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An electrostatics method 
for converting a time‑series 
into a weighted complex network
Dimitrios Tsiotas1,2,3*, Lykourgos Magafas3 & Panos Argyrakis3,4

This paper proposes a new method for converting a time-series into a weighted graph (complex 
network), which builds on electrostatics in physics. The proposed method conceptualizes a time-series 
as a series of stationary, electrically charged particles, on which Coulomb-like forces can be computed. 
This allows generating electrostatic-like graphs associated with time-series that, additionally to the 
existing transformations, can be also weighted and sometimes disconnected. Within this context, 
this paper examines the structural similarity between five different types of time-series and their 
associated graphs that are generated by the proposed algorithm and the visibility graph, which is 
currently the most popular algorithm in the literature. The analysis compares the source (original) 
time-series with the node-series generated by network measures (that are arranged into the node-
ordering of the source time-series), in terms of a linear trend, chaotic behaviour, stationarity, 
periodicity, and cyclical structure. It is shown that the proposed electrostatic graph algorithm 
generates graphs with node-measures that are more representative of the structure of the source 
time-series than the visibility graph. This makes the proposed algorithm more natural rather than 
algebraic, in comparison with existing physics-defined methods. The overall approach also suggests a 
methodological framework for evaluating the structural relevance between the source time-series and 
their associated graphs produced by any possible transformation.

The multidisciplinary nature of networks1–3 has introduced new directions in the time-series research that led 
to the emergence of the complex network analysis of time-series. This newly established research field showed 
a remarkable development, at a multidisciplinary level4, when scholars conceptualized5–7 that transforming a 
time-series into a graph can produce insights that are not visible by current time-series approaches. In general, 
studying the topology of a graph instead of the structure of a time-series promotes time-series analysis because 
it enlarges the embedding of the available information, from a first-order tensor (i.e. the time-series vector) 
into a second-order tensor (i.e. the graph connectivity matrix)8. Within this context, Zhang and Small7 were 
the first who constructed graphs from pseudo-periodic time-series, and Yang and Yang6 applied thresholds to 
the correlation matrix to convert it into a connectivity matrix. Xu et al.9 proposed a transformation for creating 
graphs from time-series based on different dynamic systems. Lacasa et al.5 built on the intuition of considering 
a time-series as a landscape and introduced a connectivity criterion based on visibility from optics physics. Gao 
and Zin10 proposed methods (i.e. flow pattern complex network, dynamic complex network, and fluid–struc-
ture complex network) to construct complex networks from experimental flow signals, and Donner et al.11 
introduced a recurrence method converting graphs from time-series based on the phase-space of a dynamical 
system. Amongst the existing methods, the natural visibility graph (NVG) or, in synonym, the visibility graph 
algorithm (VGA) of Lacasa et al.5 seems to prevail in the literature either in terms of citations, or in the number 
of applications12–14, or the number of derivative methods, such as the horizontal visibility graph of Luque et al.15, 
and the visibility expansion algorithm of Tsiotas and Charakopoulos8,16. The popularity of VGA can be either due 
to its intuitive conceptualization from optics physics, which makes comprehension and interpretation of results 
easier, or to its topological consistency to convert periodic time-series to regular graphs, random time-series to 
random graphs, and fractal time-series to scale-free graphs. However, this method builds on a binary connectivity 
criterion, which leads to the development of binary connections and thus to unweighted graphs5. Therefore the 
VGA is by definition restricted in generating visibility graphs that are disassociated from the numerical scale of 
the source (original) time-series.
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Aiming at serving the demand of promoting a weighted conceptualization in the complex network analysis 
of time-series, this paper introduces a method for converting a time-series into a weighted graph by using an 
electrostatics transformation algorithm based on Coulomb’s law. The proposed method is driven by a dual moti-
vation: the first builds on the example of the VGA5, which implies that physics-defined transformations can be 
more intuitive and easily comprehensive than the algebraic (or computational) ones. The second one is based 
on the universality of Coulomb’s inverse square law17, which grounded the development of essential research in 
electromagnetism but also inspired multidisciplinary research in economics18, urban and spatial planning and 
transport engineering19,20, biology21, geophysics22, computational23 and communication sciences24, etc. Within 
this multidisciplinary context, the proposed method conceptualizes a time-series as a sequence of stationary 
and electrically charged particles (nodes) and generates an electrostatic graph based on pair-wise calculations of 
Coulomb’s law across the time-series nodes. The Coulomb-like forces are assigned as weights in the connectiv-
ity matrix of the electrostatic graph and can be seen as a measure of relevance between two nodes, in terms of 
the sign, scale, and spatial proximity. This approach allows quantifying the interaction between the time-series 
nodes and thus to conceptualize the dynamics of a time-series through the effect of electrostatic forces applied 
between the nodes.

The remainder of the paper is organized as follows: Sect. 2 (methods) describes the proposed ESG algorithm 
and its modeling context, it introduces the node-series of network measures concept in the ESG, and it briefly 
describes the methods used for testing the performance of the proposed algorithm. Section 3 (Results) shows 
the results of the multilevel analysis testing the performance of the proposed algorithm in comparison with a 
well-established method of converting a time-series to a graph. Finally, in Sect. 4, conclusions are given.

Methods
The proposed ESG algorithm.  Let us consider a time-series X = {x1, x2,…, xn} with n∈ N number of nodes 
i∈ X, where each one has a real numeric value X(i) = xi∈ R . If we assume that every node i in the time-series can 
be seen as a static particle of electrical charge q(i)≡qi = xi, we can define an (either attractive or repulsive) elec-
trostatic force Fij applied between any pair of nodes i,j (Fig. 1), according to the inverse-square Coulomb’s law 
expressed by the relation17:

where qi and qj are the electrostatic charges of nodes i and j, dij is the intermediate discrete distance between 
nodes i,j that expresses steps of separation and is defined by the difference (i–j), and ke is the Coulomb’s constant.

This assumption allows considering a time-series X as a series of stationary and electrically charged particles 
(i.e. time-series nodes), on which we can compute a square matrix with the Coulomb-like forces F(X) = {Fij | 
i,j = 1, …, n}, according to the relation:

where dij = (i − j) and ke is the Coulomb’s constant17, which can be considered as a scale factor and in this paper 
is set to ke = 1.

The square structure of the F(X) matrix (with the Coulomb-like forces) can be seen as an electrostatic graph-
model ESG, where each element Fij ∈ R expresses the (attractive or repulsive) electrostatic force applied between 
any pair of nodes i,j. When it is important to note that the ESG is associated with the time-series X, we can sym-
bolize the electrostatic graph as ESG(X). In terms of graph theory25, F(X) is the weighted connectivity matrix 
of an undirected graph GESG(V,E), where V is the node-set and E is the edge-set. The weights (wij) in the ESG’s 
weighted connectivity matrix are equal to the Coulomb-like forces (wij = Fij) and can be seen as a measure of 
similarity between two nodes, in terms of the sign, scale, and spatial proximity. In particular, positive weights 

(1)Fij = ke ·
qi · qj
(

dij
)2

= ke ·
xi · xj
(

dij
)2

,

(2)(1)
qi=X(i)=xi⇔

ke≡1
F(X) = {F(X(i),X(j)) ≡ Fij =

xi · xj
(

i − j
)2

|i, j = 1, . . . , n},

Figure 1.   Example of the electrostatic graph (ESG) algorithm conceptualization. The volume of electrical 
charge (qi, i = 1,..,8) in each node is shown proportionally to the node size (xi, i = 1,..,8) of the time-series.
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(wij > 0) indicate that nodes i,j have homogeneous arithmetic signs, where negative cases (wij < 0) imply that they 
have heterogeneous signs. Also, high wij scores may imply either that nodes i,j are close in the time-series line, 
in terms of spatial proximity, or that they have relatively high arithmetic values or both. Within the context of 
the electrostatic conceptualization, the attraction expressed by a negative Coulomb-like force (wij = –Fij) can be 
seen as a tendency of the nodes to balance their heterogeneity and converge toward the horizontal axis, whereas 
the repulsion expressed by a positive force (wij =  + Fij) can be seen as a tendency of the nodes to escape from 
their homonymous electrostatic balance and thus to evolve (either increasingly or decreasingly) through time.

By definition, Coulomb’s law determines a field of infinite distance, where the electrostatic forces are noticed 
at infinity, although they are negligible. This property makes the ESG by default a fully connected (complete) 
graph Kn, namely a graph where all nodes are linked to any other. Provided that a complete graph Kn has a trivial 
topology, in terms of complexity (since the average degree is always 〈k〉 = n–1 and most of other metrics, such as 
average path length, network diameter, graph density, and clustering coefficient are equal to one), we filter the 
set E of the ESG connections, aiming to generate more complex topologies of electrostatic graphs. In particular, 
we consider a threshold Fc, defined within the interval Fc ∈

(

min
{

Fij
}

, max
{

Fij
})

 , so that the weighted con-
nectivity matrix WESG include those values that are equal or above Fc, as it is expressed by the relation:

where F(X) is the Coulomb-like matrix defined in relation (1). This filtering allows considering numerous elec-
trostatic graphs ESG(X), which are expressed as a function WESG = f(Fc) of the threshold-variable Fc. To introduce 
a reference value to the threshold-variable Fc, we define a typical value fz by the relation:

where n is the number of time-series nodes, �·� is the average operator, and sgn(·) is the sign (or signum) 
function26. In numeric terms, the fz filtering describes that non-zero elements of the weighted ESG’s connectiv-
ity matrix are those with values higher than the adjusted mean-value n

n−1 · �x� of the time-series X. In physical 
(electrostatic) terms, fz describes an electrostatic force that is n-times greater than this applied to a pair of particles 
with electrical charges qi, qj = 

√
|�x�|(i.e. equal to the square-root of the absolute mean-value of the time-series 

X), which are dij = 
√
n− 1 (i.e. equal to the square-root of the time-series length) steps of separation distant.

Within this context, the proposed ESG algorithm is implemented in four steps, as it is shown in Fig. 2. First, 
we compute the matrix F(X) of Coulomb-like forces, according to the relations (1) and (2). Secondly, we apply 
to F(X) the connectivity filter and compute the weighted connectivity matrix WESG, according to the relations (3) 
and (4). Thirdly, we manage the disconnected data (i.e. mainly the diagonal element yielding infinite computa-
tions due to zero distances included in the denominator) of F(X), by substituting “inf ” (infinite) values by zeros. 
Fourthly, we create the graph-layout of the ESG(X) based on the weighted connectivity matrix WESG.

According to the first four steps of the algorithm, we can generate the electrostatic graph ESG(X), which is 
associated with a time-series X and is an undirected and weighted graph with a non-trivial topology. In this graph 
model, we can further compute several network measures and metrics and thus reveal the topological properties 
of the ESG. Therefore, at the fifth and final step of the algorithm, we compute node-series of network measures 
of the ESG(X), and afterward, we compare their structural relevance with this of the source time-series X. The 
procedure is described in more detail in the following paragraphs.

Node‑series of network measures.  The electrostatic graph ESG(X) is a graph-model GESG(V,E) where 
each network node vi ∈ V is the same with a time-series node i ∈ X, namely vi≡i ∈ V,X. Therefore, for every node-
measure Y (e.g. node degree, local clustering coefficient, closeness, betweenness, and eigenvector centrality, etc.) 
of the ESG, we can arrange the scores Y(vi) = yi into the time-series X = {x1, x2,…, xn} ordering, and thus to 
configure node-series X(Y) = {y1, y2,…, yn} of the ESG network measures that are associated with the source 
time-series. This allows comparing the source time-series X with these of the ESG node-series X(Ys) and detect-
ing possible structural similarities that can be seen as a measure of relevance between the time-series and the 
ESG. The available network (node) measures that participate in the construction of the node-series are shown 
in Table 1.

In terms of notation, for a (source) time-series X = {x1, x2,…, xn}, where n∈ N and xi∈ R , we can write its 
associated node-series for the network measure Y as X(Y) = {Y(x1), Y(x2),…, Y(xn)} = {y1, y2,…, yn}. We can read 
that X(Y) is “the node-series of the network measure Y, which is computed for the ESG that is associated with 
the time-series X” or, in brief, that X(Y) is “the node-series of (the measure) Y for the ESG”. Within this context, 
we can compute the node-series for the measures of degree X(Y = k) = {k1, k2,…, kn}, strength X(s) = {s1, s2,…, 
sn}, clustering coefficient X(C) = {C1, C2,…, Cn}, betweenness centrality X(CB) = {CB1, CB2,…, CBn}, closeness 
centrality X(CC) = {CC1, CC2,…, CCn}, and eigenvector centrality X(CE) = {CE1, CE2,…, CEn}, according to the 
mathematical formulas shown in Table 1. Provided that we can generate a node-series for any graph G(X) that 
is associated with a time-series X, we can include a subscript index in the notation XG(Y) when necessary (e.g. 
XESG(k)) to denote the type of graph that the time-series is associated with.

The effect of the connectivity threshold on the ESG topology.  The connectivity threshold Fc that is 
applied to the Coulomb-like matrix, according to relation (3), is determinative for the configuration of the ESG 
topology. To illustrate this, let us consider the series X1:100 = {1, 2,…, 100} of the first hundred natural numbers. 
By applying to this series sequentially the connectivity thresholds Fc = 0, Fc = 1, Fc = 5, Fc = 10, Fc = 25, Fc = 50, 
Fc = fz, Fc = 75, and Fc = 100, we get various ESGs, as it is shown in Fig. 3.

(3)WESG = {Fij �= 0 ∈ F(X) : Fij ≥ Fc} ⊆ F(X),

(4)Fc(fz) = fz =
1

n− 1
·
∑

n

xn = n

n− 1
· �x� = n · sgn(�x�) ·

√
|�x�| ·

√
|�x�|

(√
n− 1

)2
,
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As it can be observed, the ESGs shown in Fig. 3 appear quite different in terms of graph density and node 
arrangement in the adjacency matrix. In particular, as the Fc becomes greater, the connectivity strip toward the 
main diagonal in the adjacency matrix becomes narrower, expressing each time a separate connectivity pattern. 
To examine whether and how the network topology is affected by changes in Fc, we compute a set of network 

Figure 2.   The methodological framework of the study. Steps #1–#4 describe the ESG algorithm generating an 
electrostatic graph from a time-series X = {xi | i = 1, …, 8}. Step#5 describes the process of generating secondary 
time-series from the network measures of ESG(X).

Table 1.   The node measures that are considered in the analysis 1,27-29

Measure Description Mathematical Expression

Node Degree (k) The number of edges being adjacent to a node i

ki = k(i) =
∑

j∈V
δij , where

δij =
{

1, if eij ∈ E
0, otherwise

Node strength (s) The sum of edge weights being adjacent to a given node i
si = s(i) =

∑

j∈V(G)

δij · wij ,

where wij = w(eij)

Local Clustering Coefficient (C) The number of a node’s connected neighbors E(i), divided by the number of the total triplets ki(ki–1) shaped by 
the node i C(i) = E(i)

ki ·(ki−1)

Closeness Centrality (CC) Total binary distance d(i,j) computed on the shortest paths originating from a given node i and having destination 
all the other nodes j in the network. This measure expresses the node’s reachability in terms of steps of separation

CC(i) = 1
n−1

·
n
∑

j=1,i �=j

dij = di

Betweenness Centrality (CB) Fraction of all shortest paths σ(i) including a given node i, to the number σ of all the shortest paths in the network CB(i) = σ(i)
/

σ

Eigenvector Centrality (CB)
Spectral measure expressing the influence of node i in the network. In the formula N(i) expresses the neigh-
borhood of node i, aij an element of the adjacency, xj the j-th component of the adjacency’s eigenvector with 
eigenvalue equal to λ

CE(i) = 1
�
·

∑

j∈N(i)

aij · xj
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measures and metrics (average degree 〈k〉 , clustering coefficient C, graph density ρ, modularity Q, average path 
length 〈l〉 , network diameter d(G), and the number of components) for a series of ESGs that are generated 
by applying connectivity thresholds ranging within the interval Fc∈[0, n2 = max{ X1:100}2 = 104]. This approach 
assumes that the network topology is collectively approximated by the set of available network measures, where 
each measure represents a certain topological aspect. The results of the analysis are shown in Fig. 4, where each 
network measure is expressed as a function of the connectivity threshold Fc.

Also, is evident that all network measures considerably fluctuate as the connectivity threshold Fc changes. 
The cases of average degree 〈k〉(Fig. 4a), clustering coefficient C (Fig. 4b), and graph density ρ (Fig. 4c) follow a 
declining pattern to the changes of Fc, the cases of average path length 〈l〉(Fig. 4e) and graph density d(G) (Fig. 4f) 
follow a bell-shaped pattern of negative skew (asymmetry), whereas the number of components (Fig. 4g) follows 
an increasing pattern. For the case of modularity Q (Fig. 4d), the performance of this measure appears consider-
ably invariant along the biggest part of the Fc’s interval. As far as the typical value fz is concerned, we can observe 
that this value cannot be related to border (i.e. min or max) distribution values, but it can be quite indicative of 
the average performance of the topological aspects of the ESGs. This indication can support the goodness of the 
choice of defining the typical fz value within a physical (Coulomb-like) context, as it is shown in relation (4).

Overall, this analysis shows that the choice of the connectivity threshold Fc can be determinative to the 
topological features and generally the topology of the resulting ESG. This observation is evident even by the 
examination of a simple linear series of natural ascending numbers, which can only be considered as an indicative 
approach for the ESG construction. However, even this simple consideration sufficed to highlight the dependence 
between the connectivity threshold and the ESG’s network topology and thus to introduce a methodological 
path for optimally defining the Fc value. The examination of the optimum or most representative threshold is 
a matter of specialized optimization analysis that introduces avenues of further research and falls outside the 
scope of this paper. However, the physically defined approaches, as this of the Coulomb-like definition of the 
Fc shown in relation (4), or others utilizing methods from other disciplines can become insightful toward this 
optimization direction and are suggested for further research promoting multidisciplinary conceptualization. For 
instance, further research on this topic can apply to different types of time-series and more thorough optimiza-
tion analysis in the choice of Fc. For the scope of this paper, the choice of the typical value fz for the connectivity 

Figure 3.   Sparsity (spy) plots of the ESGs that are associated with the series X1:100 = {1, 2,…, 100} and are 
computed for the connectivity thresholds Fc = 0, Fc = 1, Fc = 5, Fc = 10, Fc = 25, Fc = 50, Fc = fz, Fc = 75, and Fc = 100.
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threshold is considered satisfactory to provide a reference value that is representative of the average topological 
features of the ESGs.

Testing the performance of the ESG algorithm.  The analysis examines five different types of time-
series, as it is shown in Fig. 5. The first one (Fig. 5a) was extracted from AirPassengers30 and is a time-series with 
a linear trend (abbreviated: Xa≡AIR), including the monthly totals of US airline passengers for the period 1949 
to 1960 (144 cases). The second one (Fig. 5b) was extracted from LorentzTS31 and is a typical Lorentz chaotic 
time-series (Xb≡CHAOS) generated from the Lorenz differential equations, on standard values sigma = 10.0, 
r = 28.0, and b = 8/3. This time-series has a length of 1900 cases. The third one (Fig.  5c) was extracted from 
DEOK.hourly32 and is a part (the first 5000 cases) of a broader stationary time-series (of 57,739 cases) including 
estimated energy consumption, in Megawatts (MW), for the Duke Energy Ohio/Kentucky (Xc≡DEOK). Next, 

Figure 4.   . Line diagrams showing how the network measures of (a) average node degree 〈k〉 , (b) clustering 
coefficient C, (c) graph density ρ, (d) modularity Q, (e) average path length 〈l〉 , (f) network diameter d(G), and 
(g) number of components change as a function of the connectivity threshold Fc, for a series X1:100 = {1, 2,…, 
100}, where Fcrangeswithin the interval Fc ∈[0, max{ X1:100}2]. The bold vertical line represents the typical value fz 
defined at relation (4), whereas the dashed horizontal line a point estimate of the average y values.
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the fourth one (Fig. 5d) was extracted from Wolfer-sunspot-numbers33 and is a periodic time-series including 
Wolfer sunspot numbers (Xd≡SUNSPOTS), for the period 1770 to 1771 (280 cases). The fifth one (Fig. 5e) was 
extracted from Daily-minimum-temperatures-in-me34 and is a cyclical time-series including daily minimum 
temperatures in Melbourne, Australia (Xe≡TEMP), for the period 1981–1990 (3650 cases). Links to the time-
series databases are available in the reference list.

To examine the effectiveness of the proposed algorithm, we firstly compare the structure of the source time-
series X with its node-series XESG(Ys) of the ESG node measures (Ys). Such comparisons are driven by the 
rationale that the ESG is a transformation (conversion) of a time-series to a complex network and therefore 
possible similarities that can be detected in the structural properties (e.g. data variability, linear trend, chaotic, 
stationary, periodic, and cyclical structure) between the original time-series and its associated ESG node-series 
can be seen as aspects of homeomorphism describing this transformation. In general, this approach is expected 
to illustrate the level at which the topology of the associated electrostatic graph ESG(X) sufficiently incorporates 
structural information of the source time-series X. Secondly, we compare the structure of the XESG(Ys) node-series 
with this of their concordant node-series XVGA(Ys) of the node measures (Ys) computed in the visibility graphs 
defined by Lacasa et al.5. The comparisons between the source time-series and its associated node-series (either 
of ESG or VGA conversion) build on a multilevel analysis consisting of five tests; the first one detects similarities 
in data-variability (i.e. whether the original time-series and the node-series have the same fluctuation patterns) 
based on the Pearson’s bivariate coefficient of correlation35,36, the second one in linear-trend by using the Linear 
Regression (LSLR) fitting36, the third one in chaotic-structure based on the correlation dimension and embed-
ding dimension diagram37, the fourth one in stationary-structure based on the augmented Dickey-Fuller test 
(ADF) for a unit root 38, and the fifth one in periodic-structure based on autocorrelation function38. Each test is 
briefly described in the following paragraphs.

The visibility graph algorithm.  The natural visibility algorithm (NVG) was proposed by Lacasa et al.5 and 
builds on the intuition of considering a time-series as a path of successive mountains of different height, where 
each represents the value of the time-series at a certain time. In this time-series landscape, an “observer” stand-
ing on the top of a mountain can see (either forward or backward) as far as possible, provided that no other top 
obstructs its visibility field (Fig. 6).

In mathematical terms, each time-series node (ti, x(ti)) corresponds to a graph node i≡(ti, x(ti))∈ V, and thus 
two nodes i,j ∈ V are connected (i,j)∈ E in the visibility graph when the following inequality (NVG connectivity 
criterion) is satisfied:

(6)X(tk) < X(ti)+ (X(tj)− X(ti))
tk − ti

tj − ti
, ∀k ∈ (i, j),

Figure 5.   The source (reference) time-series considered in the analysis represent distinctive different patterns, 
where (a) is an air-passengers time-series with linear trend (Xa: 144 cases, including the monthly totals of a US 
airline passengers for the period 1949 to 1960), (b) is the typical Lorentz chaotic time-series (Xb: 1900 cases, 
created from the Lorenz equations, on standard values sigma = 10.0, r = 28.0, and b = 8/3), (c) is a part (Xc: 
5000 cases) of a broader stationary time-series including estimated energy consumption, in Megawatts (MW), 
for the Duke Energy Ohio/Kentucky, (d) is a periodical time-series (Xd: 280 cases, including wolfer sunspot 
numbers for the period 1770 to 1771), and (e) is a cyclic time-series (Xe: 3650 cases, including daily minimum 
temperatures in Melbourne, Australia, for the period 1981–1990).



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11785  | https://doi.org/10.1038/s41598-021-89552-2

www.nature.com/scientificreports/

where X(ti) and X(tj) are the numerical values of the time-series nodes (ti, x(ti))≡i and (tj, x(tj))≡j and ti, tj express 
their time points. In geometric terms, a visibility line can be drawn between two time-series nodes i,j ∈ V, if no 
other intermediating node (tk, x(tk))≡k obstructs their visibility. That is, two time-series nodes are connected in 
the visibility graph whether no other intermediary node is higher so that to intersect the visibility line defined 
by this pair of nodes (Fig. 6). Therefore, two time-series nodes can enjoy a connection in the associated vis-
ibility graph if they are visible through a visibility line. The visibility algorithm conceptualizes the time-series as 
a landscape and generates a visibility graph associated with this landscape. The associated (to the time-series) 
visibility graph is a complex network where complex network analysis can be further applied8,16.

Correlation analysis.  At the first step of the analysis, we detect linear correlations between the source time-
series X and the available (ESG and VGA) node-series. This approach examines whether the original time-series 
X and the node-series {Xi(k), Xi(s), Xi(C), Xi(CB), Xi(CC), and Xi(CE) | i = ESG,VGA} have the same fluctuation 
patterns and thus they can be considered as relevant in terms of data variability. In this analysis, the Pearson’s 
bivariate coefficient of correlation35,36 is used, which ranges at the interval rX,Y ∈[–1,1] and detects linear (either 
positive or negative) correlations when |rXY | → 1.

Test of the linear trend.  To detect a linear trend, we apply linear fittings to the source time-series X and 
to its associated node-series { Xi(k), Xi(s), Xi(C), Xi(CB), Xi(CC), and Xi(CE) | i = ESG,VGA}. According to this 
approach36, a linear curve ŷ = b · f (x)+ c is fitted to the available data that bests describes their variability. The 
curve fitting algorithm estimates the parameters b, c minimizing the square differences yi − ŷi

36, according to 
the relation:

where yi express the observed and ŷi the estimated values. The optimization method that is used is the Least-
Squares Linear Regression (LSLR) method36, which assumes that the differences e =

n
∑

i=1

[

yi − ŷi
]2 follow the 

normal distribution e ~ N(0,σ 2
e  ). The goodness of the model fit is measured by the coefficient of determination 

R2, which is defined by the expression35,36:

where y is the average of the observations and n is the number of cases (i.e. the series length). The coefficient of 
determination expresses the amount of variability of the response variable that is expressed by the linear model 
and ranges within the interval [0,1], indicating perfect linear determination when R2 = 135,36. Within this context, 
amongst the ESG and VGA node-series, those being closer to the source time-series X in determination and 
model configuration (i.e. values in b and c estimators) are considered as more relevant to X in terms of linear 
trend.

Detection of chaotic structure.  To detect chaotic structure in a time-series, we examine the patterns of 
the correlation (v) versus the embedding dimension (m) scatter plots (v,m). According to the Chaos theory37, 
the correlation dimension (v) is a measure of the dimensionality of the space occupied by a set of random points 
and thus is used to determine the dimension of the fractal objects, which is often called fractal dimension. For a 
time-series X = {xi | i = 1, …, n}, the correlation integral C(ε) is calculated by the expression39,40:

where N(ε) is the total number of pairs of time-series points (xi, xj) with a distance smaller than ε, namely 
d(xi,xj) = dij < ε. As the number of points tends to infinity (n → ∞), and therefore as their corresponding distances 

(7)min

{

e =
n

∑

i=1

[

yi − ŷi
]2 =

n
∑

i=1

[

yi −
(

∑

bifi(x)+ c
)]2

}

,

(8)R2 =
(

∑n

i=1

(

ŷi − y
)2
)/(

∑n

i=1

(

yi − y
)2
)

,

(9)C(ε) = lim
n→∞

N(ε)

n2
∼ εv ,

Figure 6.   (left) Example a pair of visible (shown in blue colour) and another of not visible (shown in red 
colour) time-series nodes (generally shown in green colour) defined according to the natural visibility algorithm 
(NVG), (right) the visibility graph generated from the time-series shown at the left side.
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tend to zero (dij → 0), the correlation integral tends to the quantity C(ε) ~ εv, where v is the so-called correlation 
dimension. Intuitively, the correlation dimension expresses the ways to which the points can be close to each 
other along different dimensions and is expected to rise faster when the space of embedding is of a higher dimen-
sion. Therefore, the correlation (v) versus the embedding dimension (m) diagram (v,m) can provide insights into 
how the time-series points are close to each other, as the dimensionality of the space of embedding increases39,40. 
Within this context, amongst the ESG and VGA node-series, those with the (v,m) diagram being closer to the 
source time-series X are considered as more relevant to the original time-series, in terms of chaotic structure.

Detection of stationarity.  To detect stationarity in the available series we apply the augmented Dickey-
Fuller test (ADF) for a unit root 38. The ADF algorithm examines the null hypothesis (Ho) that a unit-root is 
present in the model’s time-series data, which is expressed by the relation:

where Δ is the differencing operator (Δyt = yt − yt−1), p is the number of lagged difference terms (specified by the 
user), c is a drift term, δ is a deterministic trend coefficient, φ is an autoregressive coefficient, βi are the regression 
coefficients of the lag differences, and εt is a mean zero innovation process. According to Eq. (10), the unit-root 
hypothesis testing is expressed as follows38:

and the (lag adjusted) test statistic DF is defined by the expression38:

where the uppercase symbol ‘^’ expresses an estimator. Within this context, amongst the node-series of ESG and 
VGA, first those satisfying the null hypothesis and then those that have more similar DF statistics with the source 
time-series X are considered as more relevant to the original time-series, in terms of stationarity.

Detection of periodicity and cyclical structure.  To detect periodicity in the available time-series we 
use the autocorrelation function (ACF), which is defined as:

where (s,t) are time points and γx(s,t) is the autocovariance function of the variable x38. In general, the ACF 
measures the linear predictability of the series at time t by using only the value xs (at time s) with a time-lag 
dt = t − s. The ACF lies within the interval − 1 ≤ ρ(s,t) ≤ 1, where positive coefficient values imply a positive linear 
trend and negative values a negative one. Based on the ACF, we construct a set of ACF-variables, where the first 
refers to the source time-series X and the others to the node-series Xi(k), Xi(s), Xi(C), Xi(CB), Xi(CC), and Xi(CE), 
where index i can be either i = ESG or VGA. Each variable includes 30 elements corresponding to ACFs of lag 
dt = 1,2,…,30, respectively, namely:

By constructing these ACF-variables, we compute the Pearson’s bivariate coefficient of correlation35,36 to detect 
linear correlations between the ACF(X) variable of the source time-series X and the other node-series variables. 
Within this context, amongst the available ESG and VGA node-series variables, those being higher correlated 
with the source time-series X are considered as more relevant to the original time-series in terms of periodicity 
and cyclical (i.e. periodic with a constant oscillation height) structure.

Results
Spy plots and graph layouts.  The spy plots and graph layouts of the ESG(X) and VGA(X) graphs associ-
ated with the time-series X are shown in Fig.A1-A5 (in the Appendix). The spy plots are matrix-plots displaying 
with dots the non-zero elements of the adjacency matrix and they can thus represent the graph topology within 
the matrix-space3,41. On the other hand, network visualization is implemented by using the “Force-Atlas” layout, 
which is available in the open-source software of Bastian et al.42. This layout is generated by a force-directed 
algorithm, which applies repulsion strengths between network hubs while it arranges hubs’ connections into 
surrounding clusters. Graph models that are represented in this layout have therefore their hubs centered and 
mutually distant (i.e. intermediate distance between hubs is the highest possible), whereas lower-degree nodes 
are placed as closely as possible to their hubs3.

As it can be observed in Fig.A1 (Appendix), the ESG(Xa) spy plot has a connectivity pattern configuring a tie 
(along the main diagonal) of increasing width (Fig.A1.a,c, Appendix), which appears indicative of the increasing 
trend of the source time-series (Xa = AIR). An aspect of such trend is also evident in the chain-like ESG(Xa) graph 
layout (Fig.A1.e, Appendix), where a cluster of hubs appears on the right side that resembles the tie configuration 
shaped in the spy plot. Also, the saw-like pattern of the source time-series appears smoother in the pattern of 
the 2d ESG(Xa) spy plot (Fig.A1.a, Appendix), whereas is more evident in the diagonal arrangement of the 3d 
ESG(Xa) spy plot (Fig.A1.c, Appendix). On the other hand, the VGA(Xa) spy plot configures a periodic pattern 

(10)yt = c + δt + φ · yt−1 + β1 ·�yt−1 + · · · + βp ·�yt−p + εt ,

(11)Ho : φ = 1 vs.H1 : φ < 1,

(12)DF = N(
⌢

φ − 1)

(1−
⌢

β1 − ...−
⌢

βp)

,

(13)ρ(s, t) = γx(s, t)√
γx(s, s)γx(t, t)

,

(14)ACF(X) = {ρ(t, t + 1), ρ(t, t + 2), ..., ρ(t, t + 30)}.
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(Fig.A1.b,d, Appendix), where no linear trends are visible. This can be also observed in the VGA(Xa) graph layout 
(Fig.A1.f, Appendix), which shapes an almost symmetric hub-and-spoke pattern.

In Fig.A2, the ESG(Xb) spy plot configures a fractal-like tiling (Fig.A2.a, Appendix) illustrating a chaotic 
structure. Although such structure in the ESG(Xb) graph layout (Fig.A2.f, Appendix) is not that clear, we can 
observe two major components composing the electrostatic graph of Xb (Lorentz time-series). This is a result 
of the positive and negative values in the structure of the source time-series (Xb), illustrating the ability of the 
electrostatic graph (ESG) algorithm to generate disconnected graphs1,41,27. Although connectivity is generally 
a desirable property in complex networks, the ability of the ESG algorithm to generate disconnected graphs 
can be insightful for removing past or unnecessary information (noise) of the time-series, therefore proposing 
avenues for further research. On the other hand, the VGA(Xb) graph layout (Fig.A2.f, Appendix) better illustrates 
a chaotic structure than its spy plot (Fig.A2.b,d Appendix) does, which is more illustrative to a periodic than to 
chaotic structure.

Next, in Fig.A3 (Appendix) the ESG(Xc) spy plot (Fig.A3.a,c, Appendix) configures a tie (along the main 
diagonal), with an almost constant width, which complies with the stationary structure of the source time-series 
(Xc = DEOK). Some evidence of stationarity can be also observed in the concentrated (solid-like) pattern of the 
ESG(Xc) graph layout (Fig.A3.e, Appendix). On the other hand, neither the VGA(Xc) spy plot (Fig.A3.b,d) nor 
graph layout (Fig.A3.f, Appendix) are illustrative of a stationary structure describing the original time-series (Xc).

In Fig.A4 (Appendix), the ESG(Xd) spy plot also configures a tie (along the main diagonal) with repeated 
knot-concentrations (Fig.A4.a,c, Appendix), which complies with the periodic structure of the source time-series 
(Xd = SUNSPOTS). Some insightful indications of such periodicity can be also observed in the clustered (torus-
like) pattern that is shown in the ESG(Xd) graph layout (Fig.A4.e, Appendix). On the other hand, the VGA(Xc) 
spy plot (Fig.A4.b,d, Appendix) has an interesting periodic pattern, which is slightly mixed by the square areas 
of the other connections. However, the VGA(Xd) graph layout (Fig.A4.f, Appendix) does not appear illustrative 
of the periodic structure describing the source time-series (Xd).

Finally, the ESG(Xe) spy plot configures a tie (along the main diagonal) with repeated slightly thicker segments 
(Fig.A5.a,c, Appendix), which can relate to the cyclical structure describing the source time-series (Xe = TEMP). 
However, such cyclical structure is almost hidden in the chain pattern of graph components that have an odd 
arrangement in the ESG(Xd) graph layout (Fig.A5.e, Appendix). Periodicity can become clearer whether the 
layout will be further stretched to succeed symmetric arrangement similar to this of Fig.A4.e (Appendix). On 
the other hand, the VGA(Xc) spy plot shapes a clearer periodic pattern (Fig.A5.b,d, Appendix), which (although 
difficult) can be observed in the graph layout (Fig.A5.f, Appendix). Overall, the proposed ESG algorithm appears 
at least as capable as the VGA is in generating graphs of topologies representative of their source time-series. 
This observation will be also quantitatively tested in the following sections.

Correlation analysis.  To compare patterns in data variability between the source and the ESG and VGA 
node-series (see Fig. A6-A10, Appendix), we apply a Pearson’s bivariate correlation analysis, the results of which 
are shown in Table 2. Amongst the available correlation coefficients, we compare concordant pairs (r(X,XESG(z), 
r(X,XVGA(z)|z = k, C, CB, CC, and CE) between ESG and VGA node-series and we denote pairwise maxima 
(max{(r(X,XESG(z), r(X,XVGA(z)}) in bold font. Cases with the XESG(s) node-series are paired with those of cor-
responding degree XVGA(k), due to the similarity of the measures of node degree (k) and node strength (s), for 
the binary and weighted networks. Within this context, according to Table 2, in the case of the Xa time-series, 
the variability of the ESG node-series is overall closer to this of the source time-series (Xa) than the variability of 
the VGA node-series overall is, because the ESG node-series count 5 out of 6 maxima, whereas the VGA node-
series count just one. This observation implies that the ESG transformation generates graphs that better preserve 
fluctuations with a linear trend of the original time-series than the VGA does. On the contrary, in the case of 
the chaotic time-series (Xb), the VGA node-series count 5 out of 6 maxima (a double count is given for the k,s 
pair), whereas the ESG node-series count just one. This observation implies that the VGA transformation better 
preserves chaotic fluctuations of the original time-series than the ESG does.

In the case of the Xc (DEOK), the ESG node-series count 4 out of 6 maxima, whereas the VGA node-series 
count 2 out of 6, which implies that the ESG transformation better preserves stationary fluctuations of the original 
time-series than the ESG does. In the case of the Xd (SUNSPOTS), the ESG node series count 5 out of 6 maxima, 
whereas the VGA node-series count just one, which implies that the ESG transformation better preserves peri-
odical fluctuations of the original time-series than the VGA does. In the case of the Xe (TEMP) both the ESG 
and the VGA node-series count 3 out of 6 maxima, showing a balanced performance. As far as the measure of 
strength (s) (see Fig. A11, Appendix) is concerned, the analysis shows that, for all types of time-series except 
the chaotic one (Xb, CHAOS), the ESG node-series have higher performance than the VGAs. Overall, this pair-
wise consideration illustrates that the variability of ESG node-series is closer to the source time-series (Xi) than 
of the VGAs, since the first count 18 out of 30 maximum cases, whereas the latter count 12 out of 30 maxima.

Test of the linear trend.  The test of the linear trend was applied to ESG and VGA node-series associated 
with the Xa (AIR) time-series, which is a time-series with a known linear trend. The results of the analysis are 
shown in Table 3, where first it can be observed that the source (Xa: AIR) time-series is well described by a linear 
regression model (R2 = 0.8536). However, none of the VGA node-series can sufficiently retain this linear struc-
ture, as is evident by the low coefficients of determination ranging from R2 = 0.0002 to R2 = 0.0132.

On the contrary, the ESG node-series of degree XESG(k), strength XESG(s), and eigenvector centrality XESG(CE) 
have a considerable linear structure, as is denoted by their respective coefficients of determination R2 = 0.6916, 
R2 = 0.8012, and R2 = 0.7579. It should be noted that among these cases, the strength node-series XESG(s) have the 
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highest determination. Overall, this analysis illustrates that the ESG algorithm appears more capable than the 
VGA in generating graphs that can preserve aspects of the linear trend of the source time-series.

Detection of chaotic structure.  In this part of the analysis, the correlation versus the embedding dimen-
sion diagrams (v,m) of the VGA and the ESGs node-series are compared for preserving the chaotic structure of 
the source time-series Xb (CHAOS), which is already known as a chaotic time-series constructed on the Lorenz 
equations. The results are shown in Fig. A7 (Appendix), where all (v,m) diagrams of the ESG node-series (except 
this of eigenvector centrality Xb,ESG(CE)) illustrate the chaotic structure, but of different characteristics than the 
source chaotic time-series Xb. However, the (v,m) diagrams of strength Xb,ESG(s) and the original time-series Xb 
almost coincide, a fact that implies a relevant chaotic structure between these time-series. On the other hand, 
the degree Xb,VGA(k), and possibly the eigenvector centrality Xb,VGA(CE) VGA node-series illustrate a chaotic 
structure of high dimensionality, which are also of different characteristics than the original chaotic time-series 
Xb. Overall, the chaos analysis shows that the ESG is a more capable transformation in incorporating the chaotic 
structure of the source time-series in the network topology. Particularly, the measure of strength shows the most 
relevant chaotic structure that almost coincides with this of source time-series.

Detection of stationarity.  The test of stationarity was applied to the Xc (DEOK) time-series, which is a 
part of an already known stationary time-series. The results of the analysis are shown in Table 4, where, first, it 
can be observed that is 7.03% likely for Xc to have a unit-root and thus to be a non-stationary time-series. This 
result implies that the null-hypothesis (stating a null unit-root) cannot be rejected, and thus that the source (Xc) 
time-series cannot be considered as a stationary one. As it can be observed, the results for all VGA node-series 
imply that all cases are statistically safe to be considered as stationary series, which opposes the indication of the 
original time-series.

On the other hand, the ESG results imply that 4 out of 5 ESG node-series cannot be considered as stationary 
ones and thus resembling the structure of the original time-series. An interesting observation here is that the 
p-values of the VGA node-series are (although insufficient indications to retain the null hypothesis) closer than 
those of the ESG node-series, in terms of distance. These results imply that the non-stationary effects, which 
are immanent in the source time-series, probably appear more intensely in the structure of the ESG node-series 
than of the VGA ones.

Detection of periodicity and cyclical structure.  This part of analysis builds on bivariate correlations, 
which are applied to autocorrelation variables ACF(X) that are defined in relation (14) with lag 1,2,…,30, where 
X = Xd (SUNSPOTS time-series), Xe (TEMP time-series), k (degree node-series), C (clustering coefficient node-
series), CB (betweenness centrality node-series), CC (closeness centrality node-series), and CE (eigenvector 
centrality node-series). The results of the analysis are shown in Table 5, where the correlation coefficients rXY 
and their significances are provided, with X∈ { ACF(Xd), ACF(Xe)} and Y∈{ACFi(k), ACFi(s), ACFi(C), ACFi(CB), 
ACFi(CC), ACFi(CE) | where i = VGA, ESG}.

Table 2.   Results of the Pearson’s bivariate correlation analysis. a k = node degree, C = clustering coefficient, 
CC = closeness centrality, CB = betweenness centrality, CE = eigenvector centrality. c. In pairwise consideration, 
XESG(s) is paired with the XVGA(k). c. 2-tailed significance. d. Number of cases. **Correlation is significant at 
the 0.01 level (2-tailed). Cases shown in bold indicate maximum coefficients (in absolute terms) between 
concordant ESG versus VGA pairs, max{r(X,XESG(z), r(X,XVGA(z)}. Underlined cases indicate max coefficients 
(in absolute terms) within each row (for each time-series type).

VariableXi(source time-series) Measure

VariableXij(z(a)) (node-series)

j = VGA j = ESG

z = k z = C z = CB z = CC z = CE z = k z = s(b) z = C z = CB z = CC z = CE

i = a (AIR)

r(Xi,Xij(z)) 0.331** -0.158 0.250** -0.232** 0.254** 0.805** 0.981** 0.358** -0.144 -0.359** 0.837**

sig.(c) 0.000 0.059 0.002 0.005 0.002 0.000 0.000 0.000 0.085 0.000 0.000

n(d) 144

i = b (CHAOS)

r(Xi,Xij(z)) 0.516** 0.019 0.188** -0.185** 0.201** -0.008 0.002 -0.022 0.020 0.103** -0.132**

sig 0.000 0.401 0.000 0.000 0.000 0.712 0.919 0.345 0.375 0.000 0.000

n 1900

i = c
(DEOK)

r(Xi,Xij(z)) 0.354** -0.570** 0.148** -0.140** 0.157** 0.890** 0.989** -0.549** 0.179** 0.088** 0.725**

sig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 5000

i = d (SUNSPOTS)

r(Xi,Xij(z)) 0.496** -0.666** 0.478** -0.567** 0.309** 0.768** 0.773** .b 0.593** 0.712** 0.733**

sig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 280

i = e
(TEMP)

r(Xi,Xij(z)) 0.437** -0.439** 0.211** -0.520** 0.164** 0.908** 0.944** 0.405** 0.123** -0.133** 0.752**

sig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 3650
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For the case of Xd (SUNSPOTS) time-series, we can observe that 4 out of 6 VGA node-series (k, k≡s, C, CE) 
and 3 out of 6 ESG node-series (k, s, CC) are significantly correlated with the original time series Xd. Amongst 
these significant results, the VGA node-series have 2 maxima of concordant pairs, whereas the ESG node-series 
have also 2 maxima. Moreover, the node-series of strength (Xd,ESG(s)) has the highest correlation coefficient 
amongst all available node-series for the SUNSPOTS (Xd) typology, illustrating a better performance of the ESG 
algorithm to preserve periodicity, probably due to its capability in generating weighted electrostatic networks. 
For the case of Xe (TEMP) time-series, 1 VGA node-series (closeness centrality) is significantly correlated with 
the source time-series, where all ESG node-series are significantly correlated with the original time-series. In 
terms of pairwise comparisons, the VGA node-series count 1 (out of 6) maximum case, whereas the ESG node-
series count 5 out of 6 maxima. However, although is high, the strength does suggest the highest of the maxima 
of the TEMP (Xe) time-series concordant pairs. Overall, this analysis shows that the ESG node-series appear 
more capable than the VGA ones in preserving periodic and cyclical characteristics of the source time-series.

Conclusions
This paper proposed a new algorithm, the Electrostatic Graph Algorithm (ESG), for converting a time-series 
into a graph (complex network). The ESG builds on the conceptualization of considering a time-series as a series 
of stationary and electrically charged particles, on which Coulomb-like forces can be computed. The proposed 
algorithm provides an added value to complex network analysis of time-series due to its ability to produce 
weighted graphs, which is currently not applicable. This additional property was quantitatively examined in this 
paper and was found to produce graphs that are more representative of the structure of the source (original) 
time-series, implying that the proposed algorithm suggests a transformation that is more natural rather than 

Table 3.   Linear regression fittings for the Xa (Air) time-series. Cases shown in bold indicate high (> 0.65) 
coefficients of determination. Underlined cases highlight the max coefficient, in total.

Time-series/ 
Measure

Linear regression

Mathematical expression Determination

xa (AIR) y = 2.6572x + 87.653 R2 = 0.8536

VGAs

k(xa) y = 0.0118x + 7.0629 R2 = 0.0096

C(xa) y = 0.0006x + 0.7174 R2 = 0.0132

CB(xa) y = 0.174x + 141.63 R2 = 0.0003

CC(xa) y = -0.0002x + 3.1682 R2 = 0.0002

CE(xa) y = 0.0001x + 0.2013 R2 = 0.0009

ESGs

k(xa) y = 0.2149x + 13.656 R2 = 0.6916

s(xa) y = 4813.4x – 62,583 R2 = 0.8012

C(xa) y = 0.0009x + 0.6969 R2 = 0.1985

CB(xa) y = -1.5134x + 315.61 R2 = 0.0663

CC(xa) y = -0.0106x + 4.6484 R2 = 0.2034

CE y = 0.0069x—0.1143 R2 = 0.7579

Table 4.   ADF test for stationarity of the Xc (DEOK) time-series. a h = 0 indicates failure to reject the unit-root 
null (indication: non-stationary series). h = 1 indicates rejection of the unit-root null in favor of the alternative 
model (indication: stationary series). b. Cases shown in bold are the closest between concordant measures to 
the source time-series scores.

ADF test

h(a) p-Value DFt (stat) cValue

xc (DEOK) 0 0.0703 -1.7876 -1.9416

VGAs

k 1 0.0010(b) -16.8555

-1.9416

C 1 0.0010 -8.8160

CB 1 0.0010 -63.9394

CC 1 0.0176 -2.3683

CE 1 0.0010 -28.4443

ESGs

k 0 0.2176 -1.1860

-1.9416

s 0 0.3876 -0.7177

C 0 0.3458 -0.8359

CB 1 0.0010 -20.2674

CC 0 0.1739 -1.3179

CE 0 0.2251 -1.1656
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algebraic, in comparison with the existing methods. In particular, the analysis showed that the ESG node-series 
can better preserve the linear trend and stationary structural properties of the source time-series in comparison 
with the VGA node-series and that they appear slightly better in preserving periodical and cyclical structural 
properties of the original time-series than the VGA node-series can. On the other hand, the VGA node-series 
appeared slightly better in preserving the chaotic structural properties of the original time-series in comparison 
with the ESG node-series, which complies with the claim of the VGA authors regarding the added value of their 
algorithm. However, in almost all the parts of the analysis, the ESG node-series of the measure of strength out-
performed their concordant VGA node-series. This result highlighted the added value of the proposed algorithm 
in generating weighted graphs, in which the measure of node strength can only be computed. Therefore the ESG 
algorithm attributes to the generated graphs information that is more representative of the source time-series, 
due to the weights included in the graph structure. Another property of the proposed ESG algorithm to generate 
disconnected graphs was indirectly examined by the detection of chaotic and periodic structures, where the ESG 
algorithm sufficed to provide disconnected graphs, whereas the VGA did not. This analysis showed that insuf-
ficient connectivity does not restrict the ESG node-series to preserve the structural characteristics of the source 
time-series, since the generated electrostatic graphs were representative of the structure of the original time-
series. The authors believe that the property of insufficient connectivity introduces avenues of further research 
in the field of noise reduction in the time-series analysis. Other avenues of further research can emerge towards 
the direction of either choosing the optimum or most representative connectivity threshold to produce the ESGs 
or examining the applicability of the proposed algorithm to solve problems where standard methods fail to ana-
lyze efficiently the time-series, such as the time evolution of stock price, within the framework of Black Scholes 
model, and others. The overall approach also suggests a methodological framework for evaluating the structural 
relevance between the source time-series and their associated graphs produced by any possible transformation.
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