patent-producing applicants are also likely to be large-sized ones (Tether, 2002) was corroborated
by our analysis. Second, the majority of the red-bond applicants (Bosch, Toyota, Hitachi, Honda, Nissan, Phillips, to name a few)
in this network were found to be large-sized firms regardless of the total amount of patents they contribute in each time-window.
Since a patent is in itself an innovation output indicator and furthermore, the critical bonds of a network are believed to correspond
to a highly innovative events (Bettencourt et al., 2009), we infer that in the EPO patents network, it is the large-sized applicants
(irrespective of the magnitude of their total patent contribution) that are most likely to introduce radical innovation. Therefore
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our findings are suggestive of a positive correlation between size and innovation output, as in the majority of the studies reviewed
in Becheikh et al. (2006), as well as in Schumpeter (1942); Tether (1998).

Lastly, the striking presence of Japan in the EPO patent network should not go unnoticed. In all time-windows examined, the
Japanese applicants make up a significant portion - nearly half - of the GC, at the moment of its emergence, i.e. at the percolation
threshold (Fig. 8). Furthermore, the fact that Japan seems to forge strategic alliances that are key to the network’s coherence also
surfaced in two more of our findings. Firstly, Japan’s participation in the static, time-aggregated network never exceeds 10% (see
Fig. 10 and Fig. 17), while it reaches 25% in its GC. Secondly, an abundance of Japanese applicants (Toyota, Hitachi and subsidiaries,
Honda, Nissan, Ube industries, JSR corporation, Riken, the National Institute of Advanced Industrial Science And Technology etc.)
consistently appear in red-bond patents, namely the patents that induce the GC emergence. Interestingly enough, judging from the
type of activities of these companies and from the red-bond patents themselves, it appears that they are all related, in one way
or another, to the automobile industry. Thus, we believe that the automobile industry has played a crucial part in the EPO patent
network and consequently to the introduction and - even more so - to the diffusion of innovation.

5. Conclusions

After identifying the existence Giant Component (GC) as key to the diffusion and promotion of innovation procedures, we posed
the following questions:

e Does the GC exist in every snapshot and if yes, how long does it take to form?
¢ Do the conditions the GC’s formation change over time?
- Do the technological areas of the patents influence the GC’s formation?
- Does the geographical origin of the applicants influence the GC’s formation?
¢ Are the major patent contributors (large-sized applicants) more likely than the ones with medium to small contributions
(small/medium-sized applicants) to produce a critical patent?

To explore these questions, we performed a temporal analysis, on the patent applicants’ collaboration network derived from the
REGPAT patents data, which span 35 years, from year 1978 (June) to 2013 (July). Specifically, we studied the network over a
collection of time-windows, which allowed us to exploit the whole timeline of 35 years and study the evolution of the applicant’s
collaboration network dynamically, instead of limiting the investigation to the aggregated, static network. This approach enabled us
to open up multiple windows of observation onto the system’s evolution, with starting dates distributed throughout the timeline. We
focused our analysis on the GC, and specifically on certain characteristics of its formation, i.e. the network’s percolation, in multiple
time-windows. This analysis, uncovered evidence of qualitative and quantitative differentiations of characteristics such as, the amount
of time/patents required for percolation, the technological similarity and the geographical overlap of the major groups of applicants
which make up the GC and the abruptness of the percolation transition. All these aspects of the GC formation are found to change in
time in a way that is suggestive of a three-regime division of the timeline.

Specifically, during the first period (ca. 1978-1987, early-years), we observe clear-cut percolation transitions, in which the two
largest, separately growing components are merged abruptly into the network’s GC. The groups of applicants represented by these two
components are found to exhibit high technological resemblance, based on the IPC codes of their corresponding patents. Furthermore,
in all early-years windows, the two groups are almost completely geographically segregated into two regions, EU (principally FR and
DE) and JP, with a very small, but nonetheless measurable US fraction of applicants being present in both communities. Moreover,
this period is marked by the highest amounts of time/patents required for the GC formation.

During the second period (ca. 1987-1995, middle years), there is a shift in the percolation transition process, in many windows. In
such windows, the transition appears to be shorter in time, more gradual and less striking. Overall, during this period, the two groups
of applicants that make up the GC are more complementary and less similar technologically, and begin to exhibit some geographical
overlap. Specifically, the community comprising mostly JP applicants, starts to welcome collaboration with both the EU and the US,
however, the respective EU community still remains mostly detached. Additionally, the amounts of both time and patents required
for the GC formation lessens, on average.

In the third period (ca. 1995-2013, late years), even more windows display the less-abrupt, less outstanding percolation transition
behaviour. Overall, it is the period in which the two groups of applicants demonstrate the greatest technological distance, as well as
the greatest geographical overlap. There is a notable rise in both frequency and intensity of collaborations between Europe, Japan and
the US, in both groups. Furthermore, in this period the windows displaying the least amount of time/patents required for percolation
have become recurrent.

Moreover, our results indicate that top patent-producing applicants are likely to yield a critical patent, however at a rate signif-
icantly lower than their overall patent production. Additionally, the top patent-producing applicants are predominantly large-sized
firms, supporting the assumption that the largest the firm size the more patents it is capable of producing (Tether, 2002). Finally,
the red-bond applicants (Bosch, Toyota, Hitachi, Honda, Nissan, Phillips amongst others) are also large-sized firms, notwithstanding
the amount of patents they contribute in each time-window. Therefore, regarding the GC formation and the network’s coherence, the
significant applicants are typically large-sized ones, but not necessarily amongst the top patent-producing.

Last but certainly not least, essentially all of our findings stress the vital importance of Japan to the GC of the EPO patent
network. Firstly, in all time-windows, one of the two major groups that join into the GC consists mainly of Japanese applicants.
Secondly, Japanese applicants make up one quarter of the static, aggregated network’s GC (while they constitute just 10% of the
whole network). Thirdly, Japanese firms and research institutes are found to systematically participate in red-bond patents. Toyota,
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Hitachi and subsidiaries, Honda, Nissan, Ube industries, JSR corporation, Riken, the National Institute of Advanced Industrial Science
And Technology among others are consistently featured in the critical patents.
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Appendix A. List of acronyms and abbreviations

DE Germany

EPO European Patent Office

EU Europe

FR France

GC Giant Component

IPC International Patent Classification

JP Japan

JPO Japan Patent Office

LCC Largest Connected Component

NUTS Nomenclature of Territorial Units for Statistics

OECD Organization for Economic Co-operation and Development
PCT Patent Cooperation Treaty

REST All countries except Japan, US and all European ones
SLCC Second Largest Connected Component

us United States

USPTO United States Patent and Trademark Office

Appendix B. The European Patent Office (EPO) patent application data

The theme of this study is to investigate the evolution of the collaborations resulting from - and in - any kind of innovation focusing
mainly on the European region. To this end, we employed the data set of patent applications (which may be granted, rejected or
withdrawn) to the European Patent Office (EPO) in order to build and study the characteristics of the EPO patent applicants’ network
through time. Patent applications data are more suited than granted patents data for this analysis.

The specific goals of the project involved gathering and processing certain pieces of information, such as: which applicants con-
tributed to which patent, the geographical origin of the applicants, the patent’s filing date and the corresponding technological areas
of the patent. This data was derived from a combination of the EPO-subsets of two distinct databases: a) the “OECD, REGPAT database,
July2014” and b) the “OECD, Triadic Patent Families database, July2014”.

The OECD REGPAT is a rich database which comprises two data sets: the set of patent applications to the EPO and those filed
under the Patent Cooperation Treaty (PCT). The Triadic database consists of patents filed at all three of the following patent-granting
organizations: the EPO, the United States Patent and Trademark Office (USPTO) and the Japan Patent Office (JPO), by the same
applicant, while referring to the same invention.

At first glance, the REGPAT database fits perfectly to the needs of this study, providing all the required information: a list of
all the applicants of each patent, regional data for each applicant, the patent filing and priority dates and information about the
technological areas of a patent, in the form of International Patent Classification (IPC) codes. However, the OECD REGPAT database
had two major limitations that we needed to address.

The first one is that the applicants are not uniquely identified. Each new entry is assigned a surrogate key derived by the combi-
nation of three fields: name, address and country code, which are entered by the applicant. Two entries, corresponding to the same
applicant, with the slightest difference in either one of these three fields - e.g. an extra comma - appear as two distinct applicants
in the database (Lissoni et al., 2010). Therefore, as multiple keys are very often assigned to the same applicant, a network derived
directly from this database would be very different than the real one. To find the unique applicants, we chose three fields of each
entry (name, address and NUTS code) as similarity indicators. Thankfully, the address and NUTS code of an applicant of the REGPAT
database are very reliable entries (Maraut et al., 2008).

We first prepared the database by applying preliminary cleaning procedures, such as removing corrupted or unwanted characters
and normalizing the text by replacing umlauts, accents, etc. Then, we separated the applicants into groups according to their country
code. For each applicant entry in a group, we calculated the Levenshtein distance of the three chosen fields with every other applicant
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entry. Whenever a pair of applicants scored lower than a certain threshold in all three distances, the applicants were considered to
be identical. By running the algorithm on a large number of random samples and carefully inspecting the results, we managed to
determine a threshold value that ensures avoidance of false positives. This procedure resulted in a remarkable reduction (~26%) in
the number of unique applicants.

The second limitation of the REGPAT database is that only the year of the patent filing and priority dates are explicitly provided.
This was a major drawback, as we wanted to perform a temporal analysis, which requires a fine date granularity. We managed to
successfully address this limitation by matching the EPO REGPAT patent set with the EPO TRIADIC patent set, which provides the
full filing and priority dates, and by taking advantage of the implicit time-stamp of the EPO application ID.

In particular, we implemented the following procedure: First, we matched the TRIADIC entries to the REGPAT entries, by using
the EPO application ID and appended the first priority date and the first EPO filing date of the TRIADIC entries to the REGPAT ones.
We also adequately cleaned the database of the patent families, by removing the non-prior members. Clearly, the TRIADIC EPO patent
set is a subset of the REGPAT one, therefore after this step there were REGPAT entries still left unmatched. We determined the date of
the unmatched entries by utilizing the fact that the EPO application ID is a seven digit serial number that holds implicit information
about the chronological order of the patents and that the first EPO filing date is more consistent with the date mentioned in the EPO
application ID than the first priority date.

Under these assumptions, we sorted all the entries - matched and unmatched - by two fields: the 11,546 matched first-EPO-filing
dates and their EPO application ID. The result was a database of chronologically sorted patents, with a mix of matched entries and
some sporadic blocks of a few unmatched entries. We inspected the distance between the consecutive sorted matched dates and
noticed that the vast majority of them were only one day apart. This was clearly a very satisfactory level of granularity, therefore
it was reasonable to consider the blocks of unmatched entries as having being filed on the same day of the last preceding matched
entry. The network was built using this order.

Appendix C. Confirmation of the percolation threshold

For random, static networks the percolation threshold can be determined by examining the size of the second largest cluster of the
network (Bunde and Havlin, 2012). Specifically, as nodes are continuously removed from the network, the size of the second largest
cluster varies, and it reaches a maximum at the percolation threshold, coinciding with the decomposition of the giant component
and the complete fragmentation of the network into a sea of small-sized clusters. This criterion has been repeatedly used as a means
to pinpoint the percolation threshold of real networks, including scale-free ones, such as the Internet (Karrer et al. 2014; Kawamoto
et al. 2015; Li et al. 2015b).

In growing (evolving) networks, percolation is regarded as the emergence of the giant component from the coalescence of dominant
clusters that grew out of an initial sea of small island clusters. In the evolving network of patents that we studied, there are always two
dominant clusters, the union of which marks the birth of the giant component. We regard the patent that joins these two major clusters
as the “critical” or “red-bond” patent. The giant component, once formed, quickly outgrows any other cluster in the system (Fig. 2
and Fig. 3). In order to pinpoint the red-bond patent, we follow the evolution of two largest clusters at any time-step, throughout the
timeline, as in Bettencourt et al. (2009); Liu et al. (2015); Liu and Xia (2015); Newman (2001a); Tomassini and Luthi (2007).

To confirm the validity of the red-bonds thus pinpointed, we employed the following criterion. The timeline is divided into two
regimes: one starting from the beginning of the timeline up until right before the critical point and the other from the critical point
up to the end of the timeline. We take snapshots of the evolving network, distributed in both areas, including one on and one exactly
before the criticality. These snapshots are static (equilibrium) networks, on which we can apply the method of the second largest
cluster size maximum, to determine the percolation threshold. Clearly, there should be a percolation threshold, p., denoted by the
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Fig. 11. Size of largest and second largest components, corresponding to snapshots of the growing network at points (a) below and (b) at and above
the addition of the red-bond bond patent.
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second largest cluster size maximum, for all snapshots in the second period. However, the second largest cluster should not have any
maximum in any snapshot of the first period. All previously pinpointed red-bonds in this study were validated using this method. In
all snapshots below the critical point, i.e. before the addition of the red-bond patent, both clusters grow continuously with p, Fig. 11a.
In contrast, the size of the second largest cluster increases until it reaches a maximum and then falls, in all snapshots at and above
the red-bond patent Fig. 11b. This method was also used in other studies involving growing networks (Do Yi et al., 2013; Li et al.,
2015a).

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.j0i.2021.101238.
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