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Abstract. In the present work we propose a model in which one may vary at will the critical threshold
pc of the percolation transition, by probing one candidate site (or bond) at a time. This is realised by
implementing an attractive (repulsive) rule when building up the lattice, so that newly added sites are
either attracted or repelled by the already existing clusters. We use a tuning parameter k, which is the
number of attempts for a site to be occupied, leading to a continuous change of the percolation threshold
while the new percolation process still belongs to the same universality class as the ordinary random
percolation. We find that by increasing the value of the tuning parameter k, pc decreases until it reaches
a minimum value where nucleation effects are now more pronounced than the percolation process. Such
results are useful for the explanation of several new experimental systems that have recently appeared.

1 Introduction

The percolation phase transition [1] has traditionally at-
tracted the interest not only of physicists, but of scientists
in practically all fields over the last five decades due to the
fact that it is a paradigmatic continuous phase transition.
Percolation models are used not only for their theoreti-
cal interest, but also because many physical and chem-
ical processes can be simulated using percolation theory,
for example characterisation of porous media, earthquake,
fracture and fault patterns, hydrodynamic behaviour in
ground water flow, and several more [2]. Additionally, be-
sides the basic simple model, several different variations
have been developed in recent years because of different
ways that experimental systems are prepared. This may
lead to different threshold values, and different character-
istics of the phase transition, including the question of
whether the transition is continuous or discontinuous.

We already know that different underlying lattices
have different percolation thresholds and furthermore, we
know that by varying the percolation process one can also
obtain phase transitions with not only different thresh-
olds but also with different characteristics, such as dif-
ferent universality properties. The explosive character of
the percolation transition [3] has recently succeeded in
capturing the interest of the scientific community in the
corresponding field. The initial idea included a 2-particle
probe method, which caused the critical point to be con-
siderably delayed. Thus, for a square 2D lattice the critical
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point moved from pc = 0.593 to pc = 0.755. This is due to
the fact that the probe method introduced by Achlioptas
et al. takes into account global information of the system
and strongly depends on the pre-existing system structure.
We use the same idea as the original Achlioptas probe
method, but instead of choosing the site that results in
the smaller product or sum of the joining cluster we now
choose exactly the opposite, i.e. we choose to keep the
probe site which results in the largest cluster and we dis-
card the other probe site. In the original model one fills
the system (lattice or network) by probing at random two
candidate sites (or nodes) to be occupied. We maintain the
one that minimizes the product of the sizes of the clusters
to which this site is about to connect, while the other one
is removed. The details for candidate sites maybe different
depending on the system used [3–5]. For example, in site
percolation in a two-dimensional (2D) square lattice there
is a maximum of four possible clusters that can be merged,
while in the original Achlioptas processes the newly added
bond may connect only two clusters to form a larger one.
However, such details do not affect the overall system be-
haviour. Obviously, this will result in a speed-up of the
critical point, i.e. the largest percolating cluster will now
appear earlier than in the conventional case. Indeed we
find that instead of pc = 0.593 we now have pc = 0.531.
Thus, the speed-up of the critical point gives the compli-
mentary case of the celebrated Achlioptas model.

A similar behaviour can be seen in different lattice
geometries and dimensionalities, as well as in networks,
where the critical point refers now to the creation of the
largest network component. Recent applications of the
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newly developed models include work where the proper-
ties of a single-walled nanotube bundle with uniform di-
ameter have been examined [6]. Another case refers to
real-world networks of scientific collaboration network [7],
and another is concerned with mobile telephone calls net-
work [8]. Biological applications include the emergence of
a spanning cluster in the human protein homology net-
work, which has features similar to a more abrupt tran-
sition and is markedly different from the classical case of
random percolation [9]. The above list is not exhaustive
but shows that the initial percolation model has histori-
cally advanced to new directions, requiring new theoretical
approaches and new models.

The delay in achieving criticality in the percolation
problem introduced in reference [3] has certainly attracted
considerable interest in recent years because it gives one a
method to vary the exact location of the critical point. Fol-
lowing this, a plethora of scientific works have been pub-
lished introducing variations of percolation phase transi-
tions by appropriately handling the conditions by which
the system is being built up or prepared [10–13].

The symmetrical case to the delay of criticality can be
achieved for the equivalent speed-up, by using an opposite
process. Recently, we showed [14] that by using a different
number of probe sites one can further vary to a consid-
erable extent the location of the critical point, showing a
well-behaved monotonic behaviour of the location of the
critical point as a function of the number of probe sites.
The question of how percolation systems depend on the
number of probe links has been studied on networks [15,16]
and on lattices [17–19]. In reference [15] Nagler et al.
working on Achlioptas processes showed how the compet-
itive addition of single links may drastically change the
macroscopic connectivity in networks, and in reference [16]
Riordan and Warnke explained that all Achlioptas pro-
cesses have continuous phase transitions. In reference [17]
the authors studied a variant of the percolation process in
lattices and arrived at the tricritical crossover exponent,
while in reference [18] Cho et al. showed that in the ther-
modynamic limit the phase transition can be either con-
tinuous or discontinuous depending on a control parame-
ter. Other works on lattices, such as [19] have investigated
the conductivity behaviour through a discontinuous bond
percolation model evolving under a suppressive external
bias. These findings showed that the conductivity func-
tion exhibits a smoothly increasing function beyond the
percolation threshold in the thermodynamic limit.

In a recent experiment [20–24] it has been found that
carbon nanotubes merging into clusters do not follow ran-
dom placement, but are amenable to an attractive field,
which cannot be explained by classical means. Towards
this direction, we introduce a different model for prob-
ing sites in a percolating system and we also introduce
an attractive field. We do this by adding only one site
at a time using a simple and reversible rule. Initially we
choose at random a site in a two dimensional lattice and
we investigate its nearest neighbourhood (the four nearest
neighbours of the chosen site). Then we decide to occupy it
only if it has at least one occupied nearest neighbour. The

newly added site is being attracted by its neighbour. If
the randomly chosen site has no neighbours at all then we
decide not to occupy it. In this case we randomly choose
another site and we occupy it regardless of the number
of its neighbours. This procedure promotes the attraction
between nearest sites and for this reason large clusters
merge faster than in the classical percolation case. This at-
tracting process results again in the early emergence of the
percolation threshold as largest clusters attract any newly
added site in the system with higher probability. We find
this speed-up in criticality produces a critical point pc that
may have value close to pc = 0.5 instead of pc = 0.593.
We have also evaluated the opposite process by promoting
the isolated sites and suppressing the emergence of large
clusters. In this case sites with no occupied neighbour are
preferred, and as expected a delay to criticality occurs.
The critical point now rises to pc = 0.610. This method
tunes the critical point below and above the one of clas-
sical percolation transition, which results in a behaviour
similar to the Achlioptas processes. Similarly, we calculate
the opposite process of [3], leading to the speed-up of the
appearance of the critical point, in order to compare the
two models.

Due to recent experiments mentioned ear-
lier [6–9,20–24], in principle, one could design a
percolation system with various critical threshold
values, by appropriately varying the number of attempts.
The idea described earlier constitutes one attempt
(k = 1), while we may vary the value of k (to any integer
or non-integer value) until we get a system with the
desired critical percolation threshold. Here we find that
with a single parameter (the number of attempts k),
the percolation threshold pc goes through a minimum.
Thus, one can vary the location of the critical point
in percolation systems at will by choosing only one
candidate site (bond) at a given time and by varying
just one parameter (k). The models proposed in this
work are important when preparing a new system with a
specifically needed percolation threshold. Because of the
variation of the underlying lattice one can only extract
a certain number of discrete critical values which are
unique for each topology, while in our model, tuning the
parameter k can result in continuous critical values.

2 Model description

We introduce two models, which are based on filling the
lattice by probing the local environment of the site to
be added; one using an attractive algorithm, and one
using a repulsive one. In the attraction model we start
initially with an empty 2D square lattice of linear size
L = 1000 sites. We start by probing one site of the lattice
at random and we occupy it only if this site has at least
one neighbour occupied. We consider that each site has
four nearest neighbours. If the chosen site has no nearest
neighbours occupied, we then choose at random another
site of the lattice without investigating whether or not
there are any occupied neighbours (random site percola-
tion) and we occupy it. We continue by probing a second
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site, and so on, and we repeat the same process as pre-
viously described. In the repulsion model we start again
with an empty 2D square lattice of the same linear size
L = 1000 sites and we probe a site at random. We then in-
vestigate the four sites that neighbour the candidate site
and we occupy the candidate site only if no neighbours
are occupied. On the other hand, if there is at least one
neighbour site that is occupied, we choose another site at
random and we occupy it. For both the attraction model
and repulsion model we continue until the lattice is fully
occupied.

We investigate four variations of the well known
Achlioptas processes [3]. We have reproduced the data for
site percolation product-rule and sum-rule and our results
are in excellent agreement with previous publications [4,5].
Here we extend both these models by promoting the cre-
ation of larger clusters instead of smaller ones. In order
to do this we first choose two candidate sites. We calcu-
late the product of the sizes of the clusters that are to
be merged for each candidate site separately. Then we
keep the site with the larger of the two products while
we discard the other one. This results in the critical point
appearing earlier than in normal percolation. Thus, in ad-
dition to the delay of criticality that was suggested by the
Achlioptas models, one may now speed-up the appearance
of the critical point.

These two models, the attraction and the repulsion
model, are expected to significantly change the location
of the critical point, which can conceivably be further
changed. This can be done by increasing the number of
attempts, for both the attraction and the repulsion mod-
els, which is expected to increase the level of speed-up
or delay of the critical point, respectively. To investigate
this we consider the same 2D square lattice of linear size
L = 1000 sites, but this time we introduce a parameter k
which is the number of attempts we apply until we find
a site which verifies the attractive rule or the repulsive
one, respectively. Thus, for k = 0 this corresponds to con-
ventional random site percolation. k = 1 gives the model
explained in the previous paragraph, where we have only
one attempt to search for occupied nearest neighbours be-
fore we probe a site of the lattice at random. k = 2 results
in two independent attempts. More specifically, in the at-
traction model we start again with an empty lattice and
we probe at random a site to be occupied. If this chosen
site has no nearest neighbours occupied, we probe another
site at random and we investigate again for occupied near-
est neighbours. That was the second attempt (k = 2). If
again no nearest neighbours are occupied we occupy a ran-
dom site in the lattice without checking its neighbours. It
is important to mention that if we find a nearest neighbour
occupied during the attempts, the process stops and a new
Monte Carlo step starts from the beginning. This proce-
dure can be extended to larger k values, and in principle,
even to non integer values. This is done, for example, by
using in one step k = 1, while using k = 2 in the next step,
and subsequently alternating these two values. We report
simulations with different k values for both the attraction
and the repulsion models.

Fig. 1. Plot of percolation strength (Pmax) as a function of the
density of occupied sites p for a 2D square lattice of linear size
L = 1000 for classical random site percolation (�), attraction
model (k = 1) (�), repulsion model (k = 1) (�). Sum-rule for
the delay of criticality (�), sum-rule for the speed-up version
(�). Product-rule for the delay of criticality (◦), and product-
rule for the speed-up version (•). The lines are optical guides.

3 Results

We monitor the percolation strength Pmax, which is the
probability of a given occupied site belonging to the
largest percolating cluster. Pmax is in the range 0 <
Pmax < 1 and it represents that part of the system that
has been occupied by the percolating cluster. Equation (1)
gives Pmax as a function of the density of occupied sites p

Pmax =
S1

pL2
, (1)

where S1 is the size (number of sites) of the largest cluster
of the system at density p, and L2 is the total number of
lattice sites.

In Figure 1 we give Pmax for seven different models.
These are the curves for attraction and repulsion methods
compared with the product and sum rule of Achlioptas
processes. We also plot the cases of enhancing the criti-
cal point of product and sum rules (reverse processes) in
order to compare them with the attraction model which
speeds-up the appearance of the spanning cluster. The
classical site percolation threshold is pc = 0.593 (full dia-
monds). The Achlioptas product (PR) and sum-rule (SR)
for the delay of criticality are shown with pc = 0.755 (open
circles) for PR, pc = 0.694 (open triangles) for SR. The
equivalent Achlioptas processes for the early emergence
of criticality now produce pc = 0.531 (full circles) for PR,
pc = 0.543 (full triangles) for SR. The critical threshold for
the attraction model is pc = 0.562 (red full squares) and
for the repulsive model is pc = 0.610 (red empty squares).
The values of these critical points can be deduced from
Figure 1 as the inflection point of the s-shaped curve.
This point is usually found in the middle of the steep rise
of the corresponding curve. In order to evaluate as accu-
rately as possible the position of the inflection point from
Figure 1, one can investigate the first derivative of Pmax.
We thus, calculate dPmax

dp for all seven cases, and we show
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Fig. 2. Plot of the first derivative ( Pmax
dp

) of percolation
strength as a function of the density of occupied sites p for
a 2D square lattice of linear size L = 1000 for classical random
site percolation (�), attraction model (k = 1) (�), repulsion
model (k = 1) (�). Sum-rule for the delay of criticality (�),
sum-rule for the speed-up version (�). Product-rule for the de-
lay of criticality (◦), and product-rule for the speed-up version
(•). The lines are optical guides.

the results in Figure 2. We observe that the peak of the
curvature of the first derivative gives the critical density
pc for each model. The values of pc for direct product-rule
and sum-rule as well as for the classical percolation are in
excellent agreement with previous publications [1,4,5,25],
while values for critical densities for the reverse processes
of product and sum-rule are now calculated here.

Table 1 illustrates the critical threshold for all seven
different models that are included in Figures 1 and 2. Fur-
thermore, we investigate the universality class of our new
continuous methods. The universality property is a gen-
eral property of second order phase transitions, where the
order parameter (here it is the size of the infinite cluster
S1) introduces an abrupt increase at the region near the
critical point. We calculate the universal critical exponent
which does not depend on the structural details (topology)
of the lattice or on the type of percolation (site, bond).
This exponent is the fractal dimension df . We also calcu-
late the correlation length critical exponent 1

ν . The two
exponents are uncorrelated and their calculation enables
us to define the universality class to which they belong.
We use the Finite Size Scaling property to extract this
information. In addition, we use a novel method that we
have recently published [26] and it concerns the estima-
tion of the critical quantities (pc,

β
ν , 1

ν ) via a minimization
procedure requiring low statistical sampling for the deter-
mination of the universality class. The results are shown
in Table 1.

Equation (2) shows the logarithmic relation of S1 to
the linear size of the lattice L around the critical point
(p ≈ pc)

S1(L)(p≈pc) ∼ Ldf . (2)

In order to calculate the correlation length critical expo-
nent 1

ν , we can use the scaling relation shown in equa-
tion (3). It is known [1] that for the infinite system
(L → ∞), the difference for each L, pc(L) − pc, scales

Table 1. The critical percolation threshold pc and the critical
exponents df and 1

ν
for all seven models simulated in this work.

The results are for site percolation transition on a 2D square
lattice.

Model pc df
1
ν

Classical percolation [1] 0.5927 1.8954 0.75
Attraction 0.5618 1.89 ± 0.02 0.75 ± 0.02
model (k = 1)
Repulsion 0.6100 1.89 ± 0.02 0.75 ± 0.02
model (k = 1)
Product rule (delay) 0.7554 1.98 ± 0.02 0.95 ± 0.02
Product rule 0.5315 1.89 ± 0.02 0.76 ± 0.02
(early emergence)
Sum rule (delay) 0.6942 1.99 ± 0.02 0.96 ± 0.02
Sum rule 0.5433 1.88 ± 0.02 0.74 ± 0.02
(early emergence)

with the system size as a power law function. Equation (3)
illustrates this logarithmic relation

|pc(L) − pc| ∼ L
1
ν . (3)

In order to identify both critical exponents df and 1
ν from

the scaling relations (2) and (3) one can assume the exis-
tence of two independent fitting parameters, df and pc for
equation (2), and 1

ν and pc for equation (3). This power-
law relation can be verified by tuning pc until a straight
line appears, as shown in Figure 3. The specific values of
pc and df or 1

ν which correspond to straight lines in Fig-
ures 3a and 3b are the resulting values for those quantities.

Figure 3a illustrates the scaling of the size of the largest
cluster at the critical point S1(p = pc) as a function of
L. The slope of the straight line gives the fractal dimen-
sion df , which for the classical random percolation is well-
known, and its value has been calculated (df � 1.8954) [1].
We observe that the slopes of the three straight lines in
Figure 3a have the same value (df = 1.89 ± 0.02). We
observe the same behaviour in Figure 3b. The slopes of
all three lines are almost identical ( 1

ν � 0.75). This il-
lustrates the fact that both the attraction and repulsion
models belong to the same universality class with random
percolation. In the present work we also extracted the crit-
ical exponents for all Achlioptas processes. The error bars
are due to the unusual finite size behaviour of the critical
exponents of this second order phase transition [27–29].
The results are shown in Table 1 and those which be-
long to the delay of criticality ensemble are in very good
agreement with previous publications [4,5,25,27,30]. Re-
sults that refer to the early emergence of the critical point
of Achlioptas processes have been newly calculated in the
present work.

One can see an interesting observation in Figure 1 in
that the curves for the attraction model and repulsion
model are not symmetric around the curve for the classi-
cal percolation. This is due to the fact that the rule that
we use is not exactly equivalent for both models. For very
low densities (p < 0.1) the majority of the newly added
sites are randomly distributed in the system for both mod-
els. There are many isolated sites and the majority of the
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(a) (b)

Fig. 3. Finite size scaling of the size of the largest cluster at the critical point S1(p = pc) (a) and the difference between pc(L)
and pc (b) as a function of the linear lattice size L for the attraction (red circles) and the repulsion (blue triangles) models in
log-log coordinates. Black squares are for the classical percolation case. The slopes of the straight lines give the fractal dimension
df and the correlation length critical exponent 1

ν
respectively. All curves at each plot have similar slopes, meaning that these

models belong to the same universality class.

(a) (b)

Fig. 4. The difference in the construction process between
attraction model (a) and repulsion model (b). White sites are
empty, black sites are occupied, whilst red ones are those with
at least one occupied nearest neighbour. There are more red
sites for a fixed number of black sites in the repulsion model.

system consists of empty space. In the attraction model
the newly chosen site is isolated most of the time and thus,
a new site is chosen to be occupied (random percolation).
In the repulsion model again we chose at random to oc-
cupy a site. Since it is more probable that there are no
occupied nearest neighbours, we occupy this specific site,
which at these low values of p, occurs most frequently in
almost every Monte Carlo step. Again, this procedure is
equivalent to random percolation. At higher density val-
ues but still lower than the critical, (0.1 < p < 0.5), in the
attraction model the system consists of small clusters. In
contrast, in the repulsion model the system is sparse (the
majority of occupied sites is isolated). As a result, when we
choose to occupy a site at random, in the attraction model
this site is attached to the clusters that already exist in
the system, while in the repulsion model, it is more likely
for each randomly probed site to have an occupied near-
est neighbour, and thus a new site is chosen at random.
This process leads to the random percolation process. In
Figure 4 we give a schematic of a lattice, where one can
easily see that for two occupied sites (black) there are six
sites with at least one occupied neighbour (red) in the

attraction model (left panel), while there are 8 of them in
the repulsion model (right panel). As a result, for a given
density of occupied sites p, there is a higher probability
of having random percolation in the repulsion model than
in the attraction model. In higher densities (0.5 < p < 1)
the system undergoes a phase transition and the majority
of sites are occupied. In this last state there are only a
few sites that are not occupied and the number of those
which are isolated (no nearest neighbours) becomes even
smaller. Thus, almost each new randomly chosen site is
directly occupied in the attraction model because newly
added sites are attracted by occupied neighbours. How-
ever, in the repulsion model, since the number of isolated
sites is almost zero, random percolation occurs again (be-
cause the probability of choosing an isolated site is very
small). Thus, at this point, repulsion and attraction mod-
els are both equivalent to the well-known random percola-
tion. The simulations (Fig. 1) and the qualitative approach
(Fig. 4) show that the rule for the attraction model and
the rule for the repulsion model are not exactly equiva-
lent during the percolation transition process. This is the
reason why the curves for these two models are not sym-
metric around the curve of classical random percolation.
This asymmetry still exists even for k values higher than
one (Fig. 5).

We obtain results with different k values for the at-
traction and repulsion models. We illustrate the results
for both models in the same plot, in Figure 5 which shows
the critical threshold pc for both attraction and repulsion
models and for different values of attempts k. We observe
that there is a minimum pc for the attraction model for
k ≈ 15. For k > 15 the speed-up for the attraction model
does not have any further effect and further increase of
the number of attempts k results again in higher values
of the critical point pc. The shape of the curve in Fig-
ure 5 with the minimum value for the delay of criticality,
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Fig. 5. The percolation threshold of sites pc vs. the number of
independent attempts k for attraction and repulsion models.
The attraction model is illustrated with empty squares whilst
the repulsion model is illustrated with full circles. The lines
are only optical guides. The blue dashed line indicates pc for
classical percolation. In the inset: critical density of sites pc

vs. number of attempts k to indicate the minimum and the
maximum of the two curves.

is quite unexpected, but it can be explained by the fact
that after this minimum value the newly added sites are
attracted to already existing clusters, with hardly any new
clusters being formed. No new clusters appear (or the rate
of appearance is limited). This is similar to crystallization
starting from active centers. Thus, the formation of the
infinite cluster which is spanning the entire system is de-
layed because there are a small number of clusters which
are growing simultaneously and need more time to grow in
all directions until they touch each other to form a larger
one. In the limit of k → ∞ there is only one nucleus that
grows. The larger the k value, the stronger the similarity
of the model to that of overall crystallization kinetics [31].
When a large number of attempts k are made most of the
newly deposited sites are attached to the already exist-
ing clusters (except for the initial stages). In a sense, at
this range the filling of the lattice is equivalent to a crys-
tallization process, which proceeds from an initially small
number of active centers.

4 Discussion and conclusions

In this work we have examined two different models of the
percolation phase transition, which depend on the method
used to fill the lattice sites. We used the direct and reverse
models of the well-known Achlioptas processes, using both
the product and the sum rule. The two new models are
based on the local environment of the site to be added, by
examining the occupancy of the nearest neighbours of the
probing sites. The attraction model promotes the merging
of sites to form larger clusters, whilst the repulsion model
(which is the reverse process) promotes the isolation of oc-
cupied sites. We located the exact position of the critical
density for all seven models that we have examined. We
compared the new findings with well known results, and
we found excellent agreement. Our results show that the

two new models belong to the same universality class as
the classical percolation transition. The advantage of this
method is that the new parameter k can now take not only
integer values but it is a continuously varying parameter,
effectively leading to continuously varying critical perco-
lation threshold values. We explained the asymmetry that
appears in the attraction and repulsion model around the
normal critical transition point. The models proposed in
this work can be implemented either in bond percolation
in lattices or in networks. The impetus for this work has
been the fact that one can vary the location of the criti-
cal point between a minimum and maximum value of the
p range, by varying the values of the building parame-
ters of the clusters. We find that the percolation threshold
pc goes through a minimum as k is increased. These re-
sults are very useful for several new experimental systems,
which have appeared recently, showing different values for
the percolation threshold. From Figure 5 one can conclude
that there is a minimisation in the reduction of the value of
the critical point, after which crystallization-like processes
take place in the system resulting in a not so pronounced
speed-up of the percolation process. This variation alone
may also be important when preparing a new system with
custom-made properties, which can now be tailor-made
according to the required specifications.
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