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Abstract. We investigate the network formed by the collaboration of researchers seeking funding by the
European Commission by submitting research proposals. Institutions are network nodes and collaborations
are links between the nodes. We constructed one network for the accepted proposals and one for the rejected
ones, in order to look for any structural differences between them. To this end, first, we compare the size of
the largest connected components and the resulting degree distributions. The latter show notable difference
only in the region of relatively small degrees. We calculate the assortative mixing by participant type, i.e. a
property which indicates whether the participant is a university/research institute, a company (non-profit
included), or undefined. By aggregating the data of both networks into three geographical scales (city,
region, country), we compare the degree assortativity and average node weight, in all scales. With respect
to these two features the networks display similar behaviour. Finally, we compare a series of centrality
measures and the Minimum Spanning Trees, at the country scale, to assess the relative performance of
the countries. We find that five countries, France, Germany, the United Kingdom, Spain and Italy, play a
central role in both networks, however, their relative significance is not the same.

1 Introduction

Amongst the goals of the European Commission (EC)
is to enhance research and technological advances in its
member countries, by strongly encouraging collaboration
between them. The Framework Programmes (FP), which
promote and fund collaboration projects in which Euro-
pean research institutions and companies participate, is
one way of achieving this. There has been a series of such
FPs over the past three decades, each program lasting for
several years. The recent ones include FP5 (1999–2003),
FP6 (2003–2007) and FP7 (2007–2013). While the bulk
of support and number of partners come from the EC 28
member countries, practically every country in the world
may participate, as it is shown by the total of 169 countries
involved in recent projects.

As previously mentioned, one of the main goals of the
Framework Programmes is to boost research and tech-
nological achievements [1–3]. Several publications pro-
ceeded to assess the FP effectiveness, in terms of different,
yet, closely related objectives, which contribute to this
main goal. The two principal points that were examined
were (a) whether there is sufficient collaboration between
academia and industry to foster linking research and inno-
vation [1,3–6]; and (b) whether the participation of mem-
ber countries is balanced, in other words whether there is a
fair involvement of both the advanced countries/regions,
as well as those that fall behind, ultimately aiming for
social, economic and technological convergence [4–7].
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Several references used statistical methods [1,4,7], as
well as network analysis [5,6], to address these queries.
They found that the FPs are successful in some aspects,
while more effort is needed in others. By comparing the
network of companies participating in FPs to that of
the universities, they examined the extent to which sev-
eral variables such as, geographical distance, technological
proximity, language barriers, etc., enhance or inhibit the
collaboration between countries/regions [4–6]. The hinder-
ing effect of the technological distance is the most promi-
nent, for both cases. All these factors appear to have
a greater impact on the structure of the industrial net-
work rather than that of academic research. In fact, the
research network appears to be serving as a buffer be-
tween the companies and reduces the distance between
academic research and industry by being the backbone
of the network [5]. All evidence suggests that the room
for improving is greater in the industrial sector than that
of research [5,6]. They also found that during the period
1984–1991 four clusters of neighbouring countries/regions
were formed, because of the fact that ties between them
are favoured. These four clusters were reduced to three
during 1992–1998 [4]. In a later publication, however, that
surveyed FP5 (1999–2003), it was found that the observed
FP network communities reveal an adequate mixing of na-
tionalities, suggesting that country border effects are not
as significant as they had been in the past [5].

In the present work we follow the network approach as
in references [5,6]. Within this frame of reference, one con-
structs the network of all partners, its nodes denoting the
partner (research institution, university, company, etc.),
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and the links between nodes denoting the existence of a
proposal/collaborative project between them. Information
of interest then includes the size of projects (meaning the
number of participating nodes), the type of consortium
formed (small focused projects between 2 or 3 partners,
versus large networks of dozens of partners on a general
theme) the cities, regions, countries and continents partic-
ipating in the projects, identifying important nodes in the
network and other pertinent information. We analyse data
of the seventh framework programme (FP7) using network
analysis, this time including all submitted proposals in the
Call of Interest. Previous work focused only on the propos-
als that were accepted and subsequently implemented as
projects whereas we also include those that were rejected
and never carried out. We construct two networks of par-
ticipants, one for those involved in the accepted proposals
and one for those in the rejected ones, and then aggregate
the data into three geographical scales (city, region, coun-
try) thus constructing six new networks, three for each
case. The motive behind this idea is to see whether there
are any differences between the two networks formed from
these two different sets. Specifically, we compare the two
networks in terms of (a) the degree, i.e. the number of
collaborators, of the participants, (b) the extent of col-
laboration between academic and industrial participants,
(c) the amount of collaborations between large-scale and
small scale participants, regardless of type (academic or
industrial) and (d) the most significant/influential coun-
tries and their relative importance. For this purpose, we
compare the structure of the two networks in all scales
by examining several structural features. For the country
scale in particular, the comparison is made by assessing
five network properties (a series of centrality indices and
MST) for both cases.

2 Data description

The data we use were provided by the European
Commission, Office of Statistics, in anonymised form. Two
databases were provided, in Access format, one for all
submitted proposals and one for the accepted proposals,
which eventually led to signed contracts and were carried
out as projects. Each database contains detailed informa-
tion about the projects/proposals and their corresponding
participants. Of all participant characteristics provided,
the only piece of information that can distinguish one from
another is its participant identification code (PIC), which
is a nine-digit number, rather than the name of the In-
stitute, which might be different in several occasions, due
to different language used, epithet of the Institute, etc.
About 17% of the proposals database entries had no PIC
number and were not included in the subsequent analysis
of the participants network, whereas, all – or nearly all –
records included the information needed for the networks
of the other three geographical scales (cities, regions, coun-
tries). In order to construct the data set of rejected pro-
posals, which was not given, we simply removed all the
records of the accepted proposals from the data set of all
proposals. The remaining proposals are the ones that were

Table 1. Number of participants, cities, regions and countries
involved in FP7.

Participants Cities Regions Countries
Proposals 52823 20200 1771 209
Accepted 24396 7479 1441 169
Rejected 47655 18761 1757 207

rejected. Just as previously, about 18% of records of this
new data set is lacking a PIC. Table 1 shows the num-
ber of participants, cities, regions and countries involved
in FP7. It shows the entries that we subsequently use, in
all scales, after removing the ones with missing records.
Obviously, since a particular participant may be involved
in more than one proposal, the sum of the number of par-
ticipants in accepted and rejected proposals is not equal
to the total number of participants in all scales.

3 Results

3.1 Size of largest connected component
and degree probability function

Our goal is to compare the networks of collaborations
formed by the accepted proposals to those formed by the
rejected ones. To this end, we first construct the two cor-
responding networks of participants (universities, research
institutions, companies, etc.) involved in the FP7 accepted
and rejected proposals, following this procedure: if two
given participants are found to have joined a proposal to-
gether, we draw a link between them. A weight of one is
assigned by default to this link. Each time that a given pair
of participants is found to be involved in another proposal,
the weight of their link is increased by one. This results
in a weighted network, with its nodes representing the
project participants, and its links the existence of at least
one proposal/collaboration between them. The weight of
its links reflects the strength of this collaboration. Self-
loops are discarded during this constructing procedure.
We find that, by and large, the largest connected compo-
nent in both cases comprises the majority of the nodes,
specifically 99.1% for the accepted case and 98% for the
rejected one.

The maximum and average node degree for the largest
connected component of the two networks of participants
are shown in Table 2. The normalized degree probabil-
ity distributions of the two networks are shown in Fig-
ure 1a. The distributions are qualitatively similar to each
other and also similar to the corresponding distributions
of the FP5 and FP6 accepted proposals, found in previ-
ous studies [5,6]. Specifically, they are highly right-skewed,
heavy-tailed distributions, the shape of which, is indicative
of a power law behaviour. At large k values we observe
a considerable increase at the noise level, as expected.
The only observable difference between the distributions
in Figure 1a is that, for degrees ranging from k = 1 up
to about k = 10, the normalized number of participants
in rejected proposals is larger than that in the accepted
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Table 2. Basic properties of the largest connected component of the networks of collaborations in FP7.

Participants Cities Regions Countries
Number of nodes (acc.) 24 181 7459 1440 169
Number of nodes (rej.) 46 567 18 451 1753 206
Number of links (acc.) 478 274 214 755 105 050 4538
Number of links (rej.) 1 018 721 608 973 236 061 7325

〈k〉 (accepted) 39.2 57.4 145.8 53.7
〈k〉 (rejected) 42.8 64.9 268.7 70.8

kmax (accepted) 5292 3354 1075 155
kmax (rejected) 10 769 6840 1450 192

Fig. 1. Degree probability distribution function of (a) the net-
work of participants of the FP7 accepted (rhombi) and rejected
(circles) proposals and (b) the same two networks, with the
data aggregated in the city geographical scale.

ones. This implies that a proposal that consists of partic-
ipants with relatively small degree is more likely to be
rejected. Assuming that low-degree participants mostly
represent small-scale institutes in the two networks, a
plausible explanation for this finding could be that a group
of small-scale institutes alone would strain to meet the
criteria of a successful proposal. Therefore, such a consor-
tium could presumably benefit from the addition of one
or more larger-scale institutes, which are likely to be the
high-degree nodes in the networks.

For values of k > 10, the shape of the curves of Fig-
ure 1a is indicative of a power law behaviour. Therefore,
it seems reasonable to assess how close they are to a prob-
ability density function (PDF) of a power-law (scale-free)
network. We use the method of maximum likelihood, pro-
posed in reference [8] and the Python powerlaw package
presented in reference [9], to test for five probable fits
(power-law, truncated power-law, exponential, stretched
exponential and lognormal). Using log likelihood ratio
tests, we find that of all five the truncated power-law dis-
tribution is the most likely fit, in both the accepted and
rejected case. The slope of the truncated power-law fit

Fig. 2. Degree probability distribution function of the network
of participants of the FP7 accepted (solid line (f)) and rejected
(dotted line (e)) proposals, using logarithmic binning. Probable
fits for the rejected case, in dashed lines: (a) power law, (b)
lognormal, (c) stretched exponential, and (d) truncated power
law.

is 2.06 and 1.96, respectively. In Figure 2 we plot the two
distributions of Figure 1a, using logarithmic binning for
visual clarity, along with four of the five candidate fits for
the rejected case, excluding the exponential one, which
was rejected as a clearly poor fit. For the range k = 10 to
k = 1000 there is no notable difference in Figure 2 between
the distributions of the two networks. All five trial fits fail
to capture the behaviour of the tail, i.e. for degrees larger
than k = 1000, of the data derived distribution. Notice,
however, that there are very few nodes with such high de-
gree, implying a large noise level and thus rendering the
fitting problem intractable.

3.2 Assortative mixing by participant type
and by degree and average node weight

In our databases, each node in the networks of par-
ticipants can be assigned to three categories accord-
ing to whether it is (a) an institution affiliated with
education/research (university, research facility, etc.),
(b) a company (nonprofit included) and (c) undefined.
This property is called the participant type. To examine
the assortative mixing in the two networks by the par-
ticipant type we evaluate the corresponding assortativity
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Table 3. Degree assortativity coefficient for the network of participants, in all four scales (participants, city, region, country),
in both the accepted and rejected case.

Scale
Accepted Rejected

degree assortativity r error σr degree assortativity r error σr

Participant −0.1018 0.0008 −0.1145 0.0004
City −0.2608 0.0011 −0.2955 0.0008

Region −0.3177 0.0027 −0.3475 0.0021
Country −0.2914 0.0148 −0.3543 0.0126

coefficient r [10]. In an undirected network, r is defined as:

r =
∑

i

(
eii −

∑
i a2

i

)

1 − ∑
i a2

i

(1)

where eii is the fraction of edges that run between nodes
of the same category and ai is the fraction of ends of edges
attached to nodes of category i. r is positive when there is
a tendency of nodes of the same category to be connected
to each other (assortative mixing) and negative when the
opposite is true (disassortative mixing). The value of r lies
in the range −1 ≤ r ≤ 1. r = 1 indicates perfect assorta-
tivity, r = −1 indicates the opposite and r = 0 indicates
no assortativity. By using equation (1) assortativity coef-
ficient for the participant type for the network of partic-
ipants involved in the accepted and rejected proposals is
rtype = 0.1321 and rtype = 0.1625, respectively. Their cor-
responding expected statistical errors are σrtype = 0.0008
and σrtype = 0.0005. We use the jacknife method [11] to
calculate the errors, as suggested in reference [10]. We con-
clude that both networks are assortative, indicating that
there is a non-trivial tendency of companies and educa-
tional/research facilities to collaborate with participants
of the same type. Of the two networks, the one formed by
the rejected proposals is more assortative by participant
type. A plausible explanation for this fact is that pro-
posals that feature collaborations between academic and
industrial participants are favoured.

To attain a more comprehensive picture of the net-
works, we aggregate the data into the three geographical
scales available in the FP7 proposals databases, namely
cities, regions and countries and repeated the above pro-
cedure, for both the FP7 accepted and rejected propos-
als, effectively constructing six new networks, two for each
scale. The maximum and average node degree for the to-
tal of the eight networks in the four scales (participants,
cities, regions, countries), are shown in Table 2. The de-
gree probability distributions, in the city scale, are shown
in Figure 1b. Both distributions are again right-skewed
and heavy tailed, exhibiting a power-law-like behaviour,
similar to Figure 1a. In the region and country scale, the
corresponding degree probability distributions (image not
shown) exhibit a large amount of noise and any possible
power-law-like behaviour is blurred.

Using the notion of assortative mixing by degree we
measure the probability that two nodes of similar de-
grees will be linked, in all four scales of the network. This
is quantified by the assortativity coefficient, r, which is
an example of a Pearson correlation coefficient, similarly
to the assortativity coefficient by an enumerative node

property [10,12]. In an undirected network, it is defined as:

r =

∑
jk jk(ejk − q2

k)
σ2

q

(2)

where ejk is the fraction of edges that connect a node
of degree j to one of degree k, qk(=qj) is the fraction
of ends of edges attached to nodes of degree k and σq is
the standard deviation of the distribution qk. r is positive
when there is a tendency of nodes with similar degree to
be connected to each other (assortative mixing by degree)
and negative when high-degree nodes preferably connect
to low-degree ones (disassortative mixing by degree). The
value of r lies in the range −1 ≤ r ≤ 1. r = 1 indicates
perfect assortativity, r = −1 indicates perfect disassorta-
tivity and r = 0 indicates no assortativity (random mix-
ing). Table 3 shows the assortativity coefficient of the two
networks of participants involved in the accepted and re-
jected proposals, respectively, in all four scales, along with
the expected statistical errors of these figures. Again, we
use the jacknife method [11] to calculate the errors, as sug-
gested in reference [10]. We find that both networks are
disassortative by degree in all four scales. This means that
participants with small degree mostly end up having high-
degree neighbours, in both networks. The network formed
by the rejected proposals is more disassortative than that
of the accepted, in all four scales. The highest difference is
observed in the country scale. The more macroscopic the
scale is, the more disassortative both networks become,
with the exception of the country scale for the accepted
proposals network. The fact that both networks are dis-
assortative is an interesting result on its own, as social
networks are known to exhibit assortative mixing by node
degree [10]. This finding implies that both networks of
the collaborations formed by the FP7 accepted/rejected
proposals are structurally different than other social net-
works. The assortative networks display a dense core con-
sisting of high-degree nodes, with the lower-degree nodes
surrounding it, while the disassortative networks, like the
two FP7 networks, exhibit star-like features formed be-
cause of the tendency of high-degree nodes to connect with
lower-degree ones [13]. The reason behind this structural
discord between the FP7 networks and other social net-
works may lay in the circumstances governing the forma-
tion of the various collaborating groups intending to carry
out a specific project. First of all, it is only reasonable
to assume that the small-degree participants mostly rep-
resent the relatively small institutes (universities, com-
panies, etc.), while the high-degree represent the major
ones, since the latter are in a position to undertake more
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projects and form more collaborations. The smaller insti-
tutes (universities, companies, etc.) do not always have
the necessary facilities, equipment, technological knowl-
edge, etc. or their human resources is simply not sufficient
for a certain project, while the larger-scale institutes are
more likely to be able to provide for all these require-
ments. Therefore, many small-scale institutes turn to the
large-scale institutes to benefit from sharing and collab-
orating. Moreover, in some cases, the Call for Proposal
imposes a collaboration between two specific countries of
which one may be a cohesion country which is more likely
to have small-scale institutes and the other a more ad-
vanced one, having many larger-scale institutes. The dif-
ferent structural features that the disassortative FP7 net-
works exhibit, in contrast with other social networks that
are assortative, harbour two additional implications [10].
The first is that, as a consequence, they are both more
susceptible to the removal of high-degree nodes. This is
because, in the case of degree disassortativity, the high-
degree nodes are spread all over the network, therefore by
attacking them one effectively attacks every part of the
network. In other words, if for any reason, many of the
large-scale institutes left the network simultaneously, it
would break down to isolated components and collapse.
This means that the large-scale participants are essential
to the structure and function of the FP7 network. The sec-
ond implication is that epidemics in networks with that
kind of topology would span to a larger portion of the pop-
ulation than in a similar assortative networks. This could
mean that the structure of the two networks is preferable
for the spreading of ideas, trends, knowledge, technologi-
cal advances, etc., which, in this case, is a rather desirable
property. Therefore, both networks are more efficient in
that way than an assortative network would be, although
the network of the rejected proposals case would be more
efficient than that of the accepted one.

Next, we calculate the average node weight, 〈w〉, of ev-
ery node, i.e. the sum of the weights of all its connections,
divided by its degree, for all four network scales, for both
the accepted and rejected proposals case. The outcome of
this procedure, plotted against the degree of each node, is
shown in Figure 3. It is evident that, the behaviour of the
two networks is qualitatively comparable, in all respective
four scales. Specifically, while in both the accepted and re-
jected case, in the participant scale, there is no remarkable
variation of the average node weight with respect to the
node degree, when we aggregate the data into the three ge-
ographic scales, there emerges a propensity for the average
weight to increase with the degree. The more macroscopic
the scale into which we aggregate is, the more intense this
phenomenon becomes. These results are in agreement to
those of previous studies [6].

3.3 Centrality indices and MST

Directing our attention to the country scale of the two
different cases, we set out to compare the two networks in
a more detailed way, by using a variety of centrality in-
dices and Minimum Spanning Trees (MST). Each of these

Fig. 3. Average node weight vs. node degree k for the network
of participants in microscopic scale (circles), city scale (plus
signs), region scale (squares) and country scale (crosses), for
(a) the accepted proposals and (b) the rejected proposals.

network properties alone cannot indicate the importance
of a certain node, but when considered in combination
they help reveal a clearer picture. We start with the sim-
plest of the centrality indices, namely the degree central-
ity [14] which is simply the degree of a node. The eigen-
vector centrality [14–16], which we subsequently consider,
is very similar to the degree centrality but takes into ac-
count that the neighbours of a node are not all equally im-
portant. A node scores higher in eigenvector centrality as
the relative importance of its neighbours increases. Next,
we calculate two indices based on the notion of a shortest
path, the closeness [17] and betweenness centrality [18,19].
Closeness centrality is a measure of the distance between
two nodes of the network. Betweenness centrality is a mea-
sure of how significant is the presence of a certain node in
the network in maintaining the connection between two
other distant nodes. For the calculation of betweenness
centrality, we use the algorithm presented in reference [20].

The four indices mentioned so far do not take into con-
sideration the weights of the links between the nodes of
the network. As mentioned above, at the country scale,
the average weight has a tendency to increase with the
node degree. Nonetheless, there are cases, in which, be-
tween two nodes with unequal degrees, the one with the
lowest degree has the highest average weight of the two.
The presence of link weights perplexes the structure of
the network and potentially alters the sense in which a
node is important or influences others. Therefore, it is
useful to assess the importance of a node with a tool that
also takes into account the link weights. For that purpose
we employed two more network analysis tools, a variation
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Fig. 4. Comparative ranking of the first 20 countries with the most of signed contracts, according to 5 network centrality
indices: (a) degree, (b) eigenvector, (c) closeness, (d) betweenness and (e) weighted betweenness centrality for the networks of
participants (in country scale) involved in the FP7 accepted (left column) and rejected proposals (right column).

of the betweenness centrality index, which we will call
weighted betweenness and the Minimum Spanning Tree.

Betweenness centrality is a network property based on
the notion of shortest path. In reference [21], two ways
were proposed for adjusting betweenness centrality to in-
corporate the weights of the links and thus making it
a weighted betweenness. The first suggests to use the
weights as a measure of path length. In our case, larger
edge weights imply stronger ties between two countries,
therefore, its inverse can be perceived as shorter distances
between them. One way to incorporate this distance to the
weighted betweenness index would be to use the sum of
these rescaled values to measure the length of a path. The
second alternative considers the weights of the edges as a
way to assess the relative importance of a link, rather than
using the inverse weights as a measure of the length of the
link. The logic behind this can be better understood when
we consider the case of a network with edge weights of in-
teger values. In such a network each link is broken down to
multiple links, as many as the integer value of its weight.
Then, the number of paths connecting any couple of nodes
is given by the product of the weights of the consecu-
tive links laying between them. By using the product of
the edge weights to count the shortest paths between the
nodes of the network, we calculate a weighted version of
the betweenness centrality. The exact algorithm for both
these alternatives can be found in reference [21]. Of the

two alternatives we implement the second. Figure 4 shows
the ranking of the twenty countries with the most signed
FP7 contracts, according to the five centrality indices we
calculated. In order to compare the networks of accepted
and rejected proposals, we normalized each centrality. Five
countries, France (FR), United Kingdom (UK), Germany
(DE), Italy (IT) and Spain (ES) are singled out as the ones
with the highest centrality scores and therefore as being
the most significant nodes, in both cases. Their relative
importance, however, is not the same. For example, node
France (FR) ranks first in every centrality in the accepted
proposals case, whereas node United Kingdom (UK) does
so, in all cases of the rejected proposals. Needless to say,
this does neither imply that FR has the most accepted
proposals, nor that UK has the most rejected ones.

To assess the relative difference in the importance of
each country node in the two networks, we calculated the
relative difference

Ci,acc − Ci,rej

Ci,rej
(3)

of every country, where C stands for centrality index,
i runs from 1 to 5, to account for each of the five dif-
ferent centralities, acc stands for accepted and rej stands
for rejected. This measure can serve as a way to assess
the relative difference in the performance of each country
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Fig. 5. Comparative ranking of the first 20 countries with
the most signed contracts, according to 5 network centrality
indices relative difference: (a) degree, (b) eigenvector centrality,
(c) closeness, (d) betweenness and (e) weighted betweenness,
between the networks formed by the accepted and that of the
rejected FP7 proposals.

in the two networks, formed by the accepted and the re-
jected proposals, respectively. The results are shown in
Figure 5. As we can see, node France (FR) ranks first ac-
cording to the relative difference in all cases except the
one of weighted betweenness centrality. In this case, node
Ireland (IE) exhibits the highest relative difference, with
its centrality index value in the accepted proposals case
significantly increased compared to that of the rejected
proposals one. Assuming that it is preferable for a coun-
try to have higher values of centralities in the accepted
proposals network rather than the rejected ones, we con-
clude that France is the country with the best performance
overall.

For the construction of the Minimum Spanning Tree,
we follow the procedure described in detail in reference [6].
For its implementation we use Kruskal’s algorithm [22].
We use the inverse of the link weights, as a measure of the
strength of the ties between the countries. The stronger
the tie, the shorter the distance. We sort all these distances
in a non-decreasing order, then remove all the edges be-
tween the nodes. We re-connect the nodes, one pair at a
time, starting with the pair with the smallest distance.
The outcome of this procedure must be a tree. Therefore,
if, at any step, adding the next-in-line edge to the net-
work, would result in a closed path, the particular edge
is discarded and we move on to the next. We continue
this way, until the entire series of the edges, sorted in a
non-decreasing distance order, is taken into account.

Fig. 6. Minimum Spanning Tree of (a) the network of countries
involved in the FP7 accepted proposals and (b) the network of
countries involved in the FP7 rejected proposals. The colour
(online) of the circles representing the countries varies with re-
spect to the degree of the node in the MST network, according
to the chromatic scale shown at the bottom-right part of the
figure.

Upon sorting the links of the weighted network in
a non-decreasing distance order, there are often blocks
of equal-distance links distributed throughout the series.
As a result, there are as many MSTs as the number of
permutations for these blocks of links. To avoid any kind
of bias, these blocks of links are shuffled. We average over
a sufficient number of different MSTs and compare this av-
erage MST to a number of random MSTs to check for any
major differences between them. We conclude that there
are no notable variations amongst the various equivalent
cases of MSTs.

Figure 6 shows a representative example of a Minimum
Spanning Tree of (a) the network of the 169 countries, in-
volved in the FP7 accepted proposals and (b) the network
of the 206 countries involved in the rejected FP7 propos-
als. The size of the circles representing the countries vary
according to the degree of the node in the MST network.
The higher the degree of the country, in proportion to
the degrees of the other countries in the network, the
larger the radius of the circle. Our results are in agree-
ment to those of previously published work for the FP6
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accepted proposals, country-scale network, revealing the
same star-like structures around some particular coun-
tries [6]. The five most connected countries are Germany
(DE), United Kingdom (UK), France (FR), Spain (ES)
and Italy (IT), for the accepted proposals case and United
Kingdom (UK), Germany (DE), Spain (ES), Italy (IT)
and France (FR) for the rejected proposals one. These
five countries are those that were also singled out as being
the five most important ones, according to the centrality
indices, in both networks. Their role, however, in the two
MSTs changes, as in the case of the centralities.

4 Discussion and conclusions

We have performed a network analysis of the European
Commission projects of FP7, the seven-year period
(2007–2013) of supported research, which was recently
concluded. We used data provided by the commission, in
anonymised form. We separated the data into two sets of
proposals, one of the accepted and funded projects and one
of the rejected ones and we performed network analysis on
the networks that stem from these two sets. In both net-
works the largest connected components constitutes the
majority of the institutes involved in the FP7 proposals.
The degree probability distribution functions of the net-
works of the participants in the accepted and rejected FP7
proposals are indicative of scale-free behaviour. Using the
maximum likelihood method we determined that the trun-
cated power-law distribution is the most probable fit for
the derived distributions. In both distributions there are
three characteristic regions: a region of increasing intensity
at small k values (1 < k < 10), a linear region at interme-
diate k values (10 < k < 1000) and finally a noisy region
for k > 1000. We find that proposals with participants
having degree k in the first region are liable to be rejected.
These proposals are mostly submitted by consortia which
are made up of small-scale institutes, which cannot readily
satisfy the requirements of a successful proposal on their
own. Such consortia could benefit from the addition of one
or more larger-scale institutes. In the second region, we see
no notable difference, meaning that the value of k does not
affect the success of a proposal. In the third region, the
data are very scarce and no clear trend can be deduced. By
looking at the assortativity coefficient by participant type,
we found both networks to be assortative, meaning that
there is a trend for academic institutions and for compa-
nies to collaborate with partners of the same type. Of the
two networks, the one formed by the rejected proposals is
more assortative by participant type, an indication that
proposals that feature collaborations between academic
and industrial participants are favoured. We grouped the
participants of the two networks into three geographical
scales, namely, the participant’s city, region and country
and thus constructed six new networks. By evaluating the
degree assortativity coefficient of the two networks, we
looked at the probability that two nodes with similar de-
gree will be linked and deduced that both FP7 networks
are disassortative by degree, in all four scales. This means
that in both networks the high-degree nodes preferably

link to low-degree ones, creating star-like features in the
network. This kind of topology may be attributed to cer-
tain circumstances regarding the formation of the collab-
orations that make up the networks. It also distinguishes
them from other social networks which are assortative and
present with a dense core consisting of high-degree nodes
surrounded from lower-degree nodes. The fact that the
FP7 networks exhibit this structural difference conveys
two further implications. First, both networks are more
susceptible to the removal of high-degree nodes than sim-
ilar networks with assortative mixing would be. This is
evidence supporting that large institutes play a crucial
role in maintaining the network’s connectivity. Second, the
topology of both networks is more efficient for the spread-
ing of ideas, trends, knowledge, technological advances,
etc. than that of similar assortative networks. Both net-
works become more disassortative as their scale becomes
more macroscopic, with the exception of the country scale
for the accepted proposals network. The network formed
by the rejected proposals is more disassortative than that
of the accepted, in all four scales, with the highest differ-
ence observed in the country scale. Evaluating the average
node weight we found that, in both networks, there is a
propensity for the average weight to increase with the de-
gree, in agreement to the results of previous studies. The
more macroscopic the scale into which we aggregate is, the
more observable this propensity becomes. By determining
several centrality indices and constructing the Minimum
Spanning Trees of the two networks, we elucidated the
relative position of each country. We concluded that, al-
though FR, DE, UK, ES and IT are the key players in
both networks, their respective influence is not the same.
Finally, we calculated the relative difference of the central-
ity indices, as a way to assess the relative performance of
the countries in the two networks. According to this mea-
sure, France is recognized as the country with the best
overall performance.
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