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Abstract. We investigate the properties of correlation based networks originating from economic complex
systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker
links (low correlation) of the system are found to contribute to the overall connectivity of the network
significantly more than the strong links (high correlation). We find that nodes connected through strong
links form well defined communities. These communities are clustered together in more complex ways
compared to the widely used classification according to the economic activity. We find that some companies,
such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The
communities are found to be quite stable over time. Similar results were obtained by investigating markets
completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method
may be also useful for other networks generated through correlations.

PACS. 89.65.-s Social and economic systems – 89.75.-k Complex systems – 89.90.+n Other topics in areas
of applied and interdisciplinary physics

1 Introduction

Recently there has been a growing interest to better un-
derstand complex systems. A complex system is gener-
ally composed of many interacting elements in various
ways. A network representation is found useful to char-
acterise the system, by associating each element by a
node and each interaction by a link (weighted or not).
To understand the network structure and function, var-
ious tools from statistical physics have been developed.
These tools, such as scaling theory, percolation, and frac-
tal analysis [1–10], enable us to extract useful information
and to better describe properties of complex systems. Ex-
amples of complex systems that have been recently inves-
tigated from this perspective include the Internet [11,12],
the World Wide Web [13], communication networks [14],
food webs [15], sexual contact networks [16] and economic
networks [17,18,21].

The problem of extracting useful information from a
system becomes more difficult in the case of correlation
based networks, since these networks are usually com-
plete graphs (all links between elements are present). On
the other hand, understanding the behavior of networks
originating from empirical correlation matrices is a very
important task in many scientific fields, since correlation
matrices appear in the study of multivariate time series.
In order to make correlation based networks simpler to
understand and extract information from them, the use of
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filtering techniques was suggested [17,18]. Filtering tech-
niques, like the Minimum Spanning Tree (MST) [17], re-
duce the number of links of the network and keep all the
nodes connected with a total maximum weight.

In this work we study correlation based networks by
exploring the evolution and temporal dynamics of the
structures occurring after the removal of a certain frac-
tion q of links, without forcing all the nodes to remain
connected to the network. We identify a particular value
of this fraction, q ≈ 0.995, close to which structural prop-
erties of the network become clearer. We therefore study
the communities of stocks at this particular point.

2 Methods: creating and destructing
the network

In many complex systems the network is built by us-
ing correlations between the dynamics of the nodes. This
is, for example, the case in economic networks, where a
weighted link is assigned between two nodes representing
different stocks according to the cross correlation between
the return time series of each stock.

In the present study we create a correlation based net-
work using the closing prices of a portfolio comprising
of 1062 stocks traded in the New York Stock Exchange
(NYSE) in the period 1987 to 1998. From the daily clos-
ing price time series we can create a correlation based
network by following the procedure that we describe bel-
low. First we calculate the correlation coefficient between
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each pair of stocks, i and j defined as,

ρij =
〈rirj〉 − 〈ri〉 〈rj〉√(

〈r2
i 〉 − 〈ri〉2

)( 〈
r2
j

〉 − 〈rj〉2
) (1)

where 〈. . . 〉 is the time average over the investigated time
period. Here ri = ri(t) is the logarithmic return, defined
by ri(t) = lnPi(t)−lnPi(t−Δt), and Pi(t) is the daily clos-
ing price of stock i at day t. If two stocks, i and j, are com-
pletely correlated (anti-correlated) then ρij = +1(−1),
while if the two stocks are completely uncorrelated then
ρij = 01. In our case Δt = 1 day. By calculating the
correlation coefficient for all pair of stocks, we obtain the
correlation coefficient matrix of the system. Such matri-
ces were studied in [19,20] and are known to have a large
amount of noise, that can be attributed to false correlation
estimates due to the finite size length of the time series.

An empirical correlation matrix can be viewed as a
fully connected weighted network by transforming the cor-
relation coefficient to a distance, using an appropriate
function as a metric [17]. The function that we used for
this transformation is [17]

dij =
√

2 (1 − ρij), 0 ≤ dij ≤ 2, (2)

where small values of the distance dij imply strong corre-
lation for the pair of stocks, i and j, and vice versa.

Next we investigate two methods of removing the
links from this fully connected network, both resulting
in sparser graphs with totally different properties. From
these differences we can learn about the structure of the
network. We begin by sorting the weights in increasing or-
der. In the first method we repeatedly remove links from
lower to higher values of dij (high to low correlations).
In the second method we repeatedly remove links starting
from the highest values to lowest values of dij (low to high
correlations). A similar approach to our second method
was implemented by Onnela et al. [21]. In this work the
authors used two sets, one of 116 and one of 477 stocks
traded in the NYSE, and they begun adding links to the
initially completely disconnected network starting from
the highest to lowest correlation values.

We find that after removing the stronger correlated
links of the network (links with low dij values), the net-
work remains connected until we have removed almost
99% of its original connections. On the contrary when we
remove links starting from the weakest correlated (links
with high dij values) the network starts to lose its nodes
much earlier, after removing only about 30% of its origi-
nal weakest links (see Fig. 4a). This result suggests that
strong links and weak links play very different roles in the
topology. While strong links are usualy situated in pos-
sition which increases local connectivity within the com-
munities, the weak links contribute more to the global
connectivity, i.e. in connections between communities. An
interesting observation is that in both cases the disintegra-
tion of the network takes place gradually, mainly because

1 This is true for linearly correlated time series.

some very small clusters become disconnected from the
largest cluster.

In Figure 1 we plot some representative results of
the above procedure. Figure 1a shows a representation
of a cross correlation matrix of a portfolio of 1062 stocks
traded at the NYSE. In Figure 1b we draw the network
left after removing 99.5% of the stronger links of the initial
fully connected network and in Figure 1c we draw the net-
work left after removing the same fraction of the weaker
links. From this figure it is apparent that the two net-
works, even by visual investigation, are totally different.
When we remove the stronger links we get a network that
has more nodes but less structure, while when we remove
the weaker links the resulting network has fewer nodes,
but these nodes are clustered together mainly in accor-
dance to the sector of economic activity. In order to clas-
sify the stocks into different sectors we used the Standard
Industrial Clasification (SIC) system for the classification
of industries [22].

To further investigate the way these clusters are inter-
connected we apply the k-clique method to detect com-
munities [23] after removing q = 0.995 of the weak links.
The reason for choosing this value will be clear later when
we find that close to this value structural properties of the
communities are clearer to see. A maximal complete sub-
graph of a network is called clique. In addition, a smaller
complete subgraph with k nodes, that in general can be
included in a larger one, is called k-clique. In a network, a

large complete subgraph of size s, (k ≤ s) contains
(

s
k

)

different smaller complete subgraphs of size k (k-cliques).
The algorithm we are using [23] is able to calculate all the
k-cliques of the network, if the network is sparse enough,
and therefore it allows us to identify a wealth of commu-
nities of stocks. Examples of such communities are shown
in Figures 1d, 1e and Figure 2.

3 Results

The first finding is that when we remove the weaker
links, the nodes are clustered according to the sector of
economic activity, and this is in general expected, since
the intra-sector correlations between stocks are usually
very strong. Typical mean values of weights of links clas-
sified as intra-sector, inter-sector, intra-sub-sector, etc.
and their estimated standard deviation were computed
by Tumminello et al. [24] using a bootstrap technique.
However, with our approach we can identify also, in the
same community, nodes from different sectors. As an ex-
ample, in Figure 1d we find a very well-connected com-
munity of the stocks AIG(tan), AXP(tan), BMY(red),
C(tan), CL(red), DIS(gray), EMR(green), FNM(tan), GE
(green), JPM(tan), KO(red), MER(tan), MMC(tan), SGP
(red), TA(tan) and TY(tan). As can be seen from the
color code, these stocks belong to 4 different sectors.
The meaning of this result is probably related to other
activities of the companies that are not reflected by their
main sector classification, but they affect the performance
of the stocks in a non trivial way.
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Fig. 1. Visualization of the different network structures that occur after removing 99.5% of the links of the initial fully connected
network. (a) Pictorial representation of a cross correlation matrix of a portfolio of 1062 stocks traded at the NYSE. (b) The
network after removing the stronger links of the initial fully connected network. (c) The network after removing the weaker links
of the initial fully connected network. (d) A community of 16 stocks, belonging to 3 overlapping cliques of 14 elements. The tick
names of the stocks forming this community are: AIG(tan), AXP(tan), BMY(red), C(tan), CL(red), DIS(gray), EMR(green),
FNM(tan), GE(green), JPM(tan), KO(red), MER(tan), MMC(tan), SGP(red), TA(tan) and TY(tan). (e) A community of
19 stocks, belonging to 3 overlapping cliques of 17 elements. The tick names of the stocks forming this community are: AEP(blue),
AIT(blue), BEL(blue), BGE(blue), BLS(blue), CPL(blue), CSR(blue), D(blue), DUK(blue), ED(blue), FPL(blue), GTE(blue),
KO(red), NSP(blue), PCG(blue), PEG(blue), SBC(blue), SO(blue) and USW(blue). The color codes that we use are according
to the Standard Industrial Classification (SIC) system for classifying industries.

Fig. 2. Further examples of communities of
stocks that we identified using the k-clique
method to the network that remains after re-
moving 99.5% of the links of the weaker orig-
inal fully connected network.

In Figure 2 we present a variety of further communi-
ties of stocks belonging to one or more sectors of economic
activity. Most of these communities are almost fully con-
nected subgraphs of the network. From Table 1, where the
tick names of each community’s stocks are listed, we can
identify several stocks that belong to more than one com-
munity. This finding of overlapping communities is novel

and very important since it points that there is a number
of stocks that can influence many other stocks or even
group of stocks, belonging to different sectors, and vice
versa. Examples of such stocks that we identify from Ta-
ble 1 are: General Electric (GE), Coca Cola (KO), Exxon
Mobil (XON) and Procter & Gamble (PG). All the above
examples refer to very large capitalization companies that
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Fig. 3. Minimum Spanning Tree (MST) of the connected nodes of the network after removing 99.5% of the weaker links of the
initially fully connected network. The nodes that are marked here with their corresponding symbols are the nodes belonging to
the two examples of communities that were described in Figure 1.

Table 1. Tick symbols of the stocks belonging to the communities shown in Figure 2. The symbols †, ††, ‡ and ‡‡ mark stocks
that appear in more than one community.

(a) (b) (c) (d) (e) (f) (g) (h)

1 ALK HIT HAL† AA ABX AHC AIT AIG
2 AMR HMC HP AL AEM ARC BEL AXP
3 DAL KYO PKD AR ASA CHV BGE BMY
4 U MC SLB N BMG HAL† GE†† CL
5 LUV PIO TDW PD CDE KMG GTE DIS
6 FDX SNE RLM HL MOB HSY EMR
7 GE†† TDK HM P JPM FNM
8 NEM SC K GE††

9 SLB KO‡ JNJ
10 TX MMM KO‡

11 UCL PG† MER
12 XON‡‡ SLE MRK
13 T PG†

14 UN SGP
15 USW TY
16 XON‡‡ WMT

point towards the significance of such blue chips to the
overall market activity.

Another widely used method to identify clusters in
a network of n of stocks according to the sector of eco-
nomic activity is the Minimum Spanning Tree (MST)
technique [17,21,25,26]. An MST analysis was performed
using a dataset similar to the one we use by Bonanno
et al. [27]. This technique filters the original correlation
matrix and keeps only a tree of n − 1 links out of the
original n(n− 1)/2 links with total minimal distance. Ap-
plication of this method to the original fully connected
network or to the network given in Figure 1c, yields a
nice clustering of stocks according to their economic ac-
tivity, but the communities we identified in Figure 1 are
fragmented and, as shown in Figure 3, this fragmentation

is more pronounced for stocks belonging to different eco-
nomic sectors.

Next we focus on other properties of the network. In
Figure 4a we compare the largest cluster of the network
versus the fraction of removed links q using weak removal,
strong removal and random removal. For random removal
it is seen that the network remains connected until we
have removed over 99.9% of the original links. Indeed,
after we remove 99.9% of the original links the value of
the parameter κ [9] becomes κ =

〈
k2

〉
/ 〈k〉 = 2, where k

is the degree of the nodes and 〈. . . 〉 is the average over all
the nodes. At this point there is a percolation transition
and the network breaks into clusters of connected compo-
nents. As we can see from Figure 4b the second largest
cluster has a maximum size for q = 0.999 and its size is
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Fig. 4. (a) The number of nodes belonging to the largest cluster of the network versus the fraction of removed links q. Inset: A
zoom of the area around q = 0.99. (b) The number of nodes belonging to the second largest cluster of the network versus the
fraction of removed links q. Inset: A zoom of the area around q = 0.99. (c) Clustering coefficient C(q) for the three different
cases of the link removal procedure. Inset: A zoom of the area around q = 0.99. (d) The relative number of cliques N ′

cl(q),
after we removed a fraction q of links versus the fraction of removed links q. Inset: The relative number of maximum clique size
Nmax(q) after removing a fraction q of links versus the fraction of removed links q.

comparable to the size of the original network. This behav-
ior is completely different from the way the network dis-
integrates when we remove first its stronger or its weaker
links. For both these cases, as we remove the links of the
network some isolated nodes, or even some small clusters
of nodes, gradually losing all their links and they are being
removed from the network, therefore, the network is being
stripped of its nodes and it becomes disconnected without
a sharp percolation transition. The disintegration of the
network is faster when we remove the weaker correlated
links. This result shows that the weak links are responsi-
ble for the global connectivity of the network, while most
of the strong links form local structures.

For the analysis that follows we calculated further
properties of the remaining connected component of the
network as a function of the fraction of removed links
q by applying all three different removal procedures we
described.

A property that plays important role in the structure
and connectivity of many different kind of networks is the
formation of cliques. This property can be easily under-
stood for the case of social networks where it represents
circles of friends or acquaintances in which every member
knows well every other member of the clique, but usually
does not know members of other cliques. One method to
quantify the tendency to cluster in this way is the clus-
tering coefficient C(q) [3,4], that is defined as follows. If a
vertex i has ki neighbors then at most ki(ki − 1)/2 edges
can exist between them (this occurs when every neighbor
of i is connected to every other neighbour of i). Let Ci(q)

denote the fraction of such existing edges for node i, then
C(q) is defined as the average of Ci(q) over all connected
nodes of the network.

We used the clustering coefficient C(q) to compare the
connectivity of the network structures that survive after
removing a fraction q of the original links, for the three
different cases of the link removal procedure mentioned
above. The results of this analysis are shown in Figure 4c.
Note that the network for which its strongest links survive,
it has always higher clustering coefficient, again showing
that strong links make more connections locally, while
weak links are responsible for the global network struc-
ture.

In addition to the clustering coefficient, there exist an-
other useful quantity that can yield more information on
the structure of the network. This is the total number of
cliques and their size. We calculate the relative number of
cliques N ′

cl(q), defined as the total number of cliques that
exist in the network divided with the number of its nodes,

N ′
cl(q) = Ncl(q)/Nnodes(q).

We also calculate the relative number of maximum clique
size Nmax(q), defined as the ratio between the maximum
clique size Maxcl(q) in the network and the number of
nodes,

Nmax(q) = Maxcl(q)/Nnodes(q).

Finding whether there is a clique of a given size in a graph
is a NP-complete problem. We thus studied the behavior
of the above quantities only for the range close to q = 0.99,
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Fig. 5. Annual dynamics of the net-
work similarity after we removed a frac-
tion q of the initial links. (a) Single-
step similarity probability, Sq(t), of the
networks after we remove the stronger
links. (b) Single-step similarity proba-
bility, Sq(t), of the networks after we
remove the weaker links. (c) Multi-
step similarity probability, Sq

τ (t), of the
networks after we remove the stronger
links. (d) Multi-step similarity proba-
bility, Sq

τ (t), of the networks after we
remove the weaker links.

where the network is very sparse, but it is enough to help
us to draw some interesting conclusions. Results of this
analysis are shown in Figure 4d.

From Figures 4c and 4d we can see that the remaining
network after removing the stronger links although it has
more nodes compared to the network obtained after re-
moving the same amount of the weaker links, has a much
lower internal structure (it has fewer and smaller cliques).
This means that inside the original network there exist
a well defined underlying structure of strongly connected
components, and a bulk of weaker, less meaningful connec-
tions. The more weaker links we remove from the network,
the more visible this structure becomes. This is the rea-
son behind the sharp peaks in Figures 4c and 4d. This
increase of C(q), N ′

cl(q) and Nmax(q) with q that starts
to occur around q = 0.998 only when removing weak links
suggests that at this regime we are able to uncover some
of the most important structural features of the network.
This justify our analysis of the communities in Figures 1
and 2 at values of q = 0.995. We find similar results for
0.995 < q < 0.999.

Next, we study the dynamic evolution of the networks
by comparing links using annual data. We approach this
by analysing the network in a similar fashion to the anal-
ysis of the dynamics of Minimum Spanning Trees [25,26].
The single-step similarity probability is a measure of how
many common links exist in the networks for two con-
secutive years, after we removed the same percentage of
links q. The single step similarity probability is defined as:

Sq(t) =
1

|E(t)| |E(t) ∩ E(t − 1)| , (3)

where E(t) is the set of edges of the network at time t, ‘∩’
is the intersection operator and the operator ‘|. . . |’ gives
the number of elements in the set.

Accordingly, the multi-step similarity probability at
time t, after we remove a fraction q of the initial network,
is defined as:

Sq
τ (t) =

1
|E(t)| |E(t) ∩ E(t − 1) . . .

· · · ∩ E(t − τ + 1) ∩ E(t − τ)| , (4)

where only the edges that are continuously present on the
network after τ time steps are counted. Plots of the above
quantities are shown in Figure 5. From these plots we can
see that when we remove the weaker correlated links we
are left with a small, stable, and very strongly connected
network (Figs. 5b and 5d), while when we remove the
stronger correlated links we are left with a larger network
that is not stable over time (Figs. 5a and 5c).

Our results clearly suggest the presence of a nucleus
of few strongly connected stocks in the stock market that
form a stable structure over time. On the other hand, we
see that the stocks that are not so strongly connected are
those which form a much larger network (a representative
network of the whole market). The presence of these noisy
connections in the network makes it almost impossible to
predict the price movement of one stock only by using
information about the price movement of another.

4 Discussion

We found that correlation based networks show great tol-
erance to the removal of the stronger links since the net-
work remains connected until we remove almost 99.9% of
its original links. If the removal is targeted to the weaker
links, it results to a faster removal of nodes, but leaving
the remaining network highly connected and highly clus-
tered. This shows that the tolerance of the network to
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random and to intentional attacks on strong links comes
mostly due to the connectivity provided by its weak links.
This behavior is contrary to what happens in scale free
networks, which show large tolerance to random failures
or attacks, but are highly vulnerable to intentional at-
tacks [9,28–30].

Removal of the weak links from a correlation based
network results in a somewhat shrinking of the network,
but the properties of the remaining part are similar to
the properties of the original network. This finding could
explain why a financial market is not affected strongly
by the small capitalization stocks that are usually weakly
connected. On the contrary, it is strongly affected by
the high capitalization stocks that are strongly connected
most of the time. This behavior could not be explained
by a scale free topology, because in that case a targeted
attack to the strongly correlated nodes would result in a
breakdown of the connections of the network.

Summarising, our results suggest that there is strong
correlation between the topology of the network and the
weights of the links, which in our case is the correlation
strength between the different stocks. The network disin-
tegrates without a sharp percolation transition when we
sequentially remove either its weaker or its stronger corre-
lated links. Since the network lacks a natural cutoff there
is always an arbitrariness in the method one uses to filter
out links of the original network, which might result in los-
ing valuable information. However, since close to removing
99.5% of the weak links we identify clear structures, we
used this threshold as our parameter which indeed show
the network’s meaningful structure.

We also find similar results by performing the same
analysis using closing prices of a different market, the
Athens Stock Exchange (ASE) for the period 1987 to 2004
(These results will be published elsewhere). This signifies
that our findings are general and do not depend on the
particular investigated system. However, we must keep in
mind that correlation based networks are different from
ordinary networks due to the fact that the link associ-
ated with each interaction is estimated starting from the
statistical evaluation of the correlation coefficient. There-
fore, one could use an estimation of reliability, such as
the bootstrap technique [24], to obtain reliability values
for all links of the communities detected with the k-clique
method, but such an analysis is beyond the scope of this
paper.
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Ministry of Development, PENED project 03ED840 and by the
Israel Science Foundation.

References

1. R. Pastor-Satorras, A. Vespignani, Evolution and
Structure of the Internet (Cambridge Univ. Press,
Cambridge, UK, 2004)

2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW (Oxford
Univ. Press, New York, 2003)

3. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)
4. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
5. C. Song, S. Havlin, HA Makse, Nature 433, 392 (2005)
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