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Self-intermediate scattering function of strongly interacting three-dimensional lattice gases:
Time- and wave-vector-dependent tracer diffusion coefficient
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We investigate the self-intermediate scattering function (SISF) in a three-dimensional (3D) cubic lattice fluid
(interacting lattice gas) with attractive nearest-neighbor interparticle interactions at a temperature slightly above
the critical one by means of Monte Carlo simulations. A special representation of SISF as an exponent of
the mean tracer diffusion coefficient multiplied by the geometrical factor and time is considered to highlight
memory effects that are included in time and wave-vector dependence of the diffusion coefficient. An analytical
expression for the diffusion coefficient is suggested to reproduce the simulation data. It is shown that the particles’
mean-square displacement is equal to the time integral of the diffusion coefficient. We make a comparison with
the previously considered 2D system on a square lattice. The main difference with the two-dimensional case is
that the time dependence of particular characteristics of the tracer diffusion coefficient in the 3D case cannot
be described by exponentially decreasing functions, but requires using stretched exponentials with rather small
values of exponents, of the order of 0.2. The hydrodynamic values of the tracer diffusion coefficient (in the limit
of large times and small wave vectors) defined through SIFS simulation results agree well with the results of its
direct determination by the mean-square displacement of the particles in the entire range of concentrations and
temperatures.
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I. INTRODUCTION

For several past decades lattice gases have been widely
used for understanding transport phenomena in systems with
hopping dynamics [1–5], such as submonolayers on solid sur-
faces [6,7], ionic crystals [8], intercalation compounds [9,10],
electrons on traps [11], etc. However, the main effort was
spent to investigate diffusion coefficients in the hydrodynamic
regime when the frequency and wave-vector dependence
of the diffusion coefficients and other transport quantities
was not apparent. The space- and time-dependent density-
density correlation functions, their spatial Fourier and time
Laplace transforms, the intermediate scattering functions, and
the dynamical structure factors, have typically been used
in order to understand in more detail the time and spatial
behavior of different media dynamic characteristics [12–14].
The general expressions for such functions for lattice gases
were incidentally previously discussed [3–5,15], and some
theoretical considerations were developed [16–19]. However,
the drawback in the examined hydrodynamic regime (low-
frequency and small wave-vector limits) has been the fact
that important memory effects were not considered in detail.
At the same time, information about high-frequency and
short-wavelength media characteristics became progressively
important for such materials as nanodimensional ceramic or
polycrystal materials in order to understand and interpret their
behavior or experimental measurements, e.g., by impedance
spectroscopy [20,21].

Monte Carlo (MC) simulations of the self-intermediate
scattering function (SISF) have been performed [22] for a
noninteracting 2D lattice gas using square lattices of size up
to 600 × 600 lattice sites for rather short times, of the order
of a hundred Monte Carlo simulation time steps (MCS) or

less. Recently [23], SISF of a lattice fluid (interacting lattice
gas) on a square lattice was simulated at slightly supercritical
temperatures and memory effects were investigated in detail.
We showed there that several time scales govern evolution of a
one-particle space-time distribution function starting from ten
and up to a thousand MCS. Thus long runs up to 2000 MCS
are necessary. The current paper considers the MC simulation
results for SISF of the lattice fluid on a simple cubic lattice.
The solution of the continuum diffusion equation with the
time and distance dependent diffusion coefficient is used for
constructing the expression for SISF of a lattice fluid.

II. SELF-INTERMEDIATE SCATTERING FUNCTION
AND THE TIME- AND WAVE-VECTOR-DEPENDENT

TRACER DIFFUSION COEFFICIENT

The one-particle van Hove space- and time-dependent
distribution function can be represented by the expression

Gs (r,t) = 1

n

〈
n∑

i=1

δ[r + ri(0) − ri(t)]

〉
, (1)

where δ is the Dirac δ function, r is a radius vector, t is
time, and angular brackets denote averaging over a canonical
ensemble of n particles. The sum runs over positions of all
system particles denoted by radius vector ri . For lattice fluids,
particles can occupy the lattice sites only. Two- and many-
particle occupation of a lattice site is forbidden. The self-part
of the distribution function contains positions of the same
particle at two different times (zero and t).

We refine the derivation [23] of the expression for the SISF
of the lattice fluid considering a continuum homogeneous
medium where the function Gs(r,t) obeys the particle number
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conservation equation

∂Gs(r,t)
∂t

= ∂

∂r
· J(r,t), (2)

with the diffusion flux accounting for the spatial disper-
sion [13,14], that means the flux in a given point is determined
by the gradients in all the points of the system

J(r,t) = −
∫

V

D̂s(r − r′,t) · ∂Gs(r′,t)
∂r′ d3r′, (3)

integration is performed over the volume V of the system, the
diffusion coefficients tensor D̂s depends on the distance and
time. These dependences are evident for a lattice fluid because
the preferable movement of a particle back to its previous
position (the special vacancy [22]) always exists, thus creating
the particular spatial distribution of vacant sites that depends
on time after the particle started to move.

The Fourier transform of Eqs. (2) and (3) with accounting
of the convolution in the latter equation and subsequent
integration over time leads to the expression

Fs(k,t) = Fs(k,0) exp[−k · Ds(k,t) · kt], (4)

where the self-intermediate scattering function Fs(k,t) is the
Fourier transform of the self-part of the one-particle van Hove
distribution function, k is a wave vector, and the mean value
of the diffusion coefficients tensor

Ds(k,t) = 1

t

∫ t

0
D̂s(k,t ′)dt ′ (5)

is introduced.
For a lattice fluid the initial conditions are taken in the

form Gs(0,0) = 1 and Gs(r �= 0,0) = 0 and thus Fs(k,0) = 1.
For an isotropic medium the diffusion coefficients tensor
is a diagonal tensor and can be represented by the scalar
self(tracer)-diffusion coefficient. For a lattice fluid of cubic
symmetry the same representation can be used and SISF can
be written as

Fs(k,t) = exp[−Ds(k,t)η(k)t], (6)

where the mean tracer diffusion coefficient Ds(k,t) appears
instead of the tracer diffusion coefficient in [23], and

η(k) =
z∑

j=1

1 − cos(k · rj )

a2
(7)

is the multiplier that takes into account geometric peculiarities
of the lattice, a is a lattice parameter, the sum runs over z

nearest-neighbor site positions.
In the nonhydrodynamic regime all memory effects are

included into the mean tracer diffusion coefficient Ds(k,t)
that becomes dependent on the wave vector and time. As SISF
can easily be calculated in the simulation process, the mean
tracer diffusion coefficient is calculated from the expression

Ds(k,t) = − ln[Fs(k,t)]

η(k)t
. (8)

The simulation results showed that the diffusion coefficient
behaves like the two-dimensional case [23] and may lead us
to consider the ansatz:

Ds(k,t) = Ds0(t) exp[−B2(k,t)], (9)

where Ds0(t) is the time-dependent zero wave-vector mean
tracer diffusion coefficient, B(0,t) = 0, and the first derivative
of B(k,t) over the wave vector at the boundary of the first
Brillouin zone is equal to zero as well. Ds and B depend
on the orientation of vector k that will be accounted for by
the corresponding dependence of the coefficients representing
these quantities.

For B we use the expression that slightly differs from the
2D case,

B(k,t) = b(ξ )Bm(t), Bm(t) = B(ξm,t),

ξ = h/κ(t), ξm = hmax/κ(t), (10)

b(ξ ) = b0[tanh ξ − ξ/ cosh2 ξm)],

b0 = 1/[tanh ξm − ξm/ cosh2 ξm)], (11)

where ξ is a dimensionless variable, h is considered as an
integer varying between zero and hmax and the characteristic
distance κ in the reciprocal space is taken in units of (2π/La)
for k directed along a simulated box edge (for other k directions
this unit is shorter because the number of points in the
reciprocal space is taken equal to hmax for all k directions),
La is the MC simulation box size, and hmax = L/2. Also
b(k,t) = b(ξ ) is a function of ξ that depends on time through
the parameter κ only, b(0) = 0, and b(ξm) = 1. Bm is B at the
boundary of the first Brillouin zone. The difference from the
2D case is in the b(ξ ) function, where tanh ξ is used instead
of [1 − exp(−ξ )] because tanh ξ = 1 − exp(−ξ )/ cosh ξ and
thus this function reaches faster its saturation value of 1
with increasing ξ , better representing the k dependence of B.
The main anisotropy of the problem is exhibited by function
η(k). The scaling (7) does not influence the anisotropy of the
first Brillouin zone if κ does not depend on the wave-vector
orientation. Thus additional anisotropy is reflected by the
dependence of Bm(t) and κ(t) on the k direction.

III. SIMULATION PROCEDURES

The initial configuration we used for the Monte Carlo
simulations was a simple cubic (L×L×L = 50×50×50)
lattice with periodic boundary conditions, randomly occupied
by particles with a coverage (concentration) θ . In this case, the
wave vector

k = (2π/La)(hi + mj + lp),

h,m,l = 0,1,2, . . . ,L/2, h + m + l �= 0 (12)

is introduced. Here i, j, and p are the unit vectors in the
x, y, and z directions, respectively; hmax = 25. We then
applied attractive nearest-neighbor interactions between the
particles using the following algorithm: the probability p of
a randomly chosen particle to jump to a nearest-neighbor
empty site depends on the number q of particles occupying
the nearest-neighbor sites, and on the temperature T of the
system by the following expression:

p = e−qJ/kBT , (13)

where J is the interaction parameter which is linked to the
critical temperature by the relation J/kBTc

∼= 1.128, where kB

is Boltzmann constant. A Monte Carlo step (MCS) is defined

053318-2



SELF-INTERMEDIATE SCATTERING FUNCTION OF . . . PHYSICAL REVIEW E 89, 053318 (2014)

(a) (b)

FIG. 1. (Color online) (a) SISF and (b) the mean tracer diffusion coefficient versus the wave vector directed along a cell edge for three
different times. θ = 0.5, T = 1.2Tc (full symbols), and T = 1.05Tc (empty symbols). Time t is given in MCS. Solid lines are drawn according
to Eqs. (6) and (9) and only for the data of T = 1.05Tc and not for T = 1.2Tc (for clarity in the figures).

by n = θL3 trials to move a randomly chosen particle. We let
the system evolve until it reaches an equilibrium state (104

MCS) before starting to compute at each MCS the value of the
self-intermediate scattering function Fs(k,t) for a time range
of 2000 MCS. In fact, we considered the equilibrium state as
the initial state for the calculations (t0 = 0). Afterwards, by
tracking the position (xt ,yt ,zt ) of every particle at every time
step, Fs(k,t) was readily computed for all the wave vectors
kx = 2πh/La, ky = 2πm/La, and kz = 2πl/La:

Fs(k,t) = 1

n

n∑
i

cos

(
2π

L
[h(xi,t − xi,0) + m(yi,t − yi,0)

+ l(zi,t − zi,0)]

)
, (14)

where h, m, and l are three integers varying independently
from zero to L/2 (for symmetry reasons the negative values
were not considered) and the particle coordinates are given
in units of a. The results obtained are the average of 20 000
independent realizations. Simulations were performed for two
temperatures slightly above the critical value (T = 1.05Tc

and T = 1.2Tc) and for the concentration range θ from 0.3
to 0.8 with a step 0.1. The lattice spacing a was taken
equal to 1.

IV. RESULTS AND DISCUSSION

The results for the self-intermediate scattering function are
shown in Fig. 1(a), where we plot the SISF vs the wave
vector k. The width of the function in k space decreases
with time as given by Eqs. (6) and (8), as is always observed
in experiments and simulations for liquids and lattice fluids.
Initially, the particle is localized in real space that corresponds
to complete delocalization in the reciprocal space [Fs(k,t =
0) = 1]. Diffusion leads to delocalization in real space that
results in localization in the reciprocal space and the larger the
diffusion coefficient the faster localization occurs, and thus at
higher temperature the localization in the reciprocal space is
faster.

Figure 1(b) demonstrates that the mean tracer diffusion
coefficient sharply decreases with k in the region of small
k, and then decreases more slowly when k is approaching
the boundary of the first Brillouin zone. The tangents are
horizontal at k = 0 and k = km, where km = π/a is the
maximal wave-vector value (we first consider the results for k
directed along a cell edge). These trends qualitatively agree
with the 2D case [23]. However, as the zero wave-vector
diffusion coefficient in the 3D case is larger, SISF now
decreases faster with time.

The preexponential Ds0(t) factor in Eq. (9) is the limit of
Ds(k,t) when k → 0:

Ds0(t) = lim
k→0

Ds(k,t). (15)

Since the values for k = 0 are inaccessible in Monte Carlo
simulations, the results for k = ±1 and ±2 were approximated
by parabolas and the values of Ds0(t) were subsequently
calculated. Thus all simulation data can be approximated by
three time-dependent parameters, namely, Ds0(t), Bm(t), and
κ(t). All three functions are approaching their saturation values
in the long-time limit. The zero wave-vector mean diffusion
coefficient in the 3D case [Figs. 1(b), 2, and 3] is described by

FIG. 2. Mean tracer diffusion coefficient at k = 0 versus time.
θ = 0.5, T = 1.2Tc (full symbols), and T = 1.05Tc (empty symbols).
Solid lines for the two temperatures are drawn according to Eq. (16).
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(a) (b)

FIG. 3. (Color online) (a) Preexponential coefficients and (b) the relaxation times for the mean tracer diffusion coefficient as given by
Eq. (16) at k = 0 versus lattice concentration at T = 1.05Tc for the three characteristic directions: full symbols for the axes, semifilled for the
face diagonals, and empty for the cubic diagonals.

three exponentially decaying functions

Ds0(t) = D∞ + D1 exp(−t/τ1) + D2 exp(−t/τ2)

+D3 exp(−t/τ3), (16)

with approximately equal preexponential factors. When com-
pared to the 2D case an additional short relaxation time in the
range of 18–32 MCS appeared and the larger relaxation times
are approximately 20% smaller and show stronger concentra-
tion dependence, mostly increasing with concentration. This
means that the 3D lattice fluid relaxation is faster. Anisotropy
of the preexponential factors is stronger at low concentrations
and almost completely disappears at half coverage. In the limit
of long times the anisotropy of the zero wave-vector mean
diffusion coefficient does not appear at all.

For the 2D case it was possible to approximate Bm(t) and
κ(t) by exponentially decaying functions; in the 3D case these
quantities show a stretched exponential decay

κ(t) = κ∞ + κ1 exp(−tκ2 ), (17)

Bm(t) = B∞ + B1 exp(−tB2 ). (18)

Figure 4(a) shows the k dependence of function B for three
different times. Its behavior is well described by Eqs. (10)
and (11). At small k, B shows linear dependence on k.
The three fitting parameters (B1,B2 and B∞) are shown in
Fig. 4(b). B1 is negative; however, at t = 1 MCS, Bm becomes
positive and we do not consider t < 1 MCS. Again, we see
weak concentration dependence of the parameters and their
anisotropy is also weak, especially for the exponent B2 that is
approximately close to 0.15.

κ is an important scaling parameter that governs the
wave-vector dependence of the diffusion coefficient and SISF.
The preexponential factor of this parameter shows (Fig. 5)
significant anisotropy and varies in the range of 450 to 900.
Initially, large κ values relax to an order of magnitude smaller
κ∞ values. This means that the curvature of B(k) curves
increases with time as is evident from Fig. 4(a). Long-time
limiting ξm values vary approximately in the range of 0.5 to 0.3
and the lowest values are for cube edges and thus anisotropy
of the first Brillouin zone is significantly reduced as for a
cubic lattice the ratios of the diagonals to the cube edge are√

3:
√

2:1. At the same time, the exponent κ2 does not show
significant concentration dependence as well as anisotropy,
and is approximately equal to 0.2.

(a) (b)

FIG. 4. (Color online) (a) Function B versus the wave vector directed along a cell edge for three different times. θ = 0.5, T = 1.2Tc (full
symbols), and T = 1.05Tc (empty symbols). Time t is given in MCS. Solid lines are drawn according to Eq. (7) and only for the data of
T = 1.05Tc and not for T = 1.2Tc (for clarity in the figure). (b) The concentration dependences of the fitting parameters at T = 1.05Tc for the
three characteristic directions: full symbols for the axes, semifilled for the face diagonals, and empty for the cubic diagonals.
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FIG. 5. (Color online) κ parameters for T = 1.05Tc as a function
of concentration for the three characteristic directions: full symbols
for the axes, semifilled for the face diagonals, and empty for the cubic
diagonals.

The temperature dependence of the characteristic parame-
ters was then investigated as well. The preexponential factors
of the fastest and the slowest contributions to the zero
wave-vector mean tracer diffusion coefficient increase with
temperature just as its long-time limit, while the middle con-
tribution decreases [Fig. 6(a)]. At T = 1.05Tc all contributions
are equal to each other. The relaxation times weakly decrease
with increasing temperature [Fig. 6(b)].

The Bm and κ parameters show weak and quite regular
temperature dependence and weak anisotropy as well (Fig. 7).
The exponents have low values, almost independent of
temperature.

In Fig. 8 the hydrodynamic value of the mean tracer
diffusion coefficient (at k = 0 and t → ∞) is compared with
the results of Monte Carlo simulations through the particle
mean-square displacement (MSD), as given by the expression

〈(
r)2〉 = 6D∞t, (19)

where time is given in MCS and the mean-square displacement
in squared lattice spacing.

The agreement between all diffusion coefficients is consid-
erably better than in the case of the 2D system because of larger

diffusion coefficients and faster relaxation in the 3D case. Thus
in the time period of 2000 MCS the relaxation processes are
diminished almost completely.

Faster diffusion and relaxation in 3D systems are con-
cerned with a more developed group of diffusion trajectories
that quantitatively is reflected through the entropy contribu-
tion [24–26]. We may speculate that this trajectory diversity in
3D systems leads to a wide spectrum of relaxation times that
can be represented by stretched exponents as it is observed for
relaxation of Bm and κ parameters.

In the Appendix it is shown that the mean-square displace-
ment of a particle during finite time t is given by the expression

〈[r(t)]2〉 = 6Ds(0,t)t = 6
∫ t

0
D̂s(0,t ′)dt ′. (20)

Above it was more practical to operate with the mean diffusion
coefficient and then the true diffusion coefficient can be
calculated from the integral equation (5) according to the
relation

D̂s(k,t) = Ds(k,t) + t∂Ds(k,t)/∂t. (21)

From the last expression it follows that if the mean diffusion
coefficient is represented as a sum of several exponentially
decaying functions [Eq. (16)] then the expression for the true
diffusion coefficient is more complicated. However, the MSD
calculated according to Eq. (20) through the mean diffusion
coefficient Eq. (16) has a wrong asymptotic at t → ∞. It
is a straight line with a right tangent (D∞) going through
the coordinate origin, while the simulation results show the
line intersecting the positive part of the MSD axis. On the
other hand, it is more reasonable to suggest that just the true
diffusion coefficient is represented by exponentially decaying
functions. According to Eq. (21), its preexponential factors
should be smaller than that of the mean diffusion coefficient
and the asymptote will intersect the MSD axis at the point

ζ = 6
3∑

j=1

D̂j τj . (22)

If we adopt D̂j = Dj , then ζ = 1.97 and 3.26 for T = 1.05Tc,
θ = 0.3, and θ = 0.5, correspondingly, that can be compared

(a) (b)

FIG. 6. (Color online) (a) Preexponential coefficients and (b) the relaxation times for the mean tracer diffusion coefficient as given by
Eq. (16) at k = 0 versus temperature at θ = 0.6 for axes directions.
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(a) (b)

FIG. 7. (Color online) (a) κ parameters and (b) Bm parameters versus temperature at θ = 0.6 for the three characteristic directions: full
symbols for the axes, semifilled for the face diagonals, and empty for the cubic diagonals.

with the values 1.07 and 1.93 calculated from the MC
simulation results. The difference between the results of
Eq. (22) and the MC simulation results is explained by the fact
that the preexponential factors of the mean diffusion coefficient
were used. Just these values characterize the significance of
the memory effects and we see that they correspond to rather
small particle displacements of the order of the lattice spacing.
Considerably larger deviations are expected for diffusion on
fractal structures.

V. CONCLUSION

The simulation results for the self-intermediate scattering
function (SISF) for a system of interacting particles on a
3D simple cubic lattice are given by a simple analytical
expression with only one fitting parameter for representing
its wave-vector dependence. All memory effects are included
into the wave vector and time dependence of the diffusion
coefficient.

The zero wave-vector mean tracer diffusion coefficient
relaxation is governed by three relaxation times contrary to

FIG. 8. (Color online) Comparison of the hydrodynamic value of
the mean tracer diffusion coefficient (at k = 0 and t → ∞) obtained
after 2000 MCS with the results of Monte Carlo simulations through
the particle mean-square displacement obtained after 10 000 MCS.
T = 1.05Tc.

the 2D case which has two relaxation times, with the largest
one in the range of 750 to 1000 MCS. The two other parameters
(the scaling parameter in the reciprocal space and B value at
the boundary of the first Brillouin zone) cannot be described
by a set of few exponentially decaying functions and show
a stretched exponential decay with rather small exponents of
the order α = 0.15 to 0.2. At α = 0.2, 103 MCS are needed
in order to complete 98% of the relaxation, while at α = 0.15
104 MCS are needed for this. For comparison, if relaxation is
exponential 103 MCS and 104 MCS are necessary to complete
relaxation by 98% for relaxation time 250 MCS and 2500
MCS, respectively. Thus the period of 2000 MCS used in
the current investigation mainly covers the SISF relaxation
to long-time behavior. The scaling parameter κ reduces the
anisotropy of the first Brillouin zone and thus relaxation of
the B parameter and the mean tracer diffusion coefficient is
less anisotropic and the main anisotropy of SISF is provided
by the geometric parameter η. The deviations of the particle
MSD from straight lines D∞t are of the order of the lattice
spacing.
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APPENDIX

The equation for the MSD follows from Eqs. (2) and (3),

d〈[r(t)]2〉
dt

= −
∫

V

r · r
∂

∂r
·
∫

V

D̂s(r − r′,t)
∂Gs(r′,t)

∂r′ d3r′d3r.

(A1)

We consider here the tracer diffusion coefficient as a scalar
quantity. Integrating by parts and assuming negligibly small
values of the distribution function on the system boundary we
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get

d〈[r(t)]2〉
dt

= −
∫

V

2r ·
∫

V

D̂s(r − r′,t)
∂Gs(r′,t)

∂r′ d3r′d3r

= −
∫

V

2(r − r′ + r′) ·
∫

V

D̂s(r − r′,t)
∂Gs(r′,t)

∂r′ d3r′d3r

= −
∫

V

2(r − r′)D̂s(r − r′,t)d3(r − r′) ·
∫

V

∂Gs(r′,t)
∂r′ d3r′

−2
∫

V

D̂s(r − r′,t)d3(r − r′)
∫

V

r′ · ∂Gs(r′,t)
∂r′ d3r′. (A2)

The first part of the last expression is equal to zero from the
symmetry conditions or after integrating by parts. The second
part after integration by parts and accounting of d

dr′ · r′ = n,
where n is the space dimensionality for the three-dimensional
system, leads to the expression

d〈[r(t)]2〉
dt

= 6
∫

V

D̂s(r − r′,t)d3(r − r′) = 6D̂s(k = 0,t)

(A3)

and thus

〈[r(t)]2〉 = 6
∫ t

0
D̂s(0,t ′)dt ′. (A4)
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