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We study the dynamics of the infection of a two mobile species reaction from a single infected agent in a
population of healthy agents. Historically, the main focus for infection propagation has been through spreading
phenomena, where a random location of the system is initially infected and then propagates by successfully
infecting its neighbor sites. Here both the infected and healthy agents are mobile, performing classical random
walks. This may be a more realistic picture to such epidemiological models, such as the spread of a virus in
communication networks of routers, where data travel in packets, the communication time of stations in ad hoc
mobile networks, information spreading �such as rumor spreading� in social networks, etc. We monitor the
density of healthy particles ��t�, which we find in all cases to be an exponential function in the long-time limit
in two-dimensional and three-dimensional lattices and Erdős-Rényi �ER� and scale-free �SF� networks. We also
investigate the scaling of the crossover time tc from short- to long-time exponential behavior, which we find to
be a power law in lattices and ER networks. This crossover is shown to be absent in SF networks, where we
reveal the role of the connectivity of the network in the infection process. We compare this behavior to ER
networks and lattices and highlight the significance of various connectivity patterns, as well as the important
differences of this process in the various underlying geometries, revealing a more complex behavior of ��t�.
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I. INTRODUCTION

Reaction-diffusion systems are systems in which there is a
competition between two factors: the interaction �reaction�
between the particles and their diffusion on the substrate on
which they move. While such processes have been widely
applied to chemical systems, they can also describe dynami-
cal processes of nonchemical nature in physics, biology, and
even communication systems. The field is vast, and with a
lack of general approach for the treatment of that type of
problem as well as the variety of substrates on which such
reactions take place, we see that several such problems pose
new challenges �1�.

There have recently been new approaches examining such
processes occurring on networks �2–13�. Networks describe
systems from various fields, such as communication �e.g.,
the Internet�, the social sciences, transportation, sexual con-
tacts, ecological systems, protein and gene interactions in
biology, and others. Therefore, a reaction-diffusion process
occurring on a network simply depicts the interaction among
such agents, and as it has been shown recently it may reveal
some very rich dynamics �3,6,7,9,10,14–16�. The Erdős-
Rényi �ER� �17� is a well-known simple model, which gen-
erates random graphs by setting an edge between each pair of
nodes with some probability p, independent of other edges.
This yields �in the limit N→�� a Poisson distribution �for
p�1� of the degree k of the node: P�k�= ��k�k /k!�e−�k� with
�k�= p�N−1�, with p=1 giving the completely connected
graph.

Scale-free �SF� networks, termed after the absence of
characteristic typical node connectivity, exhibit many un-
usual properties compared to simple lattice models, random

graphs, small-world �Watts-Strogatz� networks, and ER net-
works. They have been widely studied during recent years
since they describe many real-world structures �18–21� from
markedly different disciplines, and new systems are added
continuously in the list. This ubiquity explains the intense
interest devoted to the study of the complex network field.
SF networks are defined by a degree distribution which fol-
lows a power law P�k��k−�, where � is a parameter which
controls the broadness of the distribution and is characteristic
of the network. The minimum degree kmin is the minimum
connectivity that a node can have and it greatly influences
the network structure. Although these systems may be very
large, as counted by the number of nodes they encompass,
their diameter is shown to be very small �19,21�, a property
which is usually referred to as the “small-world effect.” The
topology of such a network leads to a drastically different
behavior for the above-mentioned reactions.

II. REACTION-DIFFUSION MODELS

Several types of bimolecular reaction have been studied in
the literature over the past 30 years or so. Two common
models include the A+A→0, as well as the A+B→0 reac-
tion �22–24�, which are two of the most fundamental annihi-
lation processes with many applications �1�. In the first, there
is only one species and two like particles react upon colli-
sion, while in the second one there are two different species
and a reaction occurs only between like-unlike particles. Nu-
merical simulations verified the generation of the depletion
zone for the one species reaction �24�, while the spatial seg-
regation is a very characteristic effect for the reaction of the
two species �23�. Other studies have demonstrated the exis-
tence of several temporal regimes and explained the cross-
overs between the early-time and long-time behaviors �see
�25�, e.g., for a study of the crossover time on a tubular
lattice� and a wealth of other information, rendering these
systems as some of the most heavily studied systems of in-
teracting particles �1,4�
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The behavior of these reactions depends strongly on the
substrate on which they are taking place. For example, in the
annihilation reaction of one kind it was shown that the deple-
tion zone does not appear when the reaction occurs in net-
works �4,5�, as opposed to lattices. Similarly, for the two-
kind reaction the segregation of the reactants does not appear
in scale-free networks �4,6,7�. Thus, it has been shown that
there is a marked difference in the reaction-diffusion process
between lattices and networks. The presence or absence of
correlations in the network construction model has also been
demonstrated to affect the behavior of the reactions
�5,26,27�.

Another example model for diffusion-limited reaction
process is the trapping problem which is A+T→T, where T
is a static site which acts as an irreversible trap, annihilating
all A particles colliding with it. Trapping has been studied in
regular lattices and in fractal spaces �28–32� and recently in
small-world �8�, Erdős-Rényi �9�, and scale-free networks
�3,9�, as well as fractal and pseudofractal networks �11–13�.
In the trapping reaction in low dimensions, the occurrence of
A−T reactions creates a depletion zone around the trap,
which is a form of self-organization of reactants �33�. The
depletion zone growth has been shown, by theory �31,34�
and experiment �35�, to exhibit a nonuniversal scaling with
time for different lattice dimensionalities. However, it has
also been shown �10� that the depletion zone is absent in
regular, Erdős-Rényi, and scale-free networks, appearing
only in very sparse networks.

Other cases in the diffusion-limited reaction scheme in-
clude three species reaction. The reversible process A
+B↔C was studied in �36�. A similar model has also been
used to describe the population dynamics with mutations and
migration effects in well mixed population with no spatial
effects �37,38� or in scale-free networks �39�. The irrevers-
ible process A+B→C has been studied in �40,41�, where the
total amount of product C was found to scale with time as
power law �41� for the subdiffusion process. Such reaction-
diffusion processes have also been applied to dynamic pro-
cesses which include the spread of epidemics and various
interactions in population models in networks �15,16,42�. In
the past 20 years, a large number of works extended the
initial ideas and explained in detail the appearance of these
effects.

The A+B→2B autocatalytic reaction is of the irreversible
chemical reaction type and there are applications of this
model not only in physics but, increasingly, also in biology,
social sciences, and computer science. Particle systems on
lattices have been extensively studied in recent years with
the voter and infection models, modeled by a Markov pro-
cess, being two of the most popular �43�. It has also been
analyzed in three-dimensional �3D� Euclidean structures and
fractal substrates in the low-density regime �44,45�, with a
continuous description by the Fisher equation �46–48�,
which describes the system in terms of front propagation �see
also �49� for the reaction under subdiffusion�. While this pro-
cess has been widely applied to chemical processes, we use it
in our model in a completely different fashion, namely, to
describe the dynamics of infection spreading in networks,
such as computer networks, social networks, etc.

III. MODEL

Several models of infection spreading exist in the litera-
ture built on different algorithms, such as the susceptible-
infected-recovered �SIR� model �50�, the susceptible-
infected-susceptible �SIS� model �51�, the susceptible-
infected-recovered-susceptible �SIRS� model �52�, etc. These
are deterministic compartmental models, based on a spread-
ing mechanism, in which the compartments used consist of
three classes: susceptible, infected, and recovered. When
such processes are applied to networks, each network node
can be in any of these three states, and a measure of infection
is the total number of infected nodes. In contrast to these
models, we use mobile species rather than a spreading pro-
cess to model the infection spreading. This might offer a
better description for real-world systems in which the infor-
mation traverses the networks in packets, such as routers in
computer networks, wireless sensor networks �53�, ad hoc
networks �54�, and peer-to-peer networks �55�. Since these
packets are mobile, it follows that these systems can be de-
scribed by both infected and susceptible agents being mobile.

Specifically, we examine a system of healthy particles
which are infected by a single “sick” particle, which is able
to infect every healthy particle that it comes in contact with.
Both species are mobile. The reaction stops when all healthy
particles are infected. This would correspond to a reaction of
type A+B→2B, which was recently studied �2� on general
graphs and some important special cases, such as lollipops,
cliques, four-regular graphs, and Gn,p graphs. In this work a
set of probabilistic tools was developed to obtain the upper
bounds on the expected value of the infection time.

Here, we extend this model to include a broader category
of networks, i.e., ER and SF networks with varying connec-
tivities, since such systems describe many real-world struc-
tures �18–21�, from a wide variety of fields, such as commu-
nication �e.g., the Internet�, the social sciences,
transportation, sexual contacts, ecological systems, protein
and gene interactions in biology, and others. We focus on the
evolution of density of healthy particles as a measure of the
rate of infection on the network. We perform Monte Carlo
calculations for lattices and networks and compare the cor-
responding behavior for these different substrates.

The problem studied here is an example of the spread of a
virus in networks of routers, where the data traverse the net-
work in packets, information spreading �such as rumor
spreading� in social networks, and the communication time
of stations in ad hoc mobile networks under the existence of
a mobile infrastructure as a virtual intermediary pool for
messages �2�, etc. This follows since in some cases data
packets traverse the network in a random fashion �for ex-
ample, in wireless sensor networks �53�, ad hoc networks
�54�, and peer-to-peer networks �55��. An ad hoc mobile net-
work is a collection of mobile hosts, with wireless commu-
nication capabilities, forming a temporary network without
the aid of any established fixed infrastructure.

Virus attacks in computer networks pose several key
problems regarding intrusion propagation. Various models
have been proposed for studying the effective detection and
defeat of attacks �see, e.g., �56��. Intrusion propagation �the
process of spread of such attacks� has mostly been investi-
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gated under gossip or epidemiological models �57�. Also Ni-
koletseas et al. �58� investigated the analytic and experimen-
tal behavior of several protocols for the attack propagation
problem in networks under a new model of intrusion propa-
gation introduced there. Even and Monien studied the gossip
problem in �59�, where some people wish to distribute sev-
eral rumors among themselves. In this case the specific per-
sons who communicate at each time are fixed in advance by
the designer of the algorithm.

We use a Monte Carlo simulation model to study the dy-
namics of this infection process. In our system, the infected
particles have zero probability for recovery. We consider n
particles with density c, which stays constant during the
simulation, of which one is infected and the rest are healthy.
All particles are initially placed on random sites regardless of
the substrate the reaction is taking place on. They move ran-
domly on the lattice or network and interact with each other.
A lattice site or network node is allowed to have more than
one particle �i.e., no excluded volume restriction�. Whenever
two particles of different types come in contact, the healthy
particles become infected. The substrates we have used are
one-dimensional �1D�, two-dimensional �2D�, and 3D regu-
lar lattices, Erdős-Rényi networks, and scale-free networks.

We generate ER networks as follows: given a finite set of
N nodes, all the N�N−1� /2 pairs are considered and a link
between two nodes is added with probability p. Therefore,
the average degree of each node is �k�= p�N−1�. SF net-
works are constructed using the standard configuration
model �60,61�. This model introduces correlations in the
range 2���3, which are, however, present in most real-
world networks �26�. First, the number of nodes N and the �
parameter of the particular network is fixed, and then each
node i is assigned a number of links ki from the k−� distri-
bution. The value of k lies in the range from 1 to kmax=N
−1 �no upper cutoff value is used for k�. Each node i extends
ki “hands” toward all other nodes. We randomly select two
such hands �that do not belong in the same node� and con-
nect them, thus creating a link. No double links are allowed,
so if two nodes are already connected this link is rejected.
We continue this process until all nodes have reached their
preassigned connectivity.

The process takes place on the largest cluster of the net-
work, which we identify using a breadth-first search algo-
rithm as described in �62�. Given a graph G= �V ,E� and a

distinguished source vertex s, breadth-first search systemati-
cally explores the edges of G to record every vertex that is
reachable from s. It computes the distance from s to each
reachable vertex, which is the smallest number of edges.
Breadth-first search is so named because it expands the fron-
tier between discovered and undiscovered vertices uniformly
across the breadth of the frontier. The algorithm discovers all
vertices at distance r from s before discovering any vertices
at distance r+1.

At least 100 independent realizations were performed,
where the network is built anew in each run. We place n
particles of density c on the system, with one sick particle
and �n−1� healthy particles. All values of the particle density
are normalized to unity. The steps of the algorithm are as
follows:

�1� A particle is randomly selected.
�2� It moves on a random adjacent site �or node in the

case of networks�.
�3� Whenever two or more particles of different types are

present on the same site then all healthy particles are in-
fected.

�4� After each particle on the system has moved once, one
time step �Monte Carlo step� has been accomplished.

�5� We proceed with steps 1–4 until the density ��t� of
healthy particles reaches 0.

IV. RESULTS AND DISCUSSION

Figures 1 and 2 show the decay for the density of healthy
particles in 2D and 3D lattices, respectively. We have also

FIG. 1. ��t� vs t for a 2D 200�200 lattice for different values of
particle density c. Solid lines represent fitting for the short- and
long-time regimes.

FIG. 2. ��t� vs t for a 3D 50�50�50 lattice for different values
of particle density c.

FIG. 3. ��t� vs t for ER networks of N=104 and �k�=10 for
different values of particle density c.
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performed simulations in 1D lattices, which present the most
trivial case, with the density ��t� having a linear dependence
on t and c in the form of ��t��	ct, where 	 is constant. It is
apparent, however, that in both two dimensions and three
dimensions, this behavior switches to an exponential func-
tion in the long-time regime. Since a 2D lattice is a more
restricted geometry than three dimensions, it takes more time
for the particles to become infected in the 2D case, compar-
ing the infection times on three dimensions �see Figs. 1 and
2�. The infection time is significantly reduced for networks,
as we will show later.

Figure 3 show the ��t� results vs t for ER networks for
average degree �k�=10. We also fit here the long-time regime
with an exponential function. The picture looks similar to the
one in lattices, with the infection time being reduced even
more since the particles traverse the network more easily
than a 2D or even 3D lattice. The density is, again, an expo-
nential function of time in the long-time regime.

An unusual property of this process in ER networks is
demonstrated in Fig. 4. We see that the connectivity of the
network plays almost no role for the spread of the infection,
which is shown to proceed just as quickly in both sparse and
dense ER networks. The behavior of ��t� regarding the con-
nectivity of the network is significantly different in SF net-
works, as we will show later. In ER networks, the infection
will spread out with roughly the same rate with �k�=3 or
�k�=100. In addition, this is true regardless of the density of
the particles that traverse the network, and the infection pro-
ceeds at the same rate for networks with different values of
�k�, both for c=0.01 �Fig. 3� and c=1 �inset of Fig. 3�, with

a small deviation for very sparse networks �i.e., �k�=2�. This
behavior is significantly different than other reaction pro-
cesses, e.g., the trapping reaction, in which the average de-
gree was demonstrated to play in important role in the func-
tion of ��t� for sparse networks �9�, as well as the
distribution of the particles on the network and the depletion
zone formation �10�.

The particle density c plays, of course, a large role in the
spreading of the infection, with the larger density having
naturally much lower infection times than low c values. In
Fig. 5, we plot the slope 
 of the exponential long-time
regime against the particle density c for 2D and 3D lattices
and ER networks �Figs. 1–3, respectively�. The slope 
 is
demonstrated here to have a linear scaling with c, with the
value of the slopes in Fig. 5 very close to 1 ��0.98�. It then
follows that 
�−	ct, where 	 is some constant. Therefore,
for these cases, we can claim that in 2D and 3D lattices and
ER networks the density ��t�, in the long-time regime, is an
exponential function of time in the form of

��t� � e−	ct. �1�

We have also investigated the crossover time tc from
short- to long-time regime, which is the time at the intersec-
tion of the fitting of these two regimes. The scaling of tc,
with the particle density c, is presented in Fig. 6. It becomes
apparent that for the 2D, 3D, and ER network case the scal-
ing of tc with c is a power law,

FIG. 4. ��t� vs t for ER networks of N=104 and c=0.01 for
different values of �k�. Inset: same but for c=1.

FIG. 5. Slope 
 of the exponential fit for the long-time regime
for lattices and ER networks. All slopes are �0.98.

FIG. 6. Crossover time tc from short- to long-time regimes for
lattices and ER networks.

FIG. 7. ��t� vs t for SF networks of N=104 and �=2.5 for
different values of particle density c. Inset: slope 
 of the exponen-
tial long-time regime vs c.
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tc � c−�. �2�

However, while the exponent � in Eq. �2� is roughly the
same for 2D and 3D lattices ���0.55�, this is not the case in
ER networks ���0.82�. Therefore, ER networks are shown
to behave considerably different compared to their lattice
counterparts, as far as the crossover time is concerned for
this diffusion-limited reaction model.

We examine the density ��t� in SF networks in Figs. 7–9.
The exponential regime is also present here; however, the
crossover to this behavior is almost completely absent and
this regime is not limited to long-time behavior but spans
almost the entire time domain in the infection process. This
is an important difference compared to ER networks or lat-
tices; in SF networks the exponential time regime is reached
almost immediately after the beginning of the diffusion-
limited reaction process. This phenomenon can be explained
in the basis of the role of the highly connected nodes of the
network �hubs�. In other systems, such as lattices and ER
networks, the infection process takes time to reach the expo-
nential regime because particles cannot find each other as
easily as in SF networks. Here, the infection is spread almost
immediately because of the high centrality of the hubs,
which become the centers of infection for the whole process
as most particles meet and are infected there. Therefore, in
an infection of this type, the crossover which is characteristic
of lattices and ER networks is absent in SF networks, where
the infection spreads very quickly reaching almost immedi-
ately the exponential time regime.

In Figs. 7 and 8 we see that ��t� also has an exponential
decay form. There are, however, deviations from the expo-
nential behavior, especially in well-connected networks �see
inset of Fig. 9�. While ��t� is an exponential function of time
in SF networks, the exponent does not depend linearly on
particle density, as is the case with lattice and ER networks
�Eq. �1�� but is a power-law function of c. The slope is
shown to depend on � �compare the inset of Figs. 7 and 8�,
but an exact solution of the explicit dependence on � is still
lacking.

The role of the connectivity of the SF network is revealed
in Fig. 9, where we show ��t� for c=0.01 different values of
�. Here we see that the infection progresses much more

quickly in a well-connected network �e.g., �=2.0� than a
sparse one �e.g., �=3.0�. This is in contrast to ER networks
�Fig. 4�, where it was shown that the connectivity of the
network varying �k� has little or no effect to the rate of the
infection process. The behavior of ��t� in SF networks is
more complex than their ER counterparts if we compare Fig.
9 with the inset, where the same quantity is shown, but for
c=1, where it is evident that the connectivity of the network
has very little effect on the infection time. Therefore, for
small densities the connectivity of the network becomes the
major factor in the infection process, while for high densities
it plays little or no role. As mentioned above, the exact func-
tion of ��t� and the relationship of c with � in SF networks
are still lacking. From a qualitative point of view, however,
we can say that the significance of connectivity of the net-
work in the infection process is more pronounced in lower
particle densities in SF networks.

V. CONCLUSIONS

In summarizing, we have developed a model to study a
two mobile species infection process, which is related to epi-
demiological modes, such as the spread of a virus in net-
works where data travel in packets, the spread of rumors in
social networks, and information propagation in ad hoc mo-
bile networks. 2D and 3D lattices as well as ER networks can
be described with an exponential decay in the long-time re-
gime in the form of ��t��e−	ct. The crossover time from
short to long time scales with c as a power law in these
systems, with ER networks characterized by a different ex-
ponent than lattices. The connectivity of ER networks was
shown to have little to no influence in the infection process,
with a small deviation for very sparse networks. In SF net-
works the crossover is almost completely absent and the in-
fection spreads immediately, with the highly connected
nodes acting as infection centers. The behavior of ��t� in SF
networks is more complex than their ER counterparts, where
the density c determines how the connectivity of the network
affects the process. For low c in SF networks the connectiv-
ity is shown to severely influence the infection process,
which proceeds much faster in well-connected networks,
while for high values of c the infection progresses with al-
most the same rate in both sparse and dense SF networks.

FIG. 8. ��t� vs t for SF networks of N=104 and �=3 for differ-
ent values of particle density c. Inset: slope 
 of the exponential
long-time regime vs c.

FIG. 9. ��t� vs t for SF networks of N=104 and c=0.01 for
different values of �. Inset: same but for c=1.

SPREADING OF INFECTION IN A TWO SPECIES… PHYSICAL REVIEW E 82, 061122 �2010�

061122-5



�1� D. ben Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems, 1st ed. �Cambridge Univer-
sity Press, Cambridge, 2000�.

�2� T. Dimitriou, S. Nikoletseas, and P. Spirakis, Discrete Appl.
Math. 154, 2577 �2006�.

�3� L. K. Gallos, Phys. Rev. E 70, 046116 �2004�.
�4� L. K. Gallos and P. Argyrakis, Phys. Rev. Lett. 92, 138301

�2004�.
�5� M. Catanzaro, M. Boguna, and R. Pastor-Satorras, Phys. Rev.

E 71, 056104 �2005�.
�6� S. Weber and M. Porto, Phys. Rev. E 74, 046108 �2006�.
�7� S. Weber, M. T. Hutt, and M. Porto, EPL 82, 28003 �2008�.
�8� F. Jasch and A. Blumen, Phys. Rev. E 64, 066104 �2001�.
�9� A. Kittas, S. Carmi, S. Havlin, and P. Argyrakis, EPL 84,

40008 �2008�.
�10� A. Kittas and P. Argyrakis, Phys. Rev. E 80, 046111 �2009�.
�11� Z. Zhang, J. Guan, W. Xie, Y. Qi, and S. Zhou, EPL 86, 10006

�2009�.
�12� Z. Zhang, Y. Qi, S. Zhou, W. Xie, and J. Guan, Phys. Rev. E

79, 021127 �2009�.
�13� Z. Zhang, W. Xie, S. Zhou, S. Gao, and J. Guan, EPL 88,

10001 �2009�.
�14� L. K. Gallos and P. Argyrakis, Phys. Rev. E 74, 056107

�2006�.
�15� V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat. Phys.

3, 276 �2007�.
�16� A. Vespignani, Eur. Phys. J. B 64, 349 �2008�.
�17� P. Erdős and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�18� A. L. Barabási and R. Albert, Science 286, 509 �1999�.
�19� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�20� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�21� S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079

�2002�.
�22� A. A. Ovchinnikov and Y. B. Zeldovich, Chem. Phys. 28, 215

�1978�.
�23� D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 �1983�.
�24� D. C. Torney and H. M. McConnell, J. Phys. Chem. 87, 1941

�1983�.
�25� J. Li, Phys. Rev. E 55, 6646 �1997�.
�26� M. Catanzaro, M. Boguna, and R. Pastor-Satorras, Phys. Rev.

E 71, 027103 �2005�.
�27� L. K. Gallos and P. Argyrakis, Phys. Rev. E 72, 017101

�2005�.
�28� G. H. Weiss, Aspects and Applications of the Random Walk

�North-Holland, Amsterdam, 1994�.
�29� F. Hollander and G. H. Weiss, Contemporary Problems in Sta-

tistical Physics, 2nd ed. �MIT Press, Cambridge, MA, 2001�.
�30� A. Bunde, S. Havlin, J. Klafter, G. Graff, and A. Shehter,

Phys. Rev. Lett. 78, 3338 �1997�.
�31� S. Havlin, H. Larralde, R. Kopelman, and G. H. Weiss, Physica

A 169, 337 �1990�.
�32� N. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl.

Math. 32, 721 �1979�.
�33� H. Peng, S. H. Park, P. Argyrakis, H. Taitelbaum, and R. Ko-

pelman, Phys. Rev. E 68, 061102 �2003�.
�34� D. Ben-Avraham and G. H. Weiss, Phys. Rev. A 39, 6436

�1989�.
�35� S. Park, H. Peng, S. Parus, H. Teitelbaum, and R. Kopelman, J.

Phys. Chem. A 106, 7586 �2002�.

�36� Z. Koza, Eur. Phys. J. B 32, 507 �2003�.
�37� M. Ifti and B. Bergersen, Eur. Phys. J. E 10, 241 �2003�.
�38� M. Ifti and B. Bergersen, Eur. Phys. J. B 37, 101 �2004�.
�39� K.-H. Chang, S.-H. Yook, S. Y. Kim, K. Kim, and D.-H. Ha,

Physica A 388, 1268 �2009�.
�40� L. Galfi and Z. Racz, Phys. Rev. A 38, 3151 �1988�.
�41� S. B. Yuste, L. Acedo, and K. Lindenberg, Phys. Rev. E 69,

036126 �2004�.
�42� A.-C. Wu, X.-J. Xu, J. F. F. Mendes, and Y.-H. Wang, Phys.

Rev. E 78, 047101 �2008�.
�43� P. Donnelly and D. Welsh, Math. Proc. Cambridge Philos. Soc.

94, 167 �1983�.
�44� J. Mai, I. M. Sokolov, and A. Blumen, Europhys. Lett. 44, 7

�1998�.
�45� E. Agliari, R. Burioni, D. Cassi, and F. M. Neri, Diffus. Fun-

dam. 7, 1.1 �2007�.
�46� R. A. Fisher, Ann. Eugen. 7, 335 �1937�.
�47� A. Kolmogorov, I. Petrovsky, and P. Piskunov, Bull. Univ.

Moscow., Ser. Int. Sec. A 1, 1 �1937�.
�48� C. P. Warren, G. Mikus, E. Somfai, and L. M. Sander, Phys.

Rev. E 63, 056103 �2001�.
�49� D. Froemberg, H. Schmidt-Martens, I. M. Sokolov, and F.

Sagues, Phys. Rev. E 78, 011128 �2008�.
�50� M. E. J. Newman, Phys. Rev. E 66, 016128 �2002�.
�51� R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 �2001�.
�52� M. Kuperman and G. Abramson, Phys. Rev. Lett. 86, 2909

�2001�.
�53� C. Avin and C. Brito, Proceedings of the Third International

Symposium on Information Processing in Sensor Networks,
2004 �unpublished�, pp. 277–286.

�54� Z. Bar-Yossef, R. Friedman, and G. Kliot, MobiHoc ’06: Pro-
ceedings of the Seventh ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing �ACM Press, New
York, 2006�, pp. 238–249.

�55� C. Gkantsidis, M. Mihail, and A. Saberi, Proceedings of the 23
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies �INFO-COM�, 2004 �unpublished�.

�56� R. Ostrovsky and M. Yung, Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing
�ACM Press, New York, 1991�, pp. 51–59.

�57� J. O. Kephart and S. R. White, Proceedings of the IEEE Sym-
posium on Security and Privacy, also IBM Technical Report
�IEEE, Oakland, CA, 1991�, pp. 343–359.

�58� S. Nikoletseas, G. Prasinos, P. Spirakis, and C. Zaroliagis, Pro-
ceedings of the Thirteenth Annual ACM Symposium on Paral-
lel Algorithms and Architectures �ACM Press, New York,
2001�, pp. 67–76.

�59� S. Even and B. Monien, Proceedings of the First Annual ACM
Symposium on Parallel Algorithms and Architectures �ACM
Press, New York, 1989�, pp. 318–327.

�60� M. Molloy and B. Reed, Random Struct. Algorithms 6, 161
�1995�.

�61� M. Molloy and B. Reed, Combinatorics, Probab. Comput. 7,
295 �1998�.

�62� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. �MIT Press, Cambridge,
MA, 2001�.

KOROSOGLOU, KITTAS, AND ARGYRAKIS PHYSICAL REVIEW E 82, 061122 �2010�

061122-6

http://dx.doi.org/10.1016/j.dam.2006.04.026
http://dx.doi.org/10.1016/j.dam.2006.04.026
http://dx.doi.org/10.1103/PhysRevE.70.046116
http://dx.doi.org/10.1103/PhysRevLett.92.138301
http://dx.doi.org/10.1103/PhysRevLett.92.138301
http://dx.doi.org/10.1103/PhysRevE.71.056104
http://dx.doi.org/10.1103/PhysRevE.71.056104
http://dx.doi.org/10.1103/PhysRevE.74.046108
http://dx.doi.org/10.1209/0295-5075/82/28003
http://dx.doi.org/10.1103/PhysRevE.64.066104
http://dx.doi.org/10.1209/0295-5075/84/40008
http://dx.doi.org/10.1209/0295-5075/84/40008
http://dx.doi.org/10.1103/PhysRevE.80.046111
http://dx.doi.org/10.1209/0295-5075/86/10006
http://dx.doi.org/10.1209/0295-5075/86/10006
http://dx.doi.org/10.1103/PhysRevE.79.021127
http://dx.doi.org/10.1103/PhysRevE.79.021127
http://dx.doi.org/10.1209/0295-5075/88/10001
http://dx.doi.org/10.1209/0295-5075/88/10001
http://dx.doi.org/10.1103/PhysRevE.74.056107
http://dx.doi.org/10.1103/PhysRevE.74.056107
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1140/epjb/e2008-00302-y
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1016/0301-0104(78)85052-6
http://dx.doi.org/10.1016/0301-0104(78)85052-6
http://dx.doi.org/10.1063/1.445022
http://dx.doi.org/10.1021/j100234a023
http://dx.doi.org/10.1021/j100234a023
http://dx.doi.org/10.1103/PhysRevE.55.6646
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.72.017101
http://dx.doi.org/10.1103/PhysRevE.72.017101
http://dx.doi.org/10.1103/PhysRevLett.78.3338
http://dx.doi.org/10.1016/0378-4371(90)90105-2
http://dx.doi.org/10.1016/0378-4371(90)90105-2
http://dx.doi.org/10.1002/cpa.3160320602
http://dx.doi.org/10.1002/cpa.3160320602
http://dx.doi.org/10.1103/PhysRevE.68.061102
http://dx.doi.org/10.1103/PhysRevA.39.6436
http://dx.doi.org/10.1103/PhysRevA.39.6436
http://dx.doi.org/10.1021/jp0141528
http://dx.doi.org/10.1021/jp0141528
http://dx.doi.org/10.1140/epjb/e2003-00130-7
http://dx.doi.org/10.1140/epje/i2002-10112-3
http://dx.doi.org/10.1140/epjb/e2004-00034-0
http://dx.doi.org/10.1016/j.physa.2008.12.013
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevE.69.036126
http://dx.doi.org/10.1103/PhysRevE.69.036126
http://dx.doi.org/10.1103/PhysRevE.78.047101
http://dx.doi.org/10.1103/PhysRevE.78.047101
http://dx.doi.org/10.1017/S0305004100060989
http://dx.doi.org/10.1017/S0305004100060989
http://dx.doi.org/10.1209/epl/i1998-00427-7
http://dx.doi.org/10.1209/epl/i1998-00427-7
http://dx.doi.org/10.1103/PhysRevE.63.056103
http://dx.doi.org/10.1103/PhysRevE.63.056103
http://dx.doi.org/10.1103/PhysRevE.78.011128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.2909
http://dx.doi.org/10.1103/PhysRevLett.86.2909
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1017/S0963548398003526
http://dx.doi.org/10.1017/S0963548398003526

