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Abstract – It has recently been suggested (Radicchi F. and Arenas A., Nat. Phys., 9 (2013)
717) that in a two-level multiplex network, a gradual change in the value of the “interlayer”
strength p can provoke an abrupt structural transition. The critical point p∗ at which this happens
is system dependent. In this article, we show in a similar way as in (Garrahan J. P. and
Lesanovsky I., arXiv:1406.4706) that this is a consequence of the graph Laplacian formalism
used in the above-mentioned paper by Radicchi and Arenas. We calculate the evolution of p∗

as a function of system size for ER and RR networks. We investigate the behavior of structural
measures and dynamical processes of a two-level system as a function of p, by Monte Carlo
simulations, for simple particle diffusion and for reaction-diffusion systems. We find that as p
increases there is a smooth transition from two separate networks to a single one. We cannot find
any abrupt change in static or dynamic behavior of the underlying system.

Copyright c© EPLA, 2015

Introduction. – In the past several years, single net-
works have been extensively studied [1–6] both regarding
their structure and also regarding different interactions be-
tween their nodes. In real-world systems, however, there
may be more than one type of relationship for the same
collection of objects constituting the network. Consider,
for example, the communication and power networks in a
given geographical region. In this case, a failure in some
power station will affect not only the functionality of the
power grid, but also the routing system for all comput-
ers that uses electrical power to sustain its functionality.
Thus, more recently [7], effort has been applied to the
so-called “interdependent” or “interconnected” networks,
meaning a system of two or more networks that are linked
together. Several articles have been published investigat-
ing the properties of these systems [7,8] as well as the
evolution of dynamical processes on them [9,10]. In their
simplest form, they consist of two single networks having
their nodes connected in a one-to-one configuration with
each “interlink” having the same strength p (in the range
of 0 < p < ∞). A first question of interest is how does
the variation of the parameter p affect the global struc-
tural properties of the entire system. To this end, one can

(a)These authors contributed equally to this work.

make use of the Laplacian matrix. According to graph
theory, given a graph of N nodes, the adjacency matrix A
is defined as

L = D − A, (1)

where D is a diagonal N × N matrix with the matrix ele-
ments dii equal to the vertex degree. The lowest eigenvalue
of this matrix λ1 is equal 0 in the case where the graph
is connected. The other eigenvalues contribute to the dy-
namical processes taking part on such a network (e.g. dif-
fusion, see [11]). The most important role is played by the
second smallest eigenvalue of the Laplacian, λ2, which is
known as algebraic connectivity [12].

Recently, the authors in [13] have used this technique
to investigate how the strength of the “interlinks” affects
the structural properties of a two-level multiplex network.
A multiplex network is a special case of interdependent
networks, where nodes at each layer are instances of the
same entity. The configuration they used consisted of two
coupled undirected networks each with the same number
of nodes N . Nodes in the fist network were connected
one-to-one with the nodes of the second network by links
of equal strength p. Thus, the number of interconnected
links is also N . Then, the so-called “supra-Laplacian”
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matrix acquires the form

L =

(

LA + pIN −pIN

−pIN LB + pIN

)

, (2)

where IN is the identity matrix of dimension N × N , LA

and LB are the Laplacians of networks A and B, respec-
tively. The blocks are symmetric matrices of dimension
N ×N (actually this procedure is equivalent to taking the
Laplacian matrix of the overall multiplex, but now it is in
a form which helps to understand the contribution of p).

The main finding of ref. [13] was that there is a critical
value of p, p∗, for which the “algebraic connectivity” (λ2)
of the system changes abruptly. For values of p < p∗, the
system behaves as two seperate networks, while for p > p∗

the system behaves like one single network. This happens
at a value of p for which dλ2/dp is discontinuous. This
discontinuity comes as a result of a crossing that occurs
between the eigenvalues of the supra-Laplacian. In plain
terms, above p∗ the ranking of the eigenvalues changes.
Thus, the eigenvalue that is initially the second smallest
for p < p∗, λ2, becomes larger than another eigenvalue
(λi) above p > p∗. This is manifested by a discontinuity
in the derivative of λ2 at p∗.

Very recently, Garrahan and Lesanovsky [14] have
raised objections at the interpretation of the findings
in [13]. They pointed out that the eigenvalue crossing
is only a consequence of the reducibility of the matrix and
they applied it for the case of two identical multiplexed
networks. The characteristic polynomial of the supra-
Laplacian matrix L (eq. (2)) is given by

∣

∣

∣

∣

∣

LA + pIN − λLIN −pIN

−pIN LB + pIN − λLIN

∣

∣

∣

∣

∣

= 0. (3)

If LA = LB , then

∣

∣LA − λLIN

∣

∣

∣

∣LA − (λL − 2p)IN

∣

∣ = 0. (4)

From eq. (4), either
∣

∣LA − λLIN

∣

∣ or
∣

∣LA − (λL − 2p)IN

∣

∣

should be equal to 0. For the former, we get λL
i = λLA

i

and for the latter λL
i = λLA

i + 2p. For a connected system

(such as network A), 0 = λLA

1 ≤ λLA

2 . . . ≤ λLA

N . Thus,
depending on the value of p, we may have the following
two cases: λL

1 = 0, λL
2 = λLA

2 , λL
3 = 2p or λL

1 = 0,
λL

2 = 2p, λL
3 = λLA

2 . Thus, for a suitable values of λLA

2

and p, we will have an interchange in the relative position
of λL

2 and λL
3 and the crossing observed in [13].

In the present work, we investigate the effect of the pa-
rameter p on various topological and dynamical properties
of a two-layered multiplex network. Specifically, we want
to uncover the nature of the p∗ transition, i.e. is it a
sharp, sudden transition or is it a smooth one. We calcu-
late numerically the “algebraic connectivity” with respect
to interlink strength for ER and RR networks of various
sizes using standard simulation techniques. We investigate
the evolution of static structural properties (mean shortest

path) and then we proceed with various dynamic processes
(simple diffusion and reaction-diffusion) to see if we can
infer the nature of any structural changes. Furthermore,
we investigate the behavior of algebraic connectivity as a
function of system size. We finish by presenting our main
conclusions.

Method. – We used two coupled networks of the same
size N and the same statistical properties, in a multiplex
configuration. The specifications of each configuration
are defined in the respective figure captions. In order to
specify the dynamical properties of the systems, we per-
form simple particle diffusion for a collection of particles
with excluded volume, and reaction-diffusion processes of
two types of particles (A + B model). These are per-
formed by standard Monte Carlo techniques using random
walks [15]. For both processes, we have two types of par-
ticles, A and B, initially placed in the two different layers,
one kind on each layer, with a prescribed density ρ. We
let the particles to diffuse. For the simple diffusion, we
calculate the cumulative number of collisions m between
the different types of particles. We estimate the value τcol,
which is the time when a certain total number of collisions
between different types of particles has occured. For the
reaction-diffusion process, where steady state condition is
imposed, we calculate the mean time required for ρN re-
actions to occur. In this model, A reacts with B, but
not with another A, and similarly for the B particles. We
should point out that when two particles react they are re-
moved from the system and two new particles (an A and
a B) are randomly placed on the layer that corresponds
to their type.

We also use the exact enumeration calculation for the
case of simple diffusion [16]. In the case of a random reg-
ular (RR) network, the system is symmetric. Thus, the
following set of mean-field recursive equations govern the
dynamics of the system:

fL1(t + 1) =
k

k + p
fL1(t) +

p

k + p
fL2(t),

fL2(t + 1) =
k

k + p
fL2(t) +

p

k + p
fL1(t), (5)

where fL1(t) is the state of every node on layer L1 and
fL2(t) the state of every node on layer L2. In each step t,
a node contributes a fraction of 1

k+p
fi(t) to each one of

its k neighbors on layer i and p
k+p

fi(t) to the correspond-
ing node on the other layer. We specify the time to reach
equilibrium (denoted as τenum) by solving for initial con-
ditions fL1(0) = 1 and fL2(0) = 0, and using the stopping
condition p

p+k
(fL1(t) − fL2(t)) < 10−6.

The situation is more complicated for the case of ER
networks, since they do not have a symmetric topology.
We consider the mirror case (identical layers), and focus
on a node with degree k. Denote with ak(t) the contain-
ment of this node and with bk(t) the containment of its
corresponding node (which must have the same degree k).

A node with degree k has on average k′P (k′)
〈k〉 nodes with
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Fig. 1: (Color online) (a) Plot of the inverse of the time, 1/τcol,
at which m total collisions between A and B particles have been
made as a function of p, on RR networks with k = 4, N = 1000
and ρA = ρB = 0.05, averaged over 100 realizations. The plot
is in log-log scale. Data points are: m = 100 (black squares),
m = 200 (red circles) and m = 1000 (blue triangles). For all
the observed cases, the transition is smooth as p increases.

Fig. 2: Plot of the derivative of the inverse characteristic time
(1/τreact) as a function of p, for two identical ER networks with
〈k〉 = 5 and N = 1000.

degree k′ and from each node a fraction of ak′(t) 1
k′+p

is
passed to the node with degree k. The overall contribution

should be k
∑+∞

k′=1
k′P (k′)ak′(t)

k′+p
. Also, a fraction p

k+p
bk(t)

will be received from the other layer. The same holds for
the nodes on the other layer. Thus, the following recursive
equations hold:

ak(t + 1) =
k

〈k〉

+∞
∑

k′=1

ak′ (t)P (k′)

−
pk

〈k〉

+∞
∑

k′=1

ak′(t)

k′ + p
P (k′) +

p

k + p
bk(t),

bk(t + 1) =
k

〈k〉

+∞
∑

k′=1

bk′(t)P (k′)

−
pk

〈k〉

+∞
∑

k′=1

bk′(t)

k′ + p
P (k′) +

p

k + p
ak(t). (6)

(a)

(b)

Fig. 3: (Color online) Plot of the inverse of the equilibration
time (1/τenum) as a function of p, for the case of (a) two coupled
random-regular networks with k = 4 and N = 1000 and (b) two
coupled identical ER networks with 〈k〉 = 5 and N = 1000. In
(a), there is a peak at p ≃ 4. In both panels, there is a change
in the behavior for a value of p. However the point at which
this occurs does not coincide with the p∗ calculated with the
method proposed in [13].

We solve eq. (6) for initial conditions ak(0) = 1
and bk(0) = 0, and using the stopping condition
∑

kmax

k=1 |ak(t) − bk(t)| p

k+p
P (k) < 10−6. Thus, we acquire

the time for the system to reach the equilibrium, τenum.

Furthermore, the change of the structural properties
of the system as a function of p is investigated using
the average shortest path (〈lsp〉) by varying the interlink
strength p from nearly zero to 100, using a modified ver-
sion of the Brandes algorithm [17] for weighted networks.
We finally calculate the evolution of p∗ as a function of N ,
using the methodology proposed in [13].

Results and discussion. – We first examine the evo-
lution of 1/τcol as a function of p, for different cuttoff
values of m (m being the cumulative number of colli-
sions between the different types of particles). In fig. 1,
we present the results for two multiplexed RR networks
with k = 4, N = 1000 and ρA = ρB = 0.05, averaged
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Fig. 4: Plot of the “average shortest path length” (〈lsp〉) as a
function of p for a multiplex of two random regular networks
with k = 8 and N = 1000 each. It is obvious that there is no
abrupt transition of this quantity.

over 100 realizations. We observe that the quantity 1/τcol
changes smoothly with p. Thus, there is no indication that
any structural transition can manifest itself through this
process.

We next perform the A + B → 0 reaction-diffusion pro-
cess and calculate the mean time required for all particles
to react, τreact. The density of particles A and B is exactly
the same (ρ = 0.25) and remains fixed throughout the pro-
cess (steady state). All A particles are initially placed on
one layer and all B particles on the other. We calculate
the time τreact which is the time it takes to have ρN reac-
tions. In fig. 2, we plot the first derivative of 1/τreact as
a function of p. As p increases, this quantity tends to 0,
meaning that τreact is independent of p for large p values.
If the system were to undergo an abrupt structural tran-
sition for a specific value of p, we should have observed
qualitatively this sharp change in the vicinity of such a
point.

Finally, we use the exact enumeration method, for the
case of the diffusion process. In fig. 3, we plot the inverse
of the equilibration time (1/τenum) as a function of p for
a setting of two identical multiplexed RR networks (k =
4, N = 1000) and ER networks (〈k〉 = 5, N = 1000). In
fig. 3(a), a peak appears at p ≃ 4, which is not the value
calculated with the method used in [13], which was p∗ ≃
0.41. The same behavior is recovered when k = 8 for RR
networks (data not shown). The results are accompanied
by the numerical simulation of the process, and as we see
they are in excellent agreement. A qualitative explanation
can be given here: when p < k, it happens that p/(k+p) <
k/(k + p), and the majority of particles remain for longer
times in the starting layer. As p increases particles tend
to move to the other layer, thus promoting the decrease
of the equilibration time. When p > k, we have that
p/(k + p) > k/(k + p), and thus the inverse procedure
takes place. The case is similar for coupled ER networks,
see fig. 3(b), except for the fact that the peak is not sharp

(a)

(b)

Fig. 5: Plot of the value of the transition point of the algebraic
connectivity, p∗, as a function of the size of each layer N , on
(a) two coupled ER networks with 〈k〉 = 5 and (b) two coupled
RR networks with k = 8. Data for both cases are averaged over
100 runs for large systems and up to 5000 for small ones. It is
evident that p∗ is system and size dependent.

since in this case there is an inherent assymetry in the
degree distribution.

These results indicate that there is no manifestation of
any sudden structural change on common dynamical pro-
cesses on multiplex networks. We further proceed by in-
vestigating network properties of the multiplex systems.
We search to see if there is some structural modification
in the topological properties of the network by investi-
gating the “average shortest path” (〈lsp〉). We performed
calculations on a random-regular multiplex network with
k = 8 and N = 1000, using the algorithm proposed in [17]
for the case of weighted graphs. Regarding the weights, we
used a value of 1 for all intralayer connections and p for the
interlayer ones. We define the distance between two nodes
connected by an interlink as the inverse of its strength p.
The results for 〈lsp〉 are shown in fig. 4, where we observe
that as p → 0, 〈lsp〉 → ∞ because 1/p → ∞. Furthermore,
when p ≪ 1, 〈lsp〉 is controlled by the maximum shortest
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path between a source node in network A(B) and a target
node in network B(A). As p increases, 1/p decreases and
so does 〈lsp〉. For p ≫ 1, the multiplex behaves as a single
network. We observe that, by varying the value of p, this
quantity changes in a continuous way. Thus, no abrupt
transition can be seen here from the data as well.

We now apply the methodology proposed in [13] (see
also eq. (2)) to investigate the behavior of the algebraic
connectivity, λ2, as a function of the size of the layers.
In fig. 5, we plot the evolution of p∗ as a function of
system size N for two types of networks: ER networks
with 〈k〉 = 5 (fig. 5(a)) and random regular with k = 8
(fig. 5(b)). We observe a clear dependence of p∗ on the
size N of the layers. Also, there is a fast decay on the
value of p∗, but we cannot determine its nature (i.e. being
power-law or exponential), due to the small range of N .

Conclusions. – In this paper we have tested struc-
tural as well as dynamic properties of multiplex networks.
We used various types of networks such as coupled RR
and ER (identical or not) networks and various different
methodologies. We have observed a continuous change
of the structural properties as a function of p, as shown
by the behavior of the average shortest path (〈lsp〉). We
have performed diffusion and reaction-diffusion processes
on the above multiplex configurations studying suitable
characteristic times associated with the structural prop-
erties of the system. In all cases we verified that changes
take place in a continuous manner. Also, the point where
such changes occur does not coincide with the p∗ calcu-
lated with the method proposed in [13].

∗ ∗ ∗

Results presented in this work have been produced us-
ing the European Grid Infrastructure (EGI) through the
National Grid Infrastructures NGI GRNET (HellasGrid)

as part of the SEE Virtual Organisation. This re-
search was supported by European Commission FP7-FET
project Multiplex No. 317532. NB acknowledges financial
support from Public Benefit Foundation Alexander S.
Onassis.

REFERENCES

[1] Watts D. J. and Strogatz S. H., Nature, 393 (2014)
440.

[2] Barabási A. L. and Albert R., Science, 286 (1999)
509.

[3] Albert R. and Barabási A. L., Rev. Mod. Phys., 74

(2002) 47.
[4] Dorogovtsev S. N. and Mendes J. F. F., Adv. Phys.,

51 (2002) 1079.
[5] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[6] Caldarelli G. and Catanzaro M., Networks: A very

Short Introduction (Oxford University Press) 2012.
[7] Buldyrev S. V., Parshani R., Paul G., Stanley H.

E. and Havlin S., Nature, 464 (2010) 1025.
[8] Szella M., Lambiotte R. and Thurner S., Proc. Natl.

Acad. Sci. U.S.A., 107 (2010) 13636.
[9] Saumell-Mendiola A., Serrano M. A. and Boguna

M., Phys. Rev. E, 86 (2012) 026106.
[10] Gomez S., Diaz-Guilera A., Gomez-Gardenes J.,

Perez-Vicente C. J., Moreno Y. and Arenas A.,
Phys. Rev. Lett., 110 (2013) 028701.

[11] Newman M. E. J., Networks: An Introduction (Oxford
University Press) 2010.

[12] Fiedler M., Czech. Math. J., 23 (1973) 298.
[13] Radicchi F. and Arenas A., Nat. Phys., 9 (2013) 717.
[14] Garrahan J. P. and Lesanovsky I., arXiv:1406.4706

(2014).
[15] Argyrakis P., Comput. Phys., 6 (1992) 525.
[16] Ben-Avraham D. and Havlin S., Diffusion and Reac-

tions in Fractals and Disordered Systems (Cambridge Uni-
versity Press) 2004.

[17] Brandes U., J. Math. Soc., 25 (2001) 163.

38006-p5


