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Diffusion characteristics of particles on energetically disordered lattices
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Abstract

The barrier model with random distribution of barrier energies is considered at nonzero particle concentrations. The statistical mechanics
expressions for the jump diffusion coefficient that takes into account interparticle interactions are derived for dynamic and static disorder. For the
former case the analytical expression for the barrier energy contribution is calculated, while for the latter case the limiting low and high
temperature contributions are obtained. The derived expressions are tested by Monte Carlo simulations for uniform and exponential barrier energy
distributions for one- and square, triangular and honeycomb two-dimensional lattices.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Widely used real materials such as intercalation compounds,
solids with fast ionic transport, semiconductors with electron
hopping transport etc. require to consider random character of
energy landscape where mobile particles move [1–4]. At present,
influence of particle concentration, temperature and the type of
interparticle interaction on diffusion and electric transport over
regular lattices is well known [5–7]. However, random character of
energy landscape in real materials brings important peculiarities in
migration characteristics of particles. It was experimentally shown
that alternative current (ac) conductivity can be scaled on a master
plot that is almost independent on the type of material or charge
carriers [8–10].

Severalmodelswere proposed to understand these peculiarities.
Ngai et. al. [11,12] introduced on phenomenological level the
couplingmodel and investigated the problem of near constant loss,
Funke and coworkers [3,13,14] suggested more microscopic jump
relaxation model and the concept of mismatch and relaxation. In
Ref. [15] the completely microscopic model of charged particles
on a lattice was simulated and it was shown that the combined
effect of disorder of site energies and Coulomb interactions can

explain the universal dynamic response of the system, while Dyre
and Schrøder [4,16,17] on the basis of percolation arguments has
argued that the universality of ac conductivity can be achieved in
the extreme disorder limit without interparticle Coulomb interac-
tions to be taken into account. Effective medium approximation
was used for investigating the influence of barrier disorder on
particle migration characteristics [18,19] as well.

Probably, a variety of different mechanisms can result in scaling
behavior of ac conductivity [20,21]. Thus, it is worth to consider the
consequences for particle migration characteristics that follow from
microscopic models on regular basis. In Refs. [16–19] hopping
barrier model was considered in fact at the limit of zero concen-
tration ofmobile particles. Thus, important features of themodel that
are connected with correlated motion of particles and their inter-
actions at non-zero concentrationwere not investigated. In this paper
the direct current characteristics of particles for the barrier model are
considered. The model with site energy disorder at low concentra-
tions was considered in Ref. [22], however, the properties of models
with barrier and site energy disorder are substantially different.

2. Statistical mechanics of particle migration for random
barrier model

A system of particles on a periodic one-, two- or three-
dimensional lattice with uniform site energies is considered. Par-
ticle jumps to nearest neighbor vacant sites are thermally activated
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with randomly distributed intersite barriers. The jump rate from site
j to a vacant nearest neighbor site i is given by the expression

wij ¼ vexp b uj � eij
� �� �

; uj ¼ u0 þ J
X
k jð Þ

nk ; ð1Þ

where ν is a frequency factor of the order of vibrational frequency
of a particle that determines the time scale of the model, β=1/(kBT)
is inverse temperature, kB is the Boltzmann constant, u0b0, uj and
J are the site energy, the energy of a particle at site j and the nearest
neighbor interparticle interaction constant, respectively, nk=0 or 1
is the occupation number of site k (double occupancy of a site is
forbidden), summation in Eq. (1) is carried out over nearest
neighbor sites of site j, εij are energies of randomly distributed
barriers between sites i and j. It should be mentioned that although
the lattice site energies u0 are the same for all sites uj fluctuates due
to interparticle interaction. JN0 for repulsive and Jb0 for attractive
interactions.

Two barrier energy distributions are considered. The uniform
distribution in the range [0,2ε0] and the exponential distribution

P eð Þ ¼ e�1
0 exp �e=e0ð Þ; ez0: ð2Þ

The mean value of barrier energies is equal to ε0 in both cases.

The energetic barriers can be stationary distributed over
lattice bonds (static disorder) or the barrier energies are taken
from their distribution continuously in time (dynamic disorder).

The general statistical mechanics derivation of the diffusion
coefficient was given in Ref. [23]. The result for the collective
jump diffusion coefficient takes the form given by Reed and
Ehrlich [24]

Dj ¼ zwa2=2d; ð3Þ
where z and a are the coordination number and intersite distance of
the lattice, d is the dimensionality of space, and the mean transition
rate [23]

w ¼ c�1hwijnj 1� nið Þi; ð4Þ
c is a lattice concentration, the angle brackets 〈…〉mean equilibrium
ensemble averaging.

Thus, the problem of diffusion coefficient calculation is re-
duced to evaluation of the mean transition rate.

The jump diffusion coefficient is a multiplier at the chemical
potential gradient when the Stefan–Maxwell (or Onsager) formu-
lation for the particle flux is used. Alternatively, this coefficient can
be calculated through themean square displacement of the center of
mass of particles [25]

DJ ¼ lim
tYl

1
2tnd h Xn

i¼1

Dri

 !2i; ð5Þ

where n is a number of particles, t is time that is usually calculated
in Monte Carlo steps (MCS).

Replacement of the chemical potential in the particle flux
expression by the electrochemical one shows that the electric
conductivity is proportional to the jump diffusion coefficient [26].
Thus, it is sufficient to consider the latter one.

In accordancewith Eqs. (1) and (4) it is necessary to average the
product of two factors one of which depends on distribution of
neighboring particles through the interparticle interaction energy
and the other is defined by the barrier distribution. These factors
are not independent because the possibility for the particle to jump

Fig. 1. The jump diffusion coefficient for the lattice gas on dynamically
disordered 1d-lattice with the uniform distribution of barrier energies (ε0= |J|/2)
and attractive (a) or repulsive (b) interaction. MC simulation results are shown
by circles, the curves represent analytical results [Eqs. (6), (8)], kBT/|J| =0.1 (1);
0.3 (2); 0.5 (3); 0.7 (4); 0.9 (5); 1.2 (6).

Fig. 2. TheTMSDversus time (MCsteps) for theLangmuir gas on a regular 1d lattice
at c=0.001. The dashed line corresponds to the square root subdiffusion regime.
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a special arrangement of the neighboring particles is necessary.
However, for the barrier model the barrier distribution does not
influence the equilibrium distribution of particles over lattice sites
because the system energy does not depend on barrier energies.
Then in accordancewithRef. [23] after averaging over equilibrium
distribution of particles the jump diffusion coefficient takes the
form

DJ ¼ D0hexp �beij
� �i exp bAð Þ

c
P 0; 0ð Þ; D0 ¼ za2

2d
vexp bu0ð Þ;

ð6Þ
where μ is the chemical potential, P(0,0) is the probability for two
nearest neighbor lattice sites to be vacant. These quantities can be
either evaluated in the course of equilibrium Monte Carlo
simulations or calculated on the basis of approximate theoretical
expressions (see e.g. Ref. [27]). D0 is the diffusion coefficient of
particles in the limit of low concentration on a regular lattice with
site energies u0.

For the lattice gas without lateral interactions (J=0, Langmuir
gas) P(0,0)=(1−c)2 and the jump diffusion coefficient

DJ ¼ D0hexp �beij
� �i 1� cð Þ: ð7Þ

Eqs. (6), (7) show that the concentration dependence of the
jump diffusion coefficient can readily be calculated. The main
problem concerns with evaluation of the random barrier
contribution to the diffusion coefficient because it requires
taking into account geometrical structure of the lattice.

At dynamical disorder the sequence of barriers that are
overcame by particles corresponds to the distribution of barrier
energies and can be easily calculated. For the uniform and
exponential distributions it consecutively follows

hexp �beij
� �i ¼ exp �be0ð Þ sinh be0ð Þ

be0
; ð8Þ

hexp �beij
� �i ¼ 1þ be0ð Þ�1: ð9Þ

In the former case at βε0b≈1 particles overcome the
energetic barriers of the order of the mean barrier energy ε0,
while at βε0N1 the enhancement of diffusion occurs due to that
particles prefer to wait lower barriers instead to jump over
higher barriers. In the latter case the temperature dependence of
the mean transition rate is rather weak because of high density
of barriers in the low energy region.

Fig. 3. The jumpdiffusion coefficient for theLangmuir gas on a square lattice versus
concentration at static disorder with the uniform distribution of barrier energies.
(a) kBT/ε0=0.6. MC simulation results are shown by circles. The solid curves
represent analytical results (the lines 1 and 2 correspond to expressions (11) and (8),
respectively). (b) kBT/ε0=0.2 (1); 0.6 (2); 1.0 (3); 1.4 (4); 1.8 (5); 2.0 (6).

Fig. 4. MC simulation results for the Langmuir gas on a square lattice at static
disorder with the uniform distribution of barrier energies. (a) The jump diffusion
coefficient versus inverse temperature at c=0.1 (1), 0.3 (2), 0.5 (3), 0.7 (4),
0.9 (5). (b) The activation energy for the jump diffusion coefficient versus
concentration.
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At static disorder it is possible to calculate the limiting values
only. In the low temperature limit (be0r1, the extreme disorder
limit [4,16,17])

hexp �beij
� �i ¼ cpexp �bep

� �
; ð10Þ

where cp and εp are the particle concentration and the energy barrier
that correspond to the percolation threshold in the problemof bonds.
In the high temperature limit (βε0b≈1) Eq. (8) takes the form

hexp �beij
� �i ¼ exp �be0ð Þ: ð11Þ

At intermediate temperatures the interpolation expression

hexp �beij
� �i ¼ exp �b nep þ 1e0

� �� �
; nþ 1 ¼ 1 ð12Þ

can be suggested. At low temperature ξ≈1, at high temperature
ξ≈0. The multiplier cp in Eq. (10) becomes equal to one at ele-
vated temperature.

3. Analytical and Monte Carlo simulation results and
discussion

The standard procedures were used [23] performing Monte
Carlo (MC) simulation of particle jumps over lattice sites in

accordance with the master equation and the transition rates
given by Eq. (1). For static disorder in each simulation run
barriers were distributed over bonds between nearest neighbor
sites and frozen during the run, while for dynamic disorder the
barrier heights were continuously taken from the corresponding
distribution for each particle attempting to jump.

In Fig. 1 the simulation and analytical results for the jump
diffusion coefficient are represented for dynamically disordered
one-dimensional lattice gases with the uniform barrier energy
distribution and attractive or repulsive lateral interaction
between nearest neighbors at ε0= |J|/2. Equilibrium properties
of the systems were calculated in the quasichemical approxima-
tion that is exact in the one-dimensional case. It is evident that
Eqs. (6), (8) exactly reproduce the simulation results. A small
scatter of the simulation results can be removed by improving
statistics. The increase of the diffusion coefficient in Fig. 1b at
intermediate concentrations is explained by repulsive inter-
particle interactions, while at large concentrations the deficit of
vacancies dominates.

The tracer mean square displacement (TMSD) in one-
dimensional systems show subdiffusion behavior [28] and in
the long time limit it is proportional to square root of time

Fig. 5. MC simulation results for the Langmuir gas on a triangular lattice at static
disorder with the uniform distribution of barrier energies. (a) The jump diffusion
coefficient versus inverse temperature at c=0.1 (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5).
(b) The activation energy for the jump diffusion coefficient versus concentration.

Fig. 6. (a) MC simulation results for the Langmuir gas on a honeycomb lattice at
static disorder with the uniform distribution of barrier energies. The jump
diffusion coefficient versus inverse temperature: c=0.1 (1), 0.3 (2), 0.5 (3), 0.7
(4), 0.9 (5). (b) The activation energy for the jump diffusion coefficient versus
concentration.
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instead to be linear in higher dimensions. However, at very
small concentrations the TMSD must be linear in time at not too
long times. As the mean interparticle distance is 1/c (in units of
the lattice parameter) the crossover time from tracer diffusion to
subdiffusion regimes should occur at approximately (1/c)2 MC
steps. In Ref. [28] this conclusion was made on the basis of
more rigorous and considerably more involved calculations.
Fig. 2 demonstrates such a behavior of the TMSD at concen-
tration as small as c=10–3. Moreover, true linear behavior is
observed only at tb1/c because at c=10−3 on time segment
(0, 104 MC steps) the exponent is already equal to 0.94 instead
of 1.0 for diffusion behavior.

The plane square lattice is characterized by that the percolation
energy and the mean barrier energy at uniform barrier distribution
are equal, εp=〈εij〉=ε0 and then Eq. (11) due to Eq. (12) holds at
arbitrary temperature. Indeed, Fig. 3 demonstrates that Eqs. (7),
(11) well represent the simulation data at all temperatures con-
sidered. At low temperature (Fig. 3a) Eq. (8) overestimates the
transition rates. Fig. 4 proves that the jump diffusion coefficient
obeys Arrhenius behavior with activation energy UJ=εp=ε0 at
arbitrary concentration. The scatter of the simulation data is
around one per cent due to restricted statistics.

For the triangular (εp=0.343ε0) and honeycomb (εp=0.657ε0)
lattices the percolation energy is not equal to the mean barrier
energy. However, in the temperature range considered (T=0.4…
2.0ε0/kB) it was found that ξ≅ζ≅0.5 (Figs. 5 and 6) and the
deviation of the simulation data from the theoretical value UJ=
0.5(εp+ε0) is around of one per cent for both lattices.

For the exponential barrier energy distribution Eq. (9) shows
no Arrhenius type contribution to the mean transition rate. Thus,
for the Langmuir gas the jump diffusion coefficient does not
show Arrhenius temperature dependence as well and when it is
approximated by Eq. (7) with activation type dependence on

temperature the activation energy strongly depends on tem-
perature changing from 0.58ε0 at T=0.2ε0/kB to 0.84ε0 at T=
1.0ε0/kBwhile the concentration dependence is well reproduced
by Eq. (7) (Fig. 7).

4. Conclusion

The comparison of analytical and simulation results shows
that the low temperature percolation path approximation
[4,16,17] remains valid for non-zero particle concentrations
and probably for interacting particles as well. For the Langmuir
lattice gas the influence of concentration results in the multiplier
(1−c), for interacting particles additional contributions can be
estimated from equilibrium statistics of the system on regular
lattices. For intermediate temperatures interpolation coefficients
have to be calculated.
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Fig. 7. The jump diffusion coefficient of the Langmuir gas on a triangular lattice
at exponential distribution of barrier energies versus concentration at kBT/ε0=
0.2 (1); 0.4 (2); 0.6 (3); 0.8 (4); 1.0 (5).
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