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Collective diffusion in a two-dimensional lattice-gas system undergoing first-order phase transition is studied
both theoretically and by means of Monte Carlo �MC� simulations. The nearest-neighbor attractive interactions
result in the formation of a two-phase mixture in which the characteristic size of the dense phase grows with
time as t1/3. It is shown analytically that the evolution of large-scale coverage inhomogeneities is governed by
the diffusion equation with a negative diffusion coefficient. Similar to the phenomenon of Ostwald ripening,
the Gibbs-Thompson effect is responsible for this abnormal diffusion. MC simulations of random jumps of
individual particles also show the presence of negative diffusion caused by the macroscopically inhomoge-
neous distribution of particle density. The collective diffusion coefficients obtained both theoretically and by
means of MC simulations are in satisfactory agreement.
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I. INTRODUCTION

A lattice-gas system with attractive nearest-neighbor in-
teractions undergoes first-order phase transition when its
temperature, T, is lower than the critical one, Tc. In this case,
the statistically homogeneous system is transformed into a
mixture of dense and dilute phases. The phase-separation
process lasts for infinitely long time and manifests itself in
an increase of characteristic lengths of the dense and dilute
phases. Structural inhomogeneities at arbitrary time t are sta-
tistically similar to those at differing time, t�, being scaled by
some factor dependent on the time difference t− t�. Lifshitz
and Slyozov in Ref. 1 �see also Ref. 2� were the first to
describe theoretically the late stage of the two-phase evolu-
tion for the case of a three-dimensional �3D� system with a
small volume fraction of the dense phase. It was shown that
the characteristic size of dense droplets behaves as t1/3. A
similar dependence was also obtained for the two-
dimensional �2D� case. While average radius of the droplets,

R̄, increases with time �R̄� t1/3�, their total number de-
creases: large droplets grow by the condensation of material
diffused from small evaporated droplets. During this coars-
ening process, known in the literature as Ostwald ripening,
the system evolves toward the state with minimum interfa-
cial free energy which is proportional to R̄�t�−1.

The coarsening can be explained as follows. In close vi-
cinity to a droplet of radius R, the particle concentration in
the dilute phase, ndi, is slightly different from the value n�

corresponding to large R, �R→��. This phenomenon is
known in the literature as the Gibbs-Thompson effect. The
quantities ndi and R are related by

ndi�R� = n�e�/R,
�

R
� 1. �1�

Here � is the capillary length. Its explicit value can be ex-
pressed in terms of the lattice-gas parameters �see next sec-
tion�. As long as the individual droplets have different radii,
the density of the dilute phase is not constant and there are

local diffusion fluxes between them. It follows from Eq. �1�
that the concentration ndi in the vicinity of small droplets is
greater than the concentration near large droplets. Thus, mass
transfer from small droplets toward large droplets �the “rip-
ening” process� occurs. The “driving forces” giving rise to
the local fluxes are proportional to the quantity � which in
the literature is associated with the surface-tension coeffi-
cient.

Obviously, at any time t, there are specific droplets with
R=R� which, on average, neither shrinking, nor growing dur-
ing the characteristic times of particle redistribution between
nearest droplets. The corresponding density of the dilute
phase ndi�R��=n� exp�� /R�� can also be considered as
nearly stationary in contrast to the case of droplets with
R�R�. The local densities fluctuate around ndi�R��. Also,
particle redistribution induced by local inhomogeneities oc-
curs locally. Individual particles have low probability to ex-
ecute long random-walk paths. In general, the effective paths
for mass transport begin on the surface of one droplet and
end on the surface of the nearest one with greater radius. We
consider them to be of the order of the characteristic length
of the dilute phase variation, i.e., of the order of the average
distance between droplets, l. The value l can be estimated as
R� /�1/2, where � is the filling of the lattice sites averaged
over both phases. For further analysis, it is convenient to
define particle concentrations of the dense �nde� and dilute
�ndi� phases in the units of occupation probabilities �filling�
of the corresponding lattice sites.

The question that arises is what will occur if one adds a
small amount of particles, thus increasing their filling by
���r� �r is the lattice site coordinate�. The characteristic
length of �� variations is assumed to be much greater than
the interdroplet distance, l. How can the evolution of �� be
described? Obviously, fast redistribution of the excessive
particles between nearest droplets should occur just after the
deposition. Accordingly, R��t ,�� increases to the value
R��t ,�+���. Due to the dependence of �� on r, the quanti-
ties R� and ndi�R�� also become dependent on r. Moreover, it
follows from Eq. �1� that, on average, the local density of the

PHYSICAL REVIEW B 80, 104203 �2009�

1098-0121/2009/80�10�/104203�7� ©2009 The American Physical Society104203-1

http://dx.doi.org/10.1103/PhysRevB.80.104203


dilute phase, ndi�r�, in the regions with small �� becomes
greater than that in the regions with high ��. This gives rise
to a net flux of particles toward the region where �� has
increased �along the gradient of ���. In other words, a pro-
cess of negative diffusion should occur here. Any initial
large-scale inhomogeneity of �� increases with time. This is
in contrast to the normal diffusion process which results in
the formation of homogeneous structures.

II. DIFFUSION COEFFICIENT OF TWO-PHASE
MIXTURE

To obtain an explicit term for the negative diffusion coef-
ficient, we consider the simplest lattice system, i.e., the lat-
tice with square symmetry. The values of � and n� can be
taken from Refs. 3 and 4, respectively. These are given by

� = − a ln�sinh−2�

2
� �2�

and

n� � e−2	�	, �3�

where a is the lattice constant and � is the energy of particle-
particle interaction measured in units of kT. The approxima-
tion shown by ��� is valid when e−	�	�1. If we deal with
the two-phase mixture, the above criterion for � is fulfilled
with sufficient accuracy even for the critical value of the
interaction parameter, �c. In this case the exponent is given
by

e−	�c	 � e−1.76 � 0.17.

The evolution of particle density in the dilute phase is
governed by the continuous equation

�tn
di�r,t� = − �rj�r,t� , �4�

where j�r , t� is the density of particle flux in the dilute phase.
Let us multiply both parts of Eq. �4� by eikr and integrate

over the volume of the dilute phase. Then the left part re-
duces to

�t

di�t�

eikrndi�r,t�dr −
1

	t�
di�t+	t�
− 


di�t�
�eikrndi�r,t�dr ,

�5�

where di�t� and di�t+	t� indicate the volumes occupied by
the dilute phase at the times t and t+	t, respectively, as
	t→0. The first term in Eq. �5� is the time derivative of the
Fourier component of the dilute phase density �tnk

di defined
by

nk
di�t� = 


di�t�
eikrndi�r,t�dr . �6�

The second term in Eq. �5� describes the effect of the
droplet-boundaries displacements during the interval 	t. It
can be rewritten in the form

− �
L

eikrL
 dsLj�rL + 
L�ndi�rL + 
L�eik
L, �7�

where the integrations are over the surfaces of individual
droplets labeled by the index L. The vector dsL is oriented
outward from the droplet L, as shown in Fig. 1, and 	dsL	 is
the element of the Lth surface. The sum runs over all drop-
lets.

After Fourier transforming, the right-hand side of Eq. �4�
can be written as

�
L

eikrL
 dsLj�rL + 
L�eik
L + ik

di

dreikrj�r,t� . �8�

Similar relationships can be derived for the evolution of the
dense phase. Usually, the diffusion of particles within the
dense phase can be neglected. Mathematically, this is ex-
pressed as

�tn
de�r,t� = 0, �9�

where nde�r , t� is the particle density within the dense phase.
Accounting for the evolution of the droplet boundaries, Eq.
�9� can be rewritten in the Fourier domain as

�tnk
de + �

L

eikrL
 dsL
j�rL + 
L�

1 − n�
di eik
L = 0, �10�

where the definition of nk
de is similar to that given by Eq. �6�

but with the integration over the dense phase. The denomi-
nator in the integrand of Eq. �10� takes into account the
circumstance that not each lattice site is occupied in the
dense phase. The condition

nde = 1 − ndi � 1 − n�, �11�

which neglects a small capillary effect, is used here
�see Ref. 4�.

Using Eqs. �5�–�11� and the condition n��1 we arrive at

�tnk
de + �tnk

di = − ik

di

dreikrDdi�rn
di�r,t� . �12�

We have used here the explicit term for the particle flux in
the dilute phase given by

FIG. 1. Schematics of a 2D system undergoing first-order phase
transition: droplets of the dense phase �clusters� are shown by gray
islands; individual particles are shown by dots.
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j = − Ddi�rn
di�r,t� . �13�

This means that in the absence of external forces the flux is
only due to diffusion in the dilute phase. Ddi is the diffusion
coefficient of the dilute phase, which is considered to be
known. In the limiting case, when only the dilute phase is
present, the term on the right side of Eq. �12� reduces to
−Ddik2nk

di, as in the case of the usual diffusion equation gov-
erning the density evolution.

Our purpose is to derive the evolution equation for small
inhomogeneous coverage added to the statistically homoge-
neous system. It should be emphasized that the inhomogene-
ity scale is chosen to be much greater than the interdroplet
distance, i.e., kl�1. In this case, the short-range variations
of ndi�r , t� in Eq. �12� can be neglected, thus simplifying the
problem. It looks quite reasonable to assume ndi to be depen-
dent on r through R��r�: ndi�r�=ndi�R��r��. Hence,

�rn
di�r� �

�ndi�R��
�R�

�R�

��

���

�r
. �14�

Let us assume that �� depends on x-coordinate only. Then,
considering �� to be small, we obtain from Eqs. �12� and
�14�

�t��k � − ikDdi�ndi

�R�

�R�

��

 dreikx���

�x
, �15�

where ��k=nk
di+nk

de. A straightforward integration in Eq.
�15� is possible. It is convenient to integrate first over the
y-variable as shown in Fig. 2. Thus we have


 dreikx���

�x
= Ly�1 − ��
 dxeikx���

�x
= − ik�1 − ����k,

�16�

where Ly is the system size in the y direction.
Using Eqs. �15� and �16� we obtain the final equation for

the evolution of the excessive coverage �� in the form

�t��k = − Dcollk
2��k, �17�

where Dcoll can be interpreted as the collective diffusion co-
efficient. It is given by

Dcoll = − Ddi�1 − ��
n��

R�2

�R�

��
, �18�

where Eq. �1� was used.

Theoretical studies of coarsening kinetics �see, for ex-
ample, Refs. 5–9� show that the derivative �R�

�� is positive.
The following comments can help to elucidate this point. Let
us consider two systems where at some time, t, the radii R�

are equal but the values of � are different. On average, the
distance between droplets in the system with greater � are
smaller than in the other one. Therefore, the redistribution of
particles between droplets �as well as cluster growth� is
faster in the first case. This shows that �R�

�� is positive. Hence,
the collective diffusion coefficient, Dcoll, given by Eq. �18�,
is negative.

A similar expression for Dcoll can be derived from a rather
formal analysis based on the representation of the collective
diffusion coefficient in the form

Dcoll = DJ
��

� ln �
, �19�

where Djump is the jump diffusion coefficient, which de-
scribes the particle mobility; � is the chemical potential of
the system. For the model of a 2D lattice gas with NN at-
traction, considered here, Djump was obtained in Ref. 4. It is
given by

Djump = D0
1 − �

�
ndi, �20�

where D0��0a2 and �0 are the diffusion coefficient and
jump frequency of noninteracting particles, respectively for
the Langmuir gas model. �See Eq. �9� in Ref. 4. In real sys-
tems, the value of �0, being dependent on the temperature,
may vary in wide ranges.� In Eq. �20�, as previously, we
consider ndi�1 and ndi�e−2	�	.

The derivative ��
� ln � , known in the literature as the ther-

modynamic factor, can be easily obtained from the following
analysis. The chemical potential and the density of the dilute
phase are related through the condition �see Eq. �3� in Ref. 4�

ndi = e�, �21�

which is valid for any rarified gas when the particle-particle
interactions are negligible. Using Eqs. �1� and �21� and set-
ting R=R� in Eq. �1�, we can easily obtain

��

� ln �
= −

�

R�2�
�R�

��
. �22�

Substituting Eq. �22� into Eq. �19� we obtain

Dcoll = − D0�1 − ��
n��

R�2

�R�

��
, �23�

that, with regard for D0=Ddi, coincides with Eq. �18�. One
point which should be discussed in more detail is that there is
no a priory evidence of the applicability of Eq. �19� for the
system undergoing phase transition. Strictly speaking, Eq.
�19� is valid for equilibrium systems where the relaxation
processes have finished. The coincidence of Eqs. �18� and
�23� becomes clear if one takes into account that the ripening
is a very slow process which occurs under the condition of
local equilibrium between different phases. This condition is
satisfied during the late stages of ripening.

FIG. 2. The integration path along the y axis is shown by the
solid line.
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Dcoll depends on time through R��t�. When R�� t1/3, the
diffusion coefficient behaves as t−1/3. Therefore, the effect of
negative diffusion is more pronounced when the droplet radii
are small.

To obtain an explicit term for Dcoll, one should specify the
dependence R����. Its approximate value can be derived for
some specific cases. The simplest situation is when some
extra material is redistributed among different droplets, as-
suming that the number of droplets remains constant �the
formation of the scaling regime requires much longer time
than the diffusion time D0l−2�. For a fixed total number of the
droplets, we have R���1/2 and �R�

�� = R�

2� . In this case we have

Dcoll = −
1

2
D0

�1 − ��
�

n��

R� . �24�

This formula corresponds to the nonequilibrium droplet-
distribution function. After establishing the scaling regime of
the droplet evolution, the dependence of R� on � becomes
more complicated. There were many theoretical attempts to
obtain it for small, but still finite, values of �. The simplest
approximation, which can be justified when ��1, is given
by �see the Appendix�

R���� = �8

9

Ddin��

	ln �	
t�1/3

. �25�

Substituting Eq. �25� into Eq. �23�, we obtain

Dcoll = −
1

3
D0

�1 − ��
�

n��

R�	ln �	
. �26�

This value of Dcoll is smaller by the coefficient 3
2 	ln �	 than

that given by Eq. �24�. In the next section, we will use Eqs.
�24� and �26� in order to compare them with the results of
computer simulations.

III. COMPUTER SIMULATIONS

The purpose of computer simulations is to show the pres-
ence of negative diffusion in a macroscopically inhomoge-
neous lattice-gas system undergoing first-order phase transi-
tion. Also, it seems useful to compare the quantitative results
of the analytical consideration with the data of Monte Carlo
simulations. The comparison can show whether our approach
is applicable for studying similar systems with negative dif-
fusion. The consideration of the simplest lattice-gas model
with square symmetry and NN interactions makes it possible
to compare directly the theoretical and MC data without us-
ing any phenomenological or fitting parameters. The diffu-
sion coefficient is obtained in both cases for the same set of
the model parameters, namely, the interaction energy �, cov-
erage �, and jump frequency �0.

Simulations of the particle migration were executed in a
system of 130
300 sites. The smaller size is along the x
axis. We simulated random jumps of individual particles. The
jump probabilities, �ij, from the occupied ith site to the
nearest-neighbor free site j were taken in the form

�ij = �0e−	�	mj , �27�

where mj is the number of NN occupied sites. Jump prob-
ability �27� ensures the detailed balance conditions. Also it is

consistent with our assumptions that within the dense phase
the mass transport can be neglected. It follows from Eq. �27�
that the jump probabilities inside dense droplets are propor-
tional to e−3	�	→0. Other possible models of jump probabili-
ties are discussed in Ref. 10.

The computer time was monitored in units of Monte
Carlo steps �MCS�. Each MC step corresponds to �4�0�−1 of
real time, t, i.e., the time used in the theoretical part. In the
course of one MCS, each lattice site is interrogated once on
average for the probability of a particle to jump out of it.
More details are given in Refs. 11–14.

To show that at undercritical temperatures the particle flux
is along the gradient of � �the uphill flux� we have used the
following scheme for the computer simulations. Initially,
particles were randomly arranged on the lattice with average
coverage �=0.15. Then they were allowed to jump with
probabilities given by Eq. �27�. The total number of particles
is constant during 20 000 MCS. After that, the extra material
��=0.15 was added gradually �one particle per 10 MCS� to
the central strip of size 30
300, thus providing the macro-
scopically inhomogeneous coverage distribution: �=��x�.
This process lasted for an additional 13 500 MCS. The re-
gime of low deposition rate prevents the formation of new
clusters. After that, the inhomogeneous system evolved for
an extra 10 000 MCS. Hence, the overall simulation time for
an individual run was equal to 43 500 MCS.

Figure 3 illustrates a typical coverage distribution after
38 500 MCS. The x coordinate is given in units of the lattice
constant a. In the central area close to x=65 the total number
of particles were increasing when 	�	��c. We calculated the
increase of the particle numbers, 	N, inside the region
53�x�77 for the last 5000 MCS. The coverage distribution
after 43 500 MCS is very similar to that shown in Fig. 3 �the
two are almost indistinguishable by eye due to the small time
interval between them�.

Considering the fluxes at the boundaries of the selected
region to be governed by the diffusion mechanism, we can
express 	N as

FIG. 3. The coverage profile in the x direction after 38 500
Monte Carlo steps. The data are averaged over 1000 individual
runs.

ARGYRAKIS et al. PHYSICAL REVIEW B 80, 104203 �2009�

104203-4



	N = − 
��Dcoll
��

�x
��

x=53
−��Dcoll

��

�x
��

x=77
�

� 300 � 5000/�4�0� , �28�

where the factors 300 and 5000 / �4�0� signify the length of
the stripe and the measurement time, respectively. Equation
�28� is applicable for obtaining the diffusion coefficients if
only insignificant variations of the coverages and their gra-
dients in the region 53�x�77 occur during the time inter-
val of 5000 MCS. This condition is satisfied for all calcula-
tions presented below.

Taking into account that the values of Dcoll and 	 ��
�x 	 at

symmetric points x=53 and x=77 should be equal to each
other, it is possible to use Eq. �28� for obtaining the diffusion
coefficient �it can be easily seen from Eq. �28� that Dcoll
�0 if 	N�0�.

To compare analytical expressions �24� and �26� with the
diffusion coefficients, obtained from MC simulations of the
material transfer �i.e., obtained using Eq. �28��, the informa-
tion about R� is required. Approximately, R� can be consid-

ered to be equal to the average value of the cluster radius, R̄.

The values of R̄ and the average cluster size, Lcl, shown in

Fig. 4, are related through the equation R̄= 2
� 
Lcl. The quan-

tity Lcl was defined as the ratio of the number of occupied
lattice sites along the thick line, shown in Fig. 2, to the total
number of clusters crossed by it.

Lcl was calculated by averaging over 1000 individual runs
for the strips x=53 and x=77. We can see an essentially
different behavior of Lcl�t� inside three specific time intervals
where �i� the initial clusters grow, �ii� the new particles are
deposited, and �iii� the evolution of inhomogeneous coverage
occurs.

Figure 5 shows the diffusion coefficients obtained from

both the MC simulations �stars� and the ones calculated us-
ing Eq. �26� �squares�. We studied the mass transfer through
the boundaries x=53 and x=77 into the central region during
the time interval 43500–38500=5000 �MCS�. The values of
R� were obtained in the central point of this interval. We see
quite good agreement of the data with the exception of the
values for 	�	=2.0. The disagreement in this point �about
36%� may be attributed to the close vicinity of the interac-
tion parameter to the critical value. The accuracy of the value
n� �n��e−2	�	� in this case is not too good. A better agree-
ment can be achieved if we change n� by the value
e−2	�	e�/R�

. The last factor takes into account the increase of
the dilute phase concentration due to the finite radii of the
droplets. The triangles show the modified diffusion coeffi-
cients with account for this correction. In this case, the dis-
agreement at 	�	=2 is less �about 27%�. Maybe, the agree-
ment of theoretical and MC data could be better if the
variation of the coverage with the distance will be smoother
to guarantee the linear response regime of the evolution �see,
for example, simulations in Ref. 15�. In this case the simu-
lation procedure will require larger lattice-gas system and
much more simulation time.

The theoretical diffusion coefficients obtained from Eq.
�24� are approximately two times greater than those in Fig. 5.
This shows that in the time interval �38500,43500� the dif-
fusion proceeds under conditions of quasiequilibrium rather
than in the nonequilibrium regime which was assumed in
course of the derivation of Eq. �24�.

IV. CONCLUSION

The phenomenon of negative diffusion �see, for example,
Refs. 16–18� is known in the literature for a long time. The
mechanism, described here, is caused by the natural ten-
dency to minimize the free energy in course of the first-order
phase transition that is the continuation of the spinodal de-
composition at late stages of the two-phase separation �Ref.

FIG. 4. The dependence of the average cluster size on time for
three different values of interaction parameter �; x=53. The linear
dependence in the range of 20 000–33 500 MCS is due to the con-
stant flux of extra particles which dominates the quasiequilibrium
ripening mechanism resulting in t1/3 growth law.

FIG. 5. The diffusion coefficients obtained for five different
values of the interaction parameter �; x=53;77. The lines serve for
visual convenience only.
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19�, and evolves without the interference of any external
force. Our theory can be improved further in the part that
concerns the choice of a more realistic physical model for
obtaining the dependence R��t ,��. The scheme of the com-
puter simulations, outlined above, is not common for the
lattice-gas systems. In contrast to papers �Refs. 4, 11, and 12�
where the center-of-mass particle displacements were stud-
ied, the present MC procedure deals with the particle flux
caused by the gradient of coverage. We start from mimicking
the microscopic random displacements of individual par-
ticles resulting in the formation of macroscopic fluxes de-
scribed by the diffusion coefficients. This approach which
gives the possibility of direct numeric calculations of the
collective diffusion coefficients contradicts the computer
simulations in Refs. 4, 11, and 12. In these studies the par-
ticle mobilities �jump diffusion coefficients� were obtained
from microscopic dynamics unlike the collective diffusion
coefficients.

It was not within our purpose to develop a complete or
universal theory of diffusion in systems with ripening. Nev-
ertheless, in three dimensions and in systems with greater
radii of particle-particle interactions, the qualitative physical
picture and theoretical analysis may be very similar to ours.

The phenomenon of negative diffusion can be responsible
for the evolution of nanostructures. In this context, it can be
used to reduce the manufacturing cost of nanostructures with
complex geometries.
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APPENDIX

To derive Eq. �25�, we will follow the general scheme of
the Lifshitz-Slyozov theory modified for two-dimensional
system. The steady-state limit for the concentration ndi�r� is
given by

�2ndi

�r2 = 0, �A1�

which follows from the continuity equation where the term
�ndi /�t is neglected. Using Eq. �1�, the boundary conditions
can be written as

ndi�rL + 
L� = n��1 + �/RL� , �A2�

where RL is the radius of the Lth cluster. If only single drop-
let is available, the solution of Eq. �A1� is given by

ndi�r� = c0 + c1 ln r . �A3�

Taking into account the boundary condition �A2� at r=R and
at arbitrary distance r=rb, given by ndi�rb�=n�, it is possible

to obtain the two constants c0 and c1. The changes of the
droplet radius, R, are given by the balance equation

�R

�t
=�Ddi�ndi�r�

�r
�

r=R

. �A4�

The radius R increases or decreases with time whether or not
the concentration ndi�rb� is greater or smaller than ndi�R�.

If we deal with an ensemble of droplets, the situation is
more complicated. But again, in close vicinity to a given
droplet the value ndi is determined by Eq. �A2� that does not
depend on the surroundings. Far from it, ndi�r� depends
rather on the positions of the other droplets than that of a
given one and it is reasonable to consider ndi to be indepen-
dent of r, i.e., ndi�	r=rb	�=n�rb�=n�R��, where rb=R� /��.
For this choice of rb, the droplets with R=R� are neither
growing, nor shrinking as it was assumed in the Introduction.

Using Eqs. �A2�–�A4�, we obtain

�R

�t
=

p

1 +
ln�R/R��

ln ��

� 1

R�
−

1

R
� 1

R
, �A5�

where p=Ddin�� / 	ln ��	. It is convenient to introduce new
variables

t� = pt, � = 3 ln R��t�, u = R/R�.

Then the rate Eq. �A5� can be rewritten in terms of the new
variables as

�u3

��
=

u − 1

R�2dR�

dt�
�1 + ln u/ln ���

− u3. �A6�

For small values of �, Eq. �A6� can be simplified by neglect-
ing the second term in the brackets of the denominator. In
this case the problem reduces to the Lifshitz-Slyozov theory.
The difference is only in the definition of the constant p,
which in our case has the extra factor 	ln ��	−1. Repeating the
arguments of Lifshitz and Slyozov �Refs. 1 and 2� we can
easily obtain the dependence R��� , t�. It is given by

R� = �4

9
pt�1/3

= �8

9

Ddin��

	ln �	
t�1/3

. �A7�

It follows from �A7� that in contrast to the three-dimensional
case, the dependence of R� on � in the range of small �
cannot be neglected. At the same time, in the course of deri-
vation of Eq. �A7� we have assumed tacitly that ��n�. This
imposes the restriction on the validity of Eq. �A7� also from
the side of very small �, which are not considered in the
present work.
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