
PHYSICAL REVIEW E 84, 066112 (2011)

Explosive site percolation and finite-size hysteresis
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We report the critical point for site percolation for the “explosive” type for two-dimensional square lattices
using Monte Carlo simulations and compare it to the classical well-known percolation. We use similar algorithms
as have been recently reported for bond percolation and networks. We calculate the explosive site percolation
threshold as pc = 0.695 and we find evidence that explosive site percolation surprisingly may belong to a
different universality class than bond percolation on lattices, providing that the transitions (a) are continuous
and (b) obey the conventional finite size scaling forms. Finally, we study and compare the direct and reverse
processes, showing that while the reverse process is different from the direct process for finite size systems, the
two cases become equivalent in the thermodynamic limit of large L.
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I. INTRODUCTION

Random percolation (RP) [1–7] is a well-studied model
for phase transitions in statistical physics and condensed
matter physics. It consists in randomly occupying sites (site
percolation) or bonds (bond percolation) on a given lattice
with probability p. Neighboring occupied sites merge to form
clusters. As p increases, new clusters are formed or coalesce,
until at a critical value pc, a giant component emerges,
transversing the system, the well-known infinite percolating
cluster.

Classical percolation and all of its variants (continuum
percolation, site-bond percolation, bootstrap percolation, in-
vasion percolation, etc. [1]), are known to be continuous
transitions, exhibiting a divergent correlation length ξ at pc.
Thus, there was a stupendous surprise that recently, Achlioptas
et al. [8] proposed a new method for the occupation of
sites which produces “explosive” transitions: when filling
sequentially an empty lattice with occupied sites, instead of
randomly occupying a site or bond, we choose two candidates
and investigate which one of them leads to the smaller
clustering. The one that does this is kept as a new occupied
site on the lattice, while the second one is discarded. This
procedure considerably slows down the emergence of the
giant component, which is now formed abruptly, thus the term
explosive.

Initially, explosive percolation was considered a first-order
transition [9–11]. Following these first announcements new
work emerged [12,13] that doubted the above result and
claimed that “explosive percolation” is actually a continuous
transition with a very small β exponent [12], thus making
this problem a contentious issue. Also, efforts for the estab-
lishment of a general theoretical framework for the explosive
percolation have been made (e.g., [14] where the equilibrium
nature of a real (discontinuous) explosive percolation process
is discussed based on a Hamiltonian approach). However, a
recently published paper [15] provided a rigorous mathemati-
cal proof that explosive percolation resulting from Achlioptas
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processes, like the product rule, is continuous, ending the
above mentioned controversy. Recently, applications of the
explosive percolation transition for “real” systems have been
proposed [18,19]. Up until now the systems investigated
include networks and lattice bond percolation.

In this paper we extend these investigations to now include
site explosive percolation and its finite-size hysteresis proper-
ties. We find that site explosive percolation indeed exhibits a
very sharp transition with the β exponent “effectively” zero
(β/ν � 0.001) for the case of the sum rule and �0.04 for
the case of product rule. We investigate two variants of a
reverse “Achlioptas process (AP1 and AP2)” and find that
the direct and the reverse processes exhibit a hysteresis loop,
which surprisingly vanishes in the themodynamic limit.

The rest of the paper is organized as follows. In Sec. II we
describe the site percolation algorithm for the direct and the
reverse processes. Moreover, we describe the tools we used
to examine the transition and the behavior of the system. In
Sec. III we present our results and discuss their significance.
Finally, in Sec. IV we sum up our main conclusions.

II. METHODS

In the present paper we use Monte Carlo simulations for
the site percolation problem on an L × L square lattice with
periodic boundary conditions. The algorithm for the case of
the sum rule (APSR) proceeds as follows:

(1) Initially, we start from an empty lattice. We randomly
occupy one single site.

(2) Next, we randomly select a trial unoccupied site, say A.
(3) We calculate the size sA of the resulting cluster to which

A belongs.
(4) We remove the trial unoccupied site A and randomly

select a trial unoccupied site B, different from A.
(5) We calculate the size sB of the resulting cluster to which

B belongs.
(6) In case sA < sB , site A is permanently occupied and site

B is discarded. In case sB < sA, site B is permanently occupied
and site A is discarded. In case sA = sB , we randomly select
and permanently occupy either A or B discarding the other.
Each time, the number of occupied sites t is incremented by
one.
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FIG. 1. (Color online) Achlioptas process according to the sum
rule (APSR) for site percolation. White cells correspond to unoccu-
pied sites while colored cells correspond to occupied sites. Different
colors (red, green, gray, and blue) indicate different clusters. (a) We
randomly select two trial unoccupied sites (yellow), noted by A and
B, one at a time. We evaluate the size of the clusters that are formed
and contain sites A and B, sA and sB , respectively. In this example
sA = 10 and sB = 14. (b) According to AP, we keep site A which
leads to the smaller cluster and discard site B.

(7) We repeat steps (2)–(6) until the entire lattice is covered.
For each “time step” t , we monitor the size of the largest cluster
Smax.

In Fig. 1 we present an illustrative example of the
algorithmic process, as has been previously studied. Next,
we implemented the product rule (APPR). In this case, we
calculate the product of the sizes of the different clusters which
will merge after the placement of the new site, A or B. The only
changes in the above algorithm are at steps (3) and (5). In order
to compare the explosive percolation transition with the classi-
cal site percolation transition, we have simulated random site
percolation, using the efficient Newman-Ziff algorithm [4].

Subsequently, we simulated two variants of reverse explo-
sive percolation processes, in order to study possible hysteresis
phenomena associated with explosive percolation. We have
implemented the following algorithm to simulate the reverse
process AP1:

(1) Initially, we start from a fully occupied lattice.
(2) Next, we randomly select two trial occupied sites, say

A and B. We remove them temporarily from the lattice.
(3) Again we place one of the previous sites, say A and

calculate the size sA of the resulting cluster to which A belongs.
(4) We go back to step (2) and repeat (3) for the case of site

B, calculating the size sB of the resulting cluster to which B

belongs.
(5) In case sA > sB , site A is reoccupied and site B is

permanently discarded. In case sB > sA, site B is reoccupied
and site A is permanently discarded. In case sA = sB , we
randomly select and reoccupy either A or B, permanently
discarding the other. Each time, the number of occupied sites
t is reduced by one.

(6) We repeat steps (2)–(5) until the entire lattice is empty.
For each time step t , we monitor the size of the largest cluster
Smax.

In the above algorithm we did not consider periodic
boundary conditions. In Fig. 2, we present an illustrative
example of the algorithm used. The details are given in the
figure caption. We start with a fully occupied lattice. The
resulting clusters are shown in Fig. 2.

The reverse process AP2 is a slight modification of the
above algorithm for AP1. At step (5) we remove the site which

FIG. 2. (Color online) Reverse Achlioptas process (AP1) for site
percolation according to the sum rule. Blue is for the occupied sites
while white is for the unoccupied sites. Initially, the lattice is fully
occupied. (a) An instance of the process. We randomly choose two
trial sites (yellow), noted as A and B, and remove them from the
lattice. (b) The clusters formed after the removal. (c) We place site
A in the lattice again and calculate the size of the cluster in which
it belongs, sA = 16. (d) We do the same as before for the case of
site B and calculate sB = 26. We remove site A, which leads to the
formation of the smaller cluster and keep site B.

maximizes the resulting cluster. Thus, for AP2 step (5) should
be (5-AP2) In case sA < sB , site A is reoccupied and site B is
permanently discarded. In case sB < sA, site B is reoccupied
and site A is permanently discarded. In case sA = sB , we
randomly select and reoccupy either A or B, permanently
discarding the other. Each time, the number of occupied sites
t is reduced by one. The rest of the algorithmic steps remain
identical to AP1 described above.

Note that the main difference in the selection rule applied
in the direct and in the reverse AP1 algorithm is that in the
direct case, we add the site which minimizes the resulting
cluster, while in the reverse AP1 case, we remove the site
which minimizes the resulting cluster. Also, for clarity, we
performed the opposite procedure in the reverse case [named
reverse AP2 in Fig. 7(b)], i.e., we removed the sites which
maximized the resulting cluster.

To track the behavior of the system, we have studied the
order parameter Pmax defined as the ratio of the sites that
belong to the largest cluster Smax to the total number of sites in
the lattice. For continuous transitions, Pmax follows the scaling
relation [1,2]:

Pmax = L−β/νF [(p − pc)L1/ν] (1)

in the vicinity of pc. For the present analysis, we assume that
the order parameter of the transition follows the conventional
well-known finite size scaling. Recently, it has been suggested
[13] that explosive transitions are continuous, but with an
unconventional finite size scaling. We do not examine this
possibility in the present paper. Moreover, we monitor the
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standard deviation of the size of the largest cluster Smax, defined
as

χ =
√〈

S2
max

〉 − 〈Smax〉2, (2)

which has recently been proposed [11,20] as a criterion to
discern between continuous and explosive transitions.

We also employed the � criterion proposed in [8] which
quantifies the transition width of a system with size N . It
is defined as � = t1 − t0, where t1 is the lowest value for
which Smax > 0.5N and t0 is the lowest value for which Smax >√

N . Achlioptas et al. stated that for continuous (i.e., random)
percolation, this quantity should scale as �/N → 0 for AP
and �/N → const for RP as N → ∞. However, this simple
scaling relation does not seem to hold for bond percolation on
square lattices [9].

The data given in the following figures are averages over
1000 realizations.

III. RESULTS AND DISCUSSION

In this section we present the results obtained from the
calculations. In Figs. 3(a), 4(a), and 5(a) we plot the order
parameter Pmax as a function of p, for the case of RP, APSR,

(a)

(b)

FIG. 3. (Color online) Random percolation (RP). (a) Plot of Pmax

as a function of p for different linear sizes L. (b) Plot of χ/N as a
function of p for the same sizes L as in (a). It is evident that the peaks
of the curves decay as L increases. Colors are L = 200 (black square),
L = 400 (open red circle), L = 600 (green triangle), L = 800 (blue
diamond), and L = 1000 (open wine triangle).

(a)

(b)

FIG. 4. (Color online) Achlioptas process with sum rule (APSR).
(a) Plot of Pmax as a function of p for different linear sizes L for site
percolation. We observe that all plotted lines pass through a single
point at p � 0.695. Moreover, we see a more abrupt jump of Pmax

compared to Fig. 3(a). (b) Plot of χ/N as a function of p for the
same sizes L as in (a). Peaks are almost constant. Colors are L = 200
(black square), L = 400 (open red circle), L = 600 (green triangle),
L = 800 (blue diamond), and L = 1000 (open wine triangle).

and APPR models, respectively, for five different system sizes,
namely, L = 200 (black square), L = 400 (open red circle),
L = 600 (green triangle), L = 800 (blue diamond), and L =
1000 (open wine triangle). For the case of the RP model, we
have recovered the correct critical exponents (β/ν � 0.106
and 1/ν � 0.75). A comparison between Figs. 3(a), 4(a),
and 5(a) shows that Pmax changes more abruptly in the case
of AP models, as expected from an explosive transition.
Moreover, in the APSR case, we observe that at p � 0.695
all lines for the plotted system sizes seem to be crossing
roughly at the same point. This p value coincides with
our estimations of the transition point pc for the APSR
model, using the method of the second largest cluster as
well as the value p at which the χ per lattice site (χ/N)
reaches its maximum value. Using standard finite size scaling
techniques, we find that β/ν � 0.001. More precisely, Eq. (1)
implies that Lβ/νPmax = F [(p − pc)L1/ν] and thus, curves
of Lβ/νPmax vs p for different system sizes should cross at
a single point at p = pc. We have used our Monte Carlo
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(a)

(b)

FIG. 5. (Color online) Achlioptas process with product rule
(APPR). (a) Plot of Pmax as a function of p for different linear sizes
L for site percolation. (b) Plot of χ/N as a function of p for the same
sizes L as in (a). Colors are L = 200 (black square), L = 400 (open
red circle), L = 600 (green triangle), L = 800 (blue diamond), and
L = 1000 (open wine triangle).

data for Pmax vs p for five different sizes L, to create five
functions gi = Lβ/νPmax and used minimization software to
determine the values β/ν and p which minimize the sum
of the squares of the pairwise differences � ≡ �(β/ν,p) =∑

i 	=j (gi − gj )2.
Ideally, �(β/ν,pc) should be exactly zero, but since

numerical errors cannot be avoided, we consider that the values
of β/ν and p that minimize � provide an accurate estimation
of the actual values of β/ν and pc. Such a small value for
the β/ν as the one observed for the APSR, is very unusual
for a continuous transition. Of course, it cannot be determined
whether a transition is actually discontinuous or continuous
with an extremely small β, as already discussed in Ref. [12].
It is, however, very interesting that our calculated value β/ν is
different from the values calculated by Ziff [20] and Radicchi
et al. [10] for bond percolation. They also could not reach
a sharp conclusion regarding the nature of the transition. In
contrast, in [12,13,16,17] numerical evidence is provided for
the continuity of explosive percolation transition. Our findings
indicate that in the case where the explosive transition is
continuous, the site explosive percolation and bond explosive
percolation belong to different universality classes. This result
is both intriguing and unexpected, since in the classical case,
it is well known that the critical exponents do not depend on
the structure of the lattice (e.g., square or triangular) or on the

(b)

(a)

FIG. 6. (Color online) (a) Plot of PmaxL
β/ν as a function of p for

different linear sizes L for site percolation with the sum rule. (b) Plot
of PmaxL

β/ν as a function of p for site percolation with the product
rule for the same sizes as in (a). Colors are L = 200 (black square),
L = 400 (open red circle), L = 600 (green triangle), L = 800 (blue
diamond), and L = 1000 (open wine triangle).

type of percolation (site, bond, or even continuum) [2]. We
must emphasize, however, that Grassberger et al. [13] suggest
that explosive percolation follows an unconventional finite size
scaling.

In Figs. 3(b), 4(b), and 5(b), we plot the normalized standard
deviation χ/N of the size of the largest cluster Smax, for the
same five system sizes L as above, for the RP, APSR, and
APPR cases, respectively. In all cases, χ/N exhibits a sharp
maximum at pc. However, in the RP case, we observe that
the maximum value is a decreasing function of L, while in
the cases of APSR and APPR, it is nearly constant for large
systems [see also Fig. 7(b) below for APSR].

As discussed above, Fig. 5 shows our results from the
product rule simulations (APPR). Using the minimization
technique previously described, we calculated the value of pc

to be pc = 0.756 ± 0.006 in accordance to [21] within error
bounds. As for β/ν we calculated it to be β/ν = 0.04 ± 0.02.
In Fig. 6, we present PmaxL

β/ν as a function of p both for
APSR [Fig. 6(a)] and APPR [Fig. 6(b)]. In both situations, all
curves cross roughly at a single point, namely, the percolation
threshold pc, as is expected from Eq. (1).
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(a)

(b)

FIG. 7. (Color online) (a) �/N as a function of L for RP (red
dots) and APSR (black squares). Both scale as a power law, with
L−0.27 for the RP case and L−0.39 for the APSR case. (b) Plot of
χ (pc)/N as a function of L for RP (red dots) and APSR (black
squares). The blue dashed line is for the theoretical prediction of the
variation of χ (pc)/N for the case of RP. We observe a power-law
decay for the RP case. In the APSR case, χ (pc)/N initially increases
and reaches a plateau for large systems. Both plots are in logarithmic
scale.

In Fig. 7(a), we plot the quantity �/N as a function of
the system size L, both for RP (red dots) and APSR (black
squares) models. We observe a power-law scaling for both
cases, with an exponent ωRP = −0.27 and ωAP = −0.39. As
expected, and in agreement with previous results reported by
Achlioptas et al. for the case of random networks [8] and
by Ziff for bond percolation on lattices [9], we find that the
exponent for the AP case is much smaller than the exponent
for the RP case, indicating a sharper transition for the former.
Again, we observe that the exponent ωAP for the site explosive
percolation is different from the exponent for the case of bond
explosive percolation reported by Ziff in [9], providing an
additional indication that site and bond explosive percolation
belong to different universality classes.

Next, we study how the quantity χ/N scales with the system
size L for the classical and the explosive case. For the RP case,
we expect, by a simple scaling argument, that the quantity χ/N

decays as Lγ/2ν−1. It is known that the variance of the order

(a)

(b)

FIG. 8. (Color online) (a) Plot of the direct (black squares) and
reverse (red dots) AP1 for a 700 × 700 lattice. The hysteresis loop
is evident. (b) The area of the hysteresis loop �H as a function
of 1/L (logarithmic scale). Black squares are for reverse AP1 and
red dots are for reverse AP2, as described in Sec. II. For reverse
AP1, �H ∼ (1/L)0.125 and for reverse AP2 �H ∼ (1/L)0.069. It is
clear that the reverse and forward processes become equivalent in the
thermodynamic limit (L → ∞).

parameter Pmax is related to the susceptibility exponent γ and
scales at pc as var(Pmax) ∼ Lγ/ν . Thus, var(Smax) ∼ Lγ/ν+2.
The standard deviation of the quantity Smax, χ , is the square
root of the variance and thus, χ ∼ Lγ/2ν+1. Finally, χ/N ∼
Lγ/2ν−1. For the RP process, the values of γ and ν are known
exactly and they are γ = 43/18 and ν = 4/3. This leads to the
conclusion that χ/N ∼ −5/48 � −0.1. In Fig. 7(b), we plot
χ (pc)/N as a function of L for RP (red dots) and for APSR
(black squares). Points are Monte Carlo simulation results,
while the dotted line is the theoretically expected slope for
the RP case. We did observe that the RP case data show a
power-law decay, while for the APSR case, we observe an
initial increase of χ/N followed by a plateau for large system
sizes.

Finally, in Fig. 8, we present the results for the direct and
the reverse AP processes (AP1 and AP2) described in Sec. II.
In Fig. 8(a), we plot Pmax as a function of p for a 700 ×
700 lattice, both for the direct and the reverse AP1 cases.
We observe that for a finite system, there exists a hysteresis
loop. Of course, no such loop exists in the classical RP case,
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where the process is fully reversible. We are interested in
determining the scaling properties of this loop. We should
emphasize that in contrast to thermal processes, we cannot
associate the observed hysteresis loops with metastability and
first-order transitions. We merely use the “hysteresis” concept
as a means to investigate and compare different but related
processes. In Fig. 8(b), we plot the area �H surrounded by
the curves corresponding to the direct and reverse processes
for various sizes L as a function of 1/L. Black squares are
for the reverse AP1 and red dots are for the reverse AP2, as
described in Sec. II. The fitting suggests that �H ∼ (1/L)0.125

for the former and �H ∼ (1/L)0.069 for the latter. Thus, we
find that, although in finite systems the reverse processes are
different from the direct process, they become equivalent in
the thermodynamic limit (L → ∞).

IV. CONCLUSIONS

We have studied random (RP) and Achlioptas processes
(APSR and APPR) for site percolation on two-dimensional
square lattices. We report the critical point for the APSR as

pc = 0.695 and pc = 0.756 for APPR. We have shown that the
order parameter Pmax changes more abruptly for the case of AP
processes compared to the RP case. Using standard finite size
scaling techniques, we find indications that explosive site and
bond percolation may belong to different universality classes.
A qualitatively similar behavior was also observed for �/N ,
where the exponents for explosive site and bond percolation are
different. Finally, the quantity χ/N shows at pc a power-law
decay for the case of RP, while it appears to be nearly constant
for large systems in the case of AP models (APSR and APPR).

We also have studied the direct and two variants of a
reverse AP process. We have shown that, although in finite
size systems, the reverse processes are different from the direct
process, they both become equivalent in the thermodynamic
limit.
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