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Tracer diffusion in an ordered two-dimensional lattice-gas system with square lattice symmetry is studied
theoretically and by means of computer simulations. It is well known that the ordering with c�2�2� symmetry
formed in the vicinity of half-filling of lattice sites is due to strong nearest neighbor repulsive interaction. In
this case, the tracer migration occurs mainly by elementary displacements of structural defects. This paper
focuses on the dimer transport mechanism which was accounted for with insufficient accuracy in previous
publications. The long-time asymptotics of the dimer-tracer correlation function �i.e., a three-particle correla-
tion function�, which describes concerted tracer-dimer motion, is obtained analytically. We analyze a specific
exchange mechanism, relevant to tracer diffusion only. Also, the contribution of generation-recombination
jumps to tracer diffusion is taken into account. The theoretical data agree well with the results of intensive
Monte Carlo simulations.
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I. INTRODUCTION

The lattice-gas model is widely used to describe adsorp-
tion systems.1–5 This model is quite reasonable when a po-
tential relief of crystal surface represents a set of periodically
arranged deep minima for foreign particles. In what follows,
the term “particle” means the same as the words “adsorbed
particle” and “adatom” which are used in surface science but
not in the lattice-gas model. Moreover, the jump mechanism
is simplified to a picture where the particle is assumed to
spend essentially all of its time localized on lattice sites �po-
tential minima�. Accordingly, a relatively insignificant time
is needed to complete any jump that it undertakes �during
which time the particle is in transit between the relevant two
sites�. This situation is realized when e−EA/T�1, where EA is
the energy required to overcome the barrier between the
nearest minima �the activation energy� and T is the tempera-
ture in units of k, the Boltzmann constant. There is no un-
ambiguous proof of the full adequacy of the lattice-gas
model to any real adsorption system. Nevertheless this
model, being quite reasonable from a physical viewpoint, is
very simple and useful, for example, for understanding the
effects caused by particle-particle interactions.

Usually, there are strong adatom-adatom interactions,
which significantly affect the jump probabilities. Therefore, a
rigorous theoretical description of the ensemble of strongly
interacting particles and derivation of the kinetic coefficients
�mobilities and collective diffusion coefficients� are problem-
atic in the general case. Moreover, due to strong particle-
particle interaction, these systems undergo phase transitions
resulting in the lowering of their symmetry. The theoretical
approach6–8 based on the idea of rapid relaxation to local
equilibrium provides an excellent description of the disor-
dered �high-temperature� phase, but it fails to be adequate at
undercritical temperatures.9 The reason for this specific be-
havior of the low-temperature phase can be easily explained
using as an example the ordered systems. The case of anti-
ferromagnetic �checkerboard� ordering is shown in Fig. 1. In
a stable ordered state, any particle jump disturbing local or-

dering induces a force tending to restore the initial order.
Hence, the backward jump or other jumps that tend to restore
the order are the most probable ones. Therefore, the succes-
sive jumps of individual particles in an ordered state are
correlated. The approach developed in Ref. 6 completely ig-
nores this circumstance. Realizing the above physical pic-
ture, the idea for mass transport description has arisen,10,11

taking into account the displacements of structural defects.
It has been established that the adsorbate transport occurs

as a sequence of displacements of individual structural de-
fects. Each defect displacement is a result of two �or more�
strongly correlated elementary jumps of the adsorbed par-
ticles. The number of defects is assumed to be small in
highly ordered systems. Hence, the problem of mass trans-
port in the ensemble of strongly interacting particles is re-
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FIG. 1. Schematic of the ordered square lattice. Gray circles:
filled sites; open circles: empty sites. Two defect types in site 8 of
the filled sublattice and in site 3 of the empty sublattice are shown.
The short arrows indicate particle displacements. Two correlated
jumps �1→2 and 2→1� do not contribute to mass transport. Two
paths �9→10→8 and 9→11→8� show possibilities for vacancy
displacement from site 8 to site 9. The displacement of the excess
particle from site 3 to one of sites 5, 6, and 7 may occur after the
corresponding jump of particle 4 followed by the jump 3→4.
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duced to the problem of random walk of almost noninteract-
ing defects. In this way, the correlations of successive jumps
are automatically taken into account.

The problem of correlations in ordered systems arises
again when one considers tracer diffusion. It is important to
emphasize that the analytical description of tracer diffusion
is not trivial even in the absence of particle-particle interac-
tions �see, for example, Refs. 12 and 13�. In this case, the
correlation of successive tracer jumps originates from the
exclusion of double occupancy of sites. There is a prevailing
probability for the tracer to return to its previous residence
site, which remains unoccupied for some time after the tracer
jump. This evident correlation of the successive tracer jumps
�memory effect� results in the lowering of both the effective
jump frequency and the diffusion coefficient of tracers.

A specific case of c�2�2� ordering was considered in
Ref. 14. The theoretical approach of Ref. 14 is based on both
the defect dynamics10,11 and the procedure of Takhir-Kelly
and Elliott13 modified to be applicable for the case of inter-
acting particles. In Ref. 14, tracer jumps were assumed to
occur only due to defect displacements. The case of domi-
nant contribution of single defects to the tracer diffusion was
considered quite rigorously. At the same time, an important
mechanism of tracer motion, induced by the motion of dimer
configurations of defects, was treated only approximately.
The approximation of short-range correlations was used.
Thus, a rigorous study of tracer-dimer correlations and their
influence on tracer diffusion is one of the purposes of the
present paper.

Additionally, the importance of generation-recombination
�GR� processes of the defects in the adatom kinetics has been
established in recent publications.9,15 In spite of being low-
probability events, the GR processes give sizable contribu-
tion to the diffusion coefficients at temperatures not much
lower than the critical temperature and at filling of the lattice
sites close to stoichiometric values. In what follows, we will
obtain the tracer diffusion coefficient associated with the GR
and exchange jumps. The last type of jumps was not previ-
ously analyzed for ordered systems. Each exchange event
results in a new particle arrangement with two of their posi-
tions being interchanged. Obviously, exchange jumps, result-
ing from a set of four strongly correlated elementary dis-
placements of adparticles, are relevant to tracer diffusion
only, as they do not influence the state of identical particles.
The detailed mechanism of the exchange jumps and its im-
portance for tracer motion are explained in Sec. IV.

Concluding this section, it is worth mentioning that a con-
siderable disagreement of theoretical and Monte Carlo �MC�
results in the range of understoichiometric coverages was
observed in Ref. 14. This circumstance served as a strong
motivation for the present study. A reliable theory or exact
theoretical results in this field are of great importance since
they provide a possibility to test computer algorithms. The
combination of intensive MC simulations and a rigorous ana-
lytical study which takes into account a variety of effective
transport channels for tracer migration will elucidate the re-
liability of both approaches.

II. DEFECT JUMPS IN THE ORDERED LATTICE

In the vicinity of half-coverage and at sufficiently low
temperatures, a lattice-gas system with square symmetry is

divided into two sublattices �almost empty and almost filled
sublattices�. Figure 1 illustrates the particle arrangement in
this case. The ideal ordering is disturbed here by the pres-
ence of two defects �a vacancy and an excess particle in sites
8 and 3, respectively�. The ordering is due to strong nearest
neighbor �NN� repulsive interaction. The occupation number
of each defect type is given by a simple expression derived
in Refs. 10 and 11,

nv,e = � �� −
1

2
� +��� −

1

2
�2

+ e−4�, �1�

where indices v and e denote the corresponding vacancy and
excess particle, � is the dimensionless interaction energy be-
tween two nearest neighbors �the interaction energy divided
by T�, and � is the average coverage �number of particles per
site�.

To obtain the probabilities of defect jumps, we need to
specify the probability of the elementary jump. It is assumed
to be given by the jump frequency

�i,j = �0 exp��i� , �2�

where �0 is a constant, i , j are the nearest neighbors, and �i is
the interaction energy of the particle in site i with its nearest
neighbors. It is given by �i=��NNnm, where nm is the occu-
pancy number, nm= �1,0�, whether the mth site is occupied
or not. As we can see, the jump frequency from the ith to jth
site, �i,j, does not depend on the energy of the arrival state j.
This site-energy jump probability corresponds to the physical
picture where the surrounding particles reduce the potential
barrier by �i. This is a widely used model satisfying detailed
balance conditions. It may be improved by taking into ac-
count a saddle-point displacement �see, for example, Refs. 5,
16, and 17�.

The presence of the exponential factor in Eq. �2� shows
the tendency of particles to occupy sites with a minimum
value of �. For example, the jump indicated as 1→2 in Fig.
1 is followed almost immediately by the reverse 2→1 jump.
The particle lifetime in site 2 is by a factor �exp�3��
smaller than it is in site 1. These “flip-flop” jumps do not
contribute to mass transport, although they may be respon-
sible for short-time correlations of the adsorbate density �see
more details in Ref. 18�. In contrast to flip-flop jumps, the
correlated jumps resulting in the defect displacements are
effective in tracer diffusion. Thus, two correlated jumps, 4
→5 and 3→4, result in the excess particle displacement
within two elementary vectors. The probability per unit time
of each path is equal to 1

2�0e�.10,11 The corresponding prob-
ability for vacancies is given by 1

2�0, i.e., smaller by a factor
e�.

In addition to the motion of isolated defects, such as va-
cancy 8 and excess particle 4 shown in Fig. 1, dimer con-
figurations of individual defects can also be very effective in
mass transfer. Figure 2 illustrates a dimer formed by two
excess particles in sites 1 and 2. In this particular configura-
tion, the jumps of particles in sites 3 and 5 are the most
probable. It is shown in Fig. 2 that the jump 3→4 results in
the formation of either 1-4 or 2-4 new dimer configurations.
The probability of each event is given by 1

3�0e2��	.11 The
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dimer concentration nd is equal to �ne�2. In spite of the low
concentration, the dimers can be effective in migration pro-
cesses due to very high mobility ��e2��.

Obviously, the above mechanisms are responsible for mi-
gration of tracers �tagged particles�. The tracer concentration
is assumed to be negligibly small. Hence, it is sufficient to
study long-distance displacement of a single tagged particle
to obtain the tracer diffusion coefficient.

The consideration of Refs. 10 and 11 uses the assumption
of small concentration of the defects. This allows to neglect
the interference of different transport mechanisms and to
consider separately the contribution of each. Thus, for ex-
ample, tracer motion due to vacancy jumps is governed by

�t	ni
*
 = −

1

2
�0 �

a�−a1

	ni
*ni+a+a1

v − ni+a+a1

* ni
v
 , �3�

where �a�= �a1�=a, ni
*=1 ,0 whether or not the ith site is oc-

cupied by a tracer, and ni
v is a similar variable for a vacancy.

As we can see, the evolution of tracer occupancy is gov-
erned by a new function 	ni

*ni+a+a1

v 
, which describes tracer-
vacancy correlations. The evolution of the correlation func-
tion is governed by a linear equation, which can be easily
derived similarly to Eq. �3�. Its linearity is due to the small
vacancy concentration. The authors of Ref. 14 have managed
to solve this equation. In the limit of asymptotically long
time, when the tracer evolution can be described by the dif-
fusion equation, the tracer-dimer correlation function was ex-
pressed in terms of ni

*. Then, its substitution into Eq. �3�
gives the possibility to obtain the tracer diffusion coefficient
in the case of vacancy transport mechanism, Dv

*. It is given
by

Dv
* = 4D0nv0.63, �4�

where D0=�0a2.
A similar analysis is applicable in the case of tracer dif-

fusion due to excess particles. The corresponding value of
the diffusion coefficient was obtained in Ref. 14 to be equal
to

De
* = 4D0nee�0.725. �5�

The effect of the dimers on tracer diffusion was also consid-
ered in Ref. 14. The analytical solution is rather complicated

because it describes the correlated motion of three particles.
To simplify the task, the approximation of short-range corre-
lations was used. This approach implies that the tracer-dimer
correlations are negligibly small if any tracer-defect spacing
is greater than a �we mean only defects which are constitu-
ents of the dimer�. In the next section, we will consider rig-
orously concerted tracer-dimer motion �in the spirit of the
tracer–single-defect theory�. Thus, it will become possible to
compare the results of both approaches.

III. RATE EQUATIONS FOR CORRELATED TRACER-
DIMER MOTION

We consider here tracer displacements caused by dimer
motion. It can be easily seen from Fig. 2 that a tracer jump
may occur if it is initially in one of positions 1, 2, 3, and 5.
In other words, the tracer jump is possible only if it is a
constituent of the dimer or if it is a NN of both defects �1 and
2�.

We proceed from the equation of occupancy evolution of
the ith site in the filled sublattice and its NN sites in the
empty sublattice, namely,

ni
* +

1

4�
a

ni+a
* . �6�

It is convenient to introduce the notation for the dimer vari-
ables: ni

j denotes the dimer formed by the pair of defects in
sites i and j of the empty sublattice �the defects are away
from one another by a distance not longer than 2a: �i− j�
=�2a or 2a�; ni*

j means that the tracer is the constituent of
the dimer �the defect in site i is formed by a tagged particle�.

Then, the rate equation corresponding to the above de-
scribed mechanism of the tracer displacements is given by

�t��ni
* +

1

4�
a

ni+a
* �
 =

3

2
	 � 	ni+a*

i+a1 − ni
*ni+a

i+a1


+
	

4 � 	ni+a+a1

* ni+a+a1+a2

i+a+a1+a3

− ni+a*
i+a+a1+a2
 . �7�

The first sum in the right part runs over vectors a ,a1 exclud-
ing the terms with a=a1. The second sum runs over vectors
a ,a1 ,a2 ,a3 excluding the terms with a ,a2 ,a3=−a1 and a2
=a3.

As we can see, the evolution of the tracer occupancy de-
pends on the joint probabilities of the tracer and a dimer to
be in close vicinity. For further analysis, it is convenient to
introduce new functions g and d defined as

g�i,r,A� = 	ni
*�ni+r

i+r+A − nd�
 , �8�

where vectors i and r belong to the “filled” and “empty”
sublattices, respectively, and

d�i,A� = 	ni*
i+A − ni

*nd
 . �9�

Here, vector i denotes a site in the empty sublattice. Vector A
indicates the dimer configuration, A=a+a�, �A�
2a.
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FIG. 2. Schematic of the dimer displacements. After elementary
jump 3→4, particles in sites 1 and 2, as well as particle 4, have
equal probabilities to jump to site 3. Two of these jumps result in
forming new �1-4� or �2-4� dimer configurations. The new dimers
are shown outside the lattice.

TRACER DIFFUSION IN ORDERED LATTICE-GAS… PHYSICAL REVIEW B 76, 054209 �2007�

054209-3



The quantity g�i ,r ,A� is the tracer-dimer correlation
function, where the variable r determines the spatial separa-
tion of these objects. The other function, d�i ,A�, describes a
dimer configuration, where one of the excess particles �in site
i� is a tracer.

In further analysis, we will use an important property of
function g, namely,

g�i,r,A� = g�i,r + A,− A� , �10�

which follows directly from definition �8�. For the Fourier
transform defined by

gk��,A� = �
i,r

ei��r−ik�g�i,r,A� , �11�

this property is expressed by

gk��,A� = gk��,− A�e−i�A. �12�

It is assumed here that g�i ,r ,A� and d�i ,A�→0 when �i�
→�, and g�i ,r ,A�→0 when �r�→�. The last property im-
plies the decay of tracer-dimer correlations with increasing
of the separation between them.

Also, it is evident that

gk=0�r,A� = dk=0�r� = 0, �13�

where dk�A�=�ie
−ikid�i ,A�. Equation �13� follows from the

observation that the probability to obtain the dimer at a given
state does not depend on the tracer position.

Now, Eq. �7� can be rewritten as

�1/	��t�ni
* +

1

4�
a

ni+a
* 


k

= − 12�ka�2nd	nk
*


− ik �
a�a1

��a + a1�gk�a,a1 − a�

−
3

2
�a − a1/3�dk�a1 − a�� . �14�

As we can see from Eq. �14�, in order to obtain the diffusion
coefficient of tracers, it is sufficient to know the functions
gk�r=a ,A� and dk�A� in the lowest order in k. In view of
Eq. �13�, these functions may be linear or of higher order in
k. The evolution equations determining functions g and d
can be derived in a manner similar to that for Eq. �14�. Then,
taking into account only the linear terms in k, we get

1

	
�tgk��,a + a1� = �1 −

1

2

a,a1

��− 8gk��,a + a1� + �
a2�−a,a1

�gk��,a + a2��1 + e−i��a1−a2�� + gk��,a1 − a2��1 + e−i��a+a2��

+ e−i�a�dk�a1 − a2� + dk�− a − a2� − gk�− a,a + a2� − gk�a2,a1 − a2�� + e−i�a1�dk�a + a2� + dk�a2 − a1�

− gk�a,− a − a2� − gk�− a2,a2 − a1��� + 2ik�a − a1�nk
*nd�e−i�a − e−i�a1�� �15�

and

1

	
�tdk�a + a1� = �1 −

1

2

a,a1

��− 8dk�a + a1�

+ �
a2�−a,a1

�dk�a + a2� + dk�a1 − a2� + gk�a,− a − a2� + gk�a2,a1 − a2�� + 2ik�a + a1�nk
*nd� , �16�

where properties �10� and �12� were used.
A set of 16 Eqs. �15� and �16� can be solved straightfor-

wardly. At the first step, gk�� ,A� is expressed in terms of nk
*

and gk�a ,aj−a�. Then, by means of reverse Fourier trans-
forming from � to r domain, the functions gk�a ,aj−a�,
which enter the right-hand part of Eq. �14�, will be obtained.
The procedure can be simplified by considering the symme-
try properties of the system. First of all, the linear in k term
of dk�a+aj� can be represented by

dk�a + aj� = Dk�a + aj� , �17�

where D does not depend on k. In a similar manner, we may
set gk�a ,aj−a�=G1ka+G2k�aj−a�. The constants G1 and G2

are not independent. It follows from Eq. �10� that G1=2G2
�2G. Thus, we have

gk�a,aj − a� = Gk�a + aj� . �18�

Using Eqs. �15�–�18�, we can easily obtain

gk��,a + a1� = S/R , �19�

where a�a1,

S = 2�ink
*nd − 2D�k��a + a1�3�cos �a + cos �a1�

��e−i��a+a1� − 1� + �a − a1��e−i�a − e−i�a1�

��7 − cos ��a + a1��� ,
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R = �7 − cos ��a − a1���7 − cos ��a + a1��

− 9�cos �a + cos �a1�2, �20�

and

D =
1

3
�G + indnk

*� . �21�

The function gk�� ,2a� is expressed in terms of gk�� ,a±a1�
as

gk��,2a� =
1

4
�gk��,a + a1��1 + ei��a1−a��

+ gk��,a − a1��1 + e−i��a+a1��� . �22�

When deriving Eqs. �19�–�22�, we have neglected the left-
hand parts of Eqs. �15� and �16�. The reason for this is as
follows. We are seeking for long-time asymptotic values of
correlation functions, which describe diffusionlike migration
�slow migration� of the tracer. The characteristic time of the
tracer density evolution can be estimated from Eq. �14� to be
equal to 	�ka�2. Hence, the characteristic value of the term
1
	�tg can be considered to be given by �ka�2g, which is much
less than the corresponding terms in the right part of Eq.
�15�. A similar reasoning is also applicable to Eq. �16�.

Now, we are able to obtain the contribution of the dimer
motion to the tracer diffusion coefficient Dd

*. Using Eqs.
�19�–�22� and Fourier transforming from � to r domain, Eq.
�14� can be rewritten in the form

�	nk
*
 = − Dd

*k2	nk
*
 , �23�

where

Dd
* = D0nde2� 20/9

1 − �
,

� =
8

3N
�
�

1

R
�7 − cos ��a + a���1 − cos ��a − a1�� .

It is taken into account here that the probability of a tracer to
occupy a site in the filled sublattice is much greater than that
in the empty sublattice.

For numerical summation, it is convenient to choose the
coordinate system rotated at � /4 with respect to the basic
lattice vectors as indicated in Fig. 3. In this case, ��a±a1�
= ±�x,ya�2, where �x,y takes the values 2�nx,y / �a�N� �nx,y

=1,2 , . . . ,�N /2 and N is the total number of the lattice
sites�. For a sufficiently large system, when � does not de-
pend on N, we get ��0.2186, and

Dd
* = 4D0nde2�0.711. �24�

As we can see, the numerical number 0.711 is a result of
summation of the explicit expression for �. The coefficients
0.63 and 0.725 in Eqs. �4� and �5� are of similar origin �see
Ref. 14�.

The previous theories provide different numerical coeffi-
cients in the expression for Dd

*, namely, �i� the approach of
Refs. 10 and 11, which neglects the tracer-dimer correlations,
results in numerical coefficient 1 instead of 0.711 and �ii� the
theory of Ref. 14, where only short-range correlations are
accounted for, gives 0.53 instead of 0.711. As we can see, the
difference is quite sizable in both cases.

IV. CONTRIBUTION OF EXCHANGE JUMPS AND
GENERATION-RECOMBINATION JUMPS

A perfect ordering is impossible if coverage � is not equal
to 0.5. For ��0.5, some particles occupy the empty lattice,
forming defects which are named here as excess particles.
When ��0.5, vacancies appear in the filled lattice. At the
same time, some amount of defects is thermally generated in
both sublattices. There always exist specific sequences of the
adparticle jumps resulting in generation �recombination�
events. Balance conditions for generation and recombination
rates establish equilibrium numbers of the defects �see Eq.
�1��. Being events of low probability, the GR jumps may be
also effective in the mass transfer at not too low temperatures
�see the results of Refs. 9 and 15 for three-dimensional and
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FIG. 4. A set of three sequential jumps, 1→2, 3→4, and 2
→3, results in the creation of two defects �a vacancy in site 1 and
an excess particle in site 4�. The dashed lines indicate 12 possible
positions of the excess particle if a vacancy appears in site 1. A set
of four jumps, 1→2, 5→6, 6→1, and 2→5, illustrates the ex-
change mechanism: the initial particle positions 1 and 5 become
interchanged.

a

a1

xy

FIG. 3. Axes orientation.
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two-dimensional lattice systems, respectively�.
Figure 4 illustrates a sequence of jumps resulting in a

defect pair creation. After starting elementary jump 1→2,
the most probable is the reverse jump because the particle in
site 3 has three NN adparticles. Nevertheless, a low probabil-
ity 3→4 jump followed by 2→3 jump is also possible. The
effective jump frequency corresponding to the above set of
jumps �resulting in the creation of the vacancy in site 1 and
the excess particle in site 4� is given by �0e−3�.11 The paths
1→2, 3→7, 2→3 and 1→2, 3→8, 2→3 have the same
probabilities. The dashed lines indicate sites where excess
particles may appear after the vacancy generation in site 1.

There is another scenario of particle displacements after
the 1→2 jump. It starts from the 5→6 jump. Further rear-
rangement follows by one of four equal-probability paths.
These are �i� jumps 6→1 and 2→5, �ii� jumps 2→5 and
6→1, jumps 6→5 and 2→1, and jumps 2→1 and 6→5. It
can be easily seen that the former two sets result in a new
state of the system with particle positions in sites 1 and 5
interchanged. The last two sets return the system to the initial
state. The effective jump frequency corresponding to the in-
terchange event, which begins with the 1→2 jump, is equal
to 1

2�0e−2�. The same interchange may occur in the case of
starting with 1→6 jump �a set of clockwise particle jumps�.
Then, the overall frequency of interchange events between
two given sites, �ech, is twice as much, i.e., �0e−2�.

Having obtained the rate of the exchange jumps, we can
easily calculate their contribution to the tracer diffusion co-
efficient Dexch

* . It is given by

Dexch
* = 2D0e−2�. �25�

This value corresponds to the collective diffusion coefficient
of free particles moving on a lattice with the period �2a and
having the jump frequency �0e−2�.

The tracer migration caused by GR jumps can be de-
scribed by an approximate procedure developed in Refs. 9
and 15. According to this approach, the generation of two
defects in sites 1 and 4 is accompanied with the tracer dis-
placements 1→3 or 3→4 �if initially they are available
there�. A similar approach can be applied to the recombina-
tion jumps. A very simple analysis results in the tracer dif-
fusion coefficient caused by GR processes, DGR

* , being equal
to

DGR
* = 27D0e−3�. �26�

Finally, with regard to Eqs. �4�, �5�, and �24�–�26�, we
have the following for the tracer diffusion coefficient:

D* = Dv
* + De

* + Dd
* + Dexch

* + DGR
*

= 4D0�0.63nv + 0.725nee� + 0.711�nee��2

+ 0.5e−2� +
27

4
e−3�� . �27�

The terms in brackets are due to different transport mecha-
nisms. They are connected with the motion of vacancies,
excess particles, and dimers, as well as with the exchange
and GR jumps. It follows that the contribution of GR and
exchange jumps becomes negligible when �→�.

V. DISCUSSION

In Figs. 5 and 6 we plot the diffusion coefficients vs the
coverage � for two different values of T /Tc. The ratio T /Tc is
equal to �c /�, where the critical value of the interaction
parameter �c is equal to 1.76 for a square lattice. We observe

FIG. 5. Theoretical and Monte Carlo data for the tracer and jump diffusion coefficients vs coverage �. The temperature T=0.7Tc

corresponds to ��2.514. The dashed line shows the theoretical values without the contribution of exchange and GR jumps. The inset shows
the detail of the area near the minima of the diffusion coefficient.
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some very pronounced minima at coverage close to the sto-
ichiometric value, �=0.5, which are due to the small number
of the defects. For this reason, the exchange and GR jumps
become competitive here �see, for comparison, the dashed
line in Fig. 5�. Their relative contributions can be easily cal-
culated with the use of Eqs. �1� and �27�. In the vicinity of
the minimum, they amount to 8% at T=0.5Tc and 18% at
T=0.7Tc of the total value of D*.

One can guess that some other complex jumps will occur
when T→Tc. However, the near-critical dynamics of the
lattice-gas system is not a subject of the present paper. Our
approach may be considered as heuristic and it is based on
the assumption e−��1. It does not indicate a direct way of
the development of the theory in close vicinity to the critical
point, where another small quantity �T−Tc� /T should be the
most important physical quantity determining critical dy-
namics of the system.

The minima in the diffusion coefficients were obtained at
first in Ref. 19 by means of MC simulations. Later on, they
were interpreted in Refs. 10 and 11 as a crossover point from
vacancy to excess particle transport mechanism.

The Monte Carlo simulations included here are in the
same spirit as in our previous publications.15,18 The lattice
size used was 100�100. The following considerations were
taken into account just for this choice. On one hand, this size
must be sufficiently large to avoid the finite-size effect. On
the other hand, it should not be too large because of the
restricted computer resources. It is evident that finite-size
effects can lead to complications in the vicinity of half-
coverage where the number of defects is minimum. It can
affect the recombination rate of the defects. Our simulations
use periodic boundary conditions, so when each particle
crosses the boundary, it automatically appears at the opposite
boundary. Therefore, two defects can recombine in two
ways: �i� moving one toward another and �ii� starting a mo-

tion in almost opposite directions with a subsequent crossing
of the boundary. As a result, the overall recombination rate
increases. Taking into account that the generation rate is not
affected by the boundaries, we can conclude that the station-
ary concentration of defects is lower for small lattice sizes.
The effect of boundaries on the stationary concentration of
the defects is negligible when the number of defects is large,
i.e., when �N /2�e−2��1. This number is equal to 33 for T
=0.7Tc and 4.4 for T=0.5Tc. It is important to emphasize that
these estimates concern only a small vicinity of the stoichio-
metric coverage, 0.5, where ��−0.5� is of the order of or less
than 0.01 in the first case and 0.002 in the second. Out of this
range, the finite-size effects are much smaller. Due to the
slow evolution of the system and the small number of jumps
per MC step, typically 107 MC steps were performed per
individual initial configuration. The results were also aver-
aged over 50 independent realizations.

The behavior of diffusion coefficients to the left of the
minima is controlled mainly by the vacancy mechanism,
while to the right, the behavior is controlled by excess par-
ticles and their dimers. In general, the dependence of the
tracer diffusion coefficient on � is similar to that of the jump
diffusion coefficient DJ. The explicit term for DJ �with ac-
count for GR jumps� can be deduced from Refs. 11 and 15. It
is given by

DJ =
2

�
D0�nv + nee� +

4

3
�nee��2 +

39

2
e−3�� . �28�

There are at least two evident reasons why D* and DJ
should be different: �i� tracer diffusion is a result of corre-
lated tracer-defect motion, while the jump diffusion coeffi-
cient �the particle mobility� is determined by free motion of
defects only; �ii� for most types of defect displacements, the
tracer jump is shorter than the corresponding length of mass

FIG. 6. The same as in Fig. 5 but for T=0.5Tc ���3.52�.
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displacement. Figures 5 and 6 illustrate good agreement of
the theoretical and MC data for both quantities, DJ and D*.

It follows from the above that the ratio of tracer to jump
diffusion coefficients provides information about tracer-
defect correlations. In Figs. 7 and 8, we see good agreement
between theoretical and MC data in the range of �
0.5. At
the same time MC data of Ref. 14 disagree with both signifi-
cantly. The MC results of Ref. 14 correspond to early theo-
retical data of Refs. 10 and 11 obtained with the approach
where tracer-defect correlation is neglected. The agreement
of the simplified theoretical version with the results of MC
simulations may happen if the number of MC steps per run is
not sufficiently large to ensure many tracer jumps in each
run. In this case, the averaging over many runs is equivalent
to the theoretical model10,11 in which any tracer jump is due
to the average number of defects. Such simulation procedure
does not provide information about tracer-vacancy correla-
tions and, in fact, neglects it like the simplified early theo-
ries.

A good agreement of the theory and simulations in the
region of ��0.5 has a very simple explanation. Our theory
provides the best results just in the vicinity of �=0.5, where

the number of the defects is minimum. The “contacts” of
defects are negligible here. On the other hand, we have suc-
ceeded with sufficient statistics even in this region of almost
“frozen” order, since, specifically in this region, we have
allowed for 2�107 MC steps in our simulations.

In the region of ��0.5, where the excess particle and
dimer transport mechanisms dominate, the agreement is not
so good. Further outside from the center, we see a sizable
difference between the theoretical and numerical data. This
takes place in the region where the dimer motion is no longer
a free motion. The individual dimer responsible for the pre-
vious tracer displacements can meet an excess particle or
another dimer and disintegrate. The many-particle problem
appears here again. If the dimer lifetime is of the order of or
less than the tracer-dimer correlation time, the correlation
effect decreases. The theoretical version with tracer-defect
correlations neglected becomes preferable here. The MC re-
sults support this point. We see the agreement of MC data
with results of the old theory at �=0.6 �the number of excess
particles per site in the empty sublattice is �0.2�. Conclud-
ing this section, a finite lifetime of the dimers should be
taken into account to get a good theoretical description at
��0.5.

VI. CONCLUSION

Our motive in this study was to elucidate the physical
mechanisms responsible for tracer diffusion in a specifically
ordered system by bringing together theoretical and MC ap-
proaches. Various correlation phenomena are connected with
the tracer long-distance displacements. The tracer diffusion
coefficient is mainly controlled by jumps of three types of
structural defects. These are the vacancies, excess particles,
and dimer configurations of the excess particles. The defect
jumps occur as two strongly correlated elementary jumps of
the adsorbed particles. In contrast to the jump diffusion co-
efficient, it is the tracer-defect correlated motion that deter-
mines the tracer diffusion and not only the free motion of the
defects. This specific correlation makes the theoretical analy-
sis more difficult. Nevertheless, it is still possible. In addition
to previous theoretical studies, we have derived here analyti-
cally the explicit form of the three-particle correlation func-
tion, which describes the concerted motion of tracers and
dimers.

Additionally, we have accounted for the GR and exchange
jumps, which sometimes are also important for tracer migra-
tion. In antiferromagnetically ordered systems, the exchange
jumps are considered at first. The GR and exchange jumps
occur as a result of three and four correlated successive
jumps of adparticles, respectively.

The present results of the large-scale simulations support
the importance of the tracer-defect correlation �or long-time
memory effect� predicted theoretically. To establish this im-
portant point, we have studied the coverage dependence of
the D* /DJ ratio. This quantity is very sensitive to correlation
effects and its reliable calculation requires considerable com-
putational efforts. Nevertheless, good agreement between

FIG. 7. Ratio of tracer to jump diffusion coefficients for
T=0.7Tc.

FIG. 8. The same as in Fig. 8 but for T=0.5Tc.
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MC and theoretical data in the range �
0.5 is reached. This
is in contrast to results of Ref. 14, where the essential differ-
ence between the two was observed, and the MC data rather
supported the absence of tracer-defect correlation. Also, our
data show the ratio D* /DJ as a growing function of � when
��0.5, while in Ref. 14, it was a monotonically decreasing
function.
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