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Abstract

In this paper we present a technique using feedforward neural nets
to treat some types of noise frequently encountered in experimental
measurements. We show that these neural nets act as inherent filters in
lineshapes contaminated with noise, and propose solutions that could be
implemented online to smooth the curves of interest. This method works
just as well or better than conventional methods for treating random
noise. We first show how such a net can learn to recognize a function,
and then show how we can extract parameters in that function, such as,
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for example, the temperature in a temperature-dependent energy distri-
bution. We then show that this operation can sustain a certain amount
of noise without losing its ability to perform equally well. Finally, we
treat the problem of deconvolution of measured lineshapes from the in-
strument response function. We discuss the general principles of this
process, and particularly the inherent difficulties present that do not
allow a direct solution by standard techniques. Then, we show how a
feedforward net can be used successfully to perform this operation. The
examples used here are distributions similar to time decays found in
optical spectroscopy of crystals, but the principles of this work hold for
any such deconvolution situation.

Mathematics Subject Classifications: 82C32, 44A35, 94A12

Keywords: Neural nets; signal processing; convolution; back-propagation
algorithm.

1 Introduction

Neural nets have been employed recently in a variety of applications, too nu-
merous to present here an exhaustive list. They range from pattern and speech
recognition to banking (loan decisions), chess playing and many more. By gen-
eral consent they encompass a growing and highly promising field of scientific
research. Several different models and mathematical techniques have been
employed in this effort depending on the problem at hand.

In a previous paper [1] we examined the correspondence between conven-
tional methods of function approximation (Fourier series, etc.) and the map-
pings that are achieved by feedforward neural networks. A number of examples
were investigated ranging from performing real value reciprocal arithmetic to
approximating particle identifier functions that can identify masses and charges
of energetic nuclear isotopes. In the present work we extend the methodology
to problems that are frequently met in experimental measurements. We in-
vestigate whether we can use neural nets for eliminating the noise that often
corrupts such measurements, making it difficult to recover the pure signal that
was intended to be measured.

The general structure and mechanism of the feedforward net [2] were de-
scribed in detail in our previous paper [1]. Briefly, a network can be ”trained”
to implement a mapping of a set of inputs to a set of outputs. These exem-
plars may represent selected arguments of a function (inputs) and the func-
tion’s value (outputs), in which case the neural network is effectively used to
perform function approximation. The concept of what constitutes a function
can be very broad, e.g. image identification can be considered a functional
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mapping of a set of pixels (arguments), to some output which can be used to
classify the content of the picture.

Recently, a new method has been introduced [3] for accelerating the
learning rate in the Back Propagation Algorithm by a factor of 30%. This is
done by introducing a new “single-direction” coefficient in the change of the
coefficients when calculating the new values. This shows the increasing interest
in this method, which is the most commonly used for such problems.

The training of a network is an iterative process whereby we attempt to
minimize the error of the mapping by successively refining the parameters
that govern its operation. For example, a three-layer network is represented
by an input layer, a ”hidden” layer, and an output layer. Each layer may
have a variable number of neurons (nodes). All nodes at a given layer are
connected with the nodes of the next layer only, and there are no reverse or
sideways connections. Each connection is characterized by a unique strength
w. Initially all w values are chosen at random. For each pattern to be learned
the net is presented with the pattern and the corresponding known target.
The signal of a particular pattern is presented at the input level. Then it
is propagated in the forward direction only, one layer at a time. The input
to each node is computed as the weighted sum, x, of outputs from all nodes
connected to it from the previous layer:

x =
∑
i

wiIi.

wi represents a particular connection weight from a given lower level neu-
ron, and Ii the output from that node. The output from the current node is
then computed using an ”activation” function that is nonlinear, differentiable,
and lower and upper bounded. A popular choice for such a function is the
logistic function, y = 1/(1 + exp(−x)).

This synchronous operation is continued until the last layer generates the
output of the net. There are various ways of defining the mapping error to
be minimized. Typically it is chosen as a least square measure [2]: E =
(t arg et − output).

Based on this error, the error gradient with respect to each weight is com-
puted and the weights adjusted by projecting a fixed amount in the direction
of the steepest descent. The projection procedure may use various methods
to hasten convergence, i.e. Newton methods [4], conjugate gradients [5], sec-
ond order methods [4], or Metropolis methods [6] to escape from local minima.
The simplest adaptation of this method to the multilayer networks is called the
backpropagation algorithm [2]. One such signal propagation together with the
corresponding weights adjustment constitutes one cycle, and it usually takes
several hundred or thousand cycles for the error E to become minimal. At this
point the net has learned the set of presented signals, as the output does not
differ significantly from the target.
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In the first part of this work we show that a neural net can learn to calcu-
late parameters from statistical distributions; in particular temperatures from
temperature-dependent energy distributions. An important property of the
net is that it is able to do so whether the presented lineshapes are smooth or
contaminated with noise. This is a manifestation of the nature of neural nets,
which are not necessarily good for exact calculations, but are fault-tolerant (up
to a certain limit), and thus can operate successfully in noisy environments.

The second part of the paper deals with a similar problem, that of decon-
volution of spectral distributions. This problem in its general form has been a
very old one, frequently appearing when retrieving and analysing experimen-
tal signals. These signals may be due to a variety of different phenomena in
physical, chemical, biological or other disciplines. Regardless of the origin, the
problem is always posed in the same way: The finally measured and recorded
signal is the combination of the ”pure” signal and the ”instrument response”
function. The problem at hand is to deconvolve these two signals in a mean-
ingful way, so that we ”subtract” the instrument function from the total signal
and recover the pure signal for which the experiment was designed. The pecu-
liarity and constant interest of this operation lies with the fact that generally
speaking the direct deconvolution of any two functions is not possible (for rea-
sons explained below), and, therefore, one has to resort to iterative methods
to retrieve the signal of interest. Our technique presented here is to perform
this operation utilizing neural networks. In this study we draw examples from
the time decay functions in optical spectroscopy experiments, but everything
included in this paper is valid and of general use wherever deconvolution sit-
uations arise.

2 Parameter estimation

In this application our network is effectively taught to approximate single val-
ued functions of many variables. In particular, we examine whether neural nets
may be used for parameter estimation of several types of statistical distribu-
tions that may be corrupted by various levels of noise. We take, as examples,
distributions of the form:

f(ε) = e−ε/T and f(ε) = εe−ε/T (1)

They represent energy (ε) distributions for various systems observed at ther-
modynamic equilibrium at some temperature T . Thus the first distribution is
readily identified as a Maxwell-Boltzmann distribution. The second distribu-
tion is that observed, for example, for energies of neutrons evaporated from
a highly excited compound nucleus in statistical equilibrium with all output
channels [7]. It also may be adapted to describe energy spectra of observed
light charged ions ( e.g. protons, alpha particles ).
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One useful function that we could ask of our neural network is to act as
a thermometer, in that when presented with some distribution of the form in
Equation (1) to be able to identify the temperature T . We would like our
thermometer to correctly identify temperatures it has not been taught before
(interpolate and extrapolate), as well as respond correctly in the presence of
noise imbedded within an energy spectrum.

We show that both these capabilities are attainable with the simple network
employed here. Typical energy spectra of one hundred or so channels (with
intensities per channel scaled to the range 0.0 to 1.0), applied as inputs to the
input layer, may be accurately mapped to the correct temperature, with or
without a significant amount of statistical noise (noise of zero mean and with
various variances) imbedded within the spectra.

In a typical calculation we employ a network with a topology of 100:5:1
(number of nodes in the net, input:hidden-layer:output). Choosing, as a rep-
resentative case, the identification of spectra with temperatures in the range of
10 > T > 1, we teach the network to correctly identify 20 temperatures over
this interval. In these examples, as well as for the deconvolution examples
presented later, the weights are adjusted using Newton’s method to calculate
the extent of the steepest descent projections over the error surface. Sample
spectra for equilibrium neutron evaporation are shown in Figure 1 for tem-
peratures of 1.0, 5.0 and 10.0 MeV . The temperatures taught were actually
their reciprocals since the output of the nodes at the output level is bounded
between 0 and 1. The neural thermometer was then presented with 100 un-
taught spectra uniformly covering this range; with or without statistical noise.
Sample spectra with a signal to noise ratio of 20:1 are indicated in Figure 2
for the same temperatures as above. For the noise-free spectra, the temper-
atures were identified with less than 0.1 % error. The noisiest spectra had
their temperatures correctly identified within 2 % error on the average. This
may be seen in Figure 3, where we plot the temperature error versus temper-
ature (the difference between the true temperature and that estimated by our
neural thermometer) for untaught energy spectra at three levels of progres-
sively increasing statistical noise (indicated by signal to noise ratios of 1000:1
to 10:1). These temperature estimates are as good as could be developed by a
smoothing least square fitting procedure.

Similar accuracies were obtained in estimating temperatures from the Boltz-
mann distributions for spectra over the same temperature range. While we
have restricted our estimating capabilities to these temperature ranges and
distributions, the method extends to other cases. The choice of parameter
range to be taught should correspond to that expected to be met, given the
physics of the process under study. Thus, the range of temperature for the
neutron energy spectra considered here corresponds to that observed in nu-
clear reactions for excited emitting nucleus with excitation energies in the
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Figure 1: Sample energy spectra for equilibrium neutron emission as a function
of excited emitter’s temperature.

Figure 2: As in Figure 1 but with inclusion of statistical noise.

range of several MeV to around 100 MeV . These are characteristic of typical
accelerator experiments.
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Figure 3: Error of computed temperature for various levels of signal to noise.

3 Convolution and deconvolution

Given two functions, x(t) and h(t), then the convolution of x and h is given
by y(t) as:

y(t) = x(t) ∗ h(t) =

∞∫

−∞
x(τ)h(t − τ)dτ (2)

The symbol ∗ describes the convolution operation. When we do not have the
functional form of x(t) and h(t), as it is usually the case, but only a discrete
spectrum of each made of a number of points, then the discrete convolution is
given by the summation:

y(kt) = x(kt) ∗ h(kt) =
N−1∑
i=0

x(iT ) h[(k − i)T ] (3)

where both x(kt) and h(kt) are periodic functions with period N,

x(kt) = x[(k + rN)T ] r = 0, ±1, ±2, ... (4)

h(kt) = h[(k + rN)T ] r = 0, ±1, ±2, ... (5)

In continuous or in discrete form this operation physically corresponds to mak-
ing one of two functions into a ”moving window” which samples the first func-
tion in its entire range. Thus the y(t) function is not simply a point-by-point
product of x(t) and h(t), but each point depends on the entire length (all
points) of the convolved functions.
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The convolution of two functions can be succinctly related to their Fourier
transforms [8, 9]. This is because of the Convolution Theorem, which states
that if x(t), h(t), and y(t) are the functions of Equation (2) , and if X(f), H(f),
and Y (f) are the corresponding Fourier transforms of these three functions,
then it holds that:

Y (f) = X(f)H(f) (6)

which means that the Fourier transform of the convolution is just the product
of the individual Fourier transforms. This is valid for both continuous and
discrete functions. Thus, in order to find y(t) in Equation (2). we simply
calculate X(f) and H(f), take the product Y (f), and finally take the inverse
Fourier transform of Y (f), which gives directly y(t).

The obvious way to deconvolve two functions would be to perform the
inverse operation, i.e. first measure h(t) and y(t), then calculate the Fourier
transforms H(f) and Y (f), and finally take:

X(f) = Y (f)/H(f)

and the inverse Fourier transform of X(f) in order to recover x(t). This series
of operations works well when the measured signal is not corrupted with an
additional noise component. But in experimental situations as discussed here,
when even a seemingly trivial degree of noise is added to the convolution
process, rote application of the Fourier transform method is usually hopelessly
inadequate [10]. Typically, high frequencies in the noise are amplified out of all
proportion when divided by the small frequency response of the instrument at
these frequencies. Recovering the spectrum thus requires a certain amount of
empirical smoothing of the experimental spectra and/or the use of frequency
filters such as the optimal (least square Weiner) filter. Using such filters often
requires some ingenuity from the experimentalist in formulating the underlying
noise model. Other techniques have also been employed with the use of a
”regularizer”, which is some function that performs successive estimates of the
function sought. This method works iteratively, and the successive estimates
are convolved in each cycle and compared to the observed signal. Attempts are
made to minimize the difference of the observed from the regularizer function.
The only problem is that there is no universal regularizer, and it must be
chosen separately for each problem. To find what is the best choice is no
easy task. We thus see that the obvious path of functional smoothing before
deconvolution is difficult or sometimes impossible, and there is still a need
for a general technique that would work adequately for any noise form or
level (up to the inherent quality of the signal). Thus, our main objective in
attempting to use neural networks to perform deconvolution is to see if they
can effectively devise a universal noise filter and recover the original spectra
in any deconvolution situation.
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4 Deconvolution with neural networks

The model problem we first consider is to teach the neural network to decon-
volve a small set of exponentially decaying functions that have been convolved
with an instrument function that is roughly Normal or Gaussian in shape.
This problem has a realistic counterpart in a laser induced experiment [11, 12]
wherein a crystal is excited by a finite duration pulse and the exciton decay
from the process is measured. Due to the complicated physics present de-
excitation is not a simple exponential. A typical halflife for the signal decay
is of the order of 10 − 100 ns, when excited by a laser pulse of about 5 ns.
The decay intensities are measured using a time to amplitude converter, and
the measured spectra extend over 256 channels corresponding to 256 time in-
tervals. We thus require 256 input and output nodes. The time duration of
the laser signal is approximately 50 time units in length and thus we choose
the number of hidden nodes to be 50. The network was first trained to map
5 non-noisy convolved to deconvolved spectra, where the deconvolved spectra
were of the normalized form,

s(x) = e−x/T (7)

for 5 values of T over the range 65 > T > 1. These taught spectra were cor-
rectly deconvolved to within less than 1% error. The ability of the network to
deconvolve untaught spectra over this range of T was found to be successful
within 1-2% error. Indeed, it was found capable of deconvolving spectra that
were combined weighted sums of exponentially decaying spectra. Indicated
in Figure 4 is the accuracy with which deconvolution of a combined spectra,
composed of the equally weighted sum of two untaught spectra with decay con-
stants equal to T = 23.76 and T = 37.7698, was achieved. The deconvolved
spectrum calculated by the neural net is indistinguishable from the true spec-
trum. Shown in Figures 5 and 6 are the neural network’s deconvolved spectra
and true spectra for the same combined spectra as above, but with significant
levels of white noise added to the convolved spectra (signal to noise ratios of
10:1 and 5:1 respectively). The noisy convolved spectra are also indicated.
The neural network was taught the same examples as above and one addi-
tional mapping. This latter exemplar was a small constant spectrum as input
and the output was specified to be zero. This was intended to be the uniform
white noise spectra that is to be filtered from the real spectrum. It may be
appreciated that the neural network has done a superior job at recovering the
undistorted spectra. Inclusion of the noise exemplar improves the recovered
spectrum by approximately a factor of 2, compared to not including it in the
set of examples. This indicates that the network has indeed learned to act as
a filter to some degree.

For comparison, we may consider the standard Fourier transform based sig-
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Figure 4: Convolution and deconvolution spectra for sum of two spectra with
T = 23.76 and T = 37.7698.

Figure 5: Same as in Figure 4 with statistical noise. Signal to noise ratio of
10:1.

nal processing techniques discussed above. Shown in Figure 7 are the normal-
ized power spectra (plotted on a logarithmic scale) for the instrument function
(the convoluting kernel), the noise free combined exponentially decaying spec-
tra, and the power spectra of the resulting convolved spectra. In the absence
of noise, the standard algorithm (Equation (2)) recovers the original spectra
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Figure 6: Same as in Figure 5 with signal to noise ratio of 5:1.

exactly, as required by the Fourier transform convolution theorem. However,
when white noise is added to the convolved spectra, the deconvolution is much
worse. Figure 8 shows the power spectra and the convolved spectrum when
white noise has been added with a signal to noise ratio is 10:1. Rote applica-
tion of the Fourier transform method, without any pre-smoothing or frequency
filtering, results in the completely meaningless deconvolved spectra shown in
Figure 9. If smoothing of the convolved spectra is performed (averaging over
a three channel wide window) and an optimal Weiner filter is used, then the
deconvolution can be performed with somewhat better results, as shown in
Figure 10. However even here, where significant effort has been made to re-
move the white noise, it is evident that the neural network deconvolution has
performed in a much superior fashion, as is evident from Figure 5, where the
same noise corrupted convolved spectrum is treated.

5 Discussion and Conclusions

Our intention in this work has been to examine whether neural nets can pro-
vide an alternate means for filtering noise in experimental signals. We have
provided two examples of such cases: parameter estimation and deconvolution
of signals from response functions. This method may be superior to conven-
tional methods because it does not depend on the details of the signals studied.
In particular, the performance of the method does not significantly degrade
in the presence of high levels of noise, and thus neural nets are particularly
amenable to problems such as signal deconvolution, where minute amounts
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Figure 7: Normalized power spectra of convoluted and deconvoluted spectra
without noise.

Figure 8: As in Figure 7 but with white noise with signal to noise ratio of 10:1
added after convolution.

of noise may pose serious difficulties for traditional methods. The principal
reason behind this is that the summing of signals that feed a neuron provides
an internal averaging of the total input and tends to cancel individual fluctu-
ations. Similarly, the aggregate input in turn has fluctuations damped out by
the nature of the ”squashing” property of the activation function. The com-
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Figure 9: Fourier transformed deconvoluted spectra of noisy spectra of Figure
8.

Figure 10: Fourier tranform based deconvolution of noisy spectra of Figure 8
with window smoothing and Weiner Filter.

bined effect of these operations through several layers of neurons provides for
a good operation in the presence of noise.

Due to the nature of neural nets the results they give are not exact, but
we consider this method to be successful in these problems if they can provide
a solution within a few % error. Developing networks with greater accuracy



928 G. Karatasios, I. P. Antoniades, E. Fournou and P. Argyrakis

most often corresponds to simply carrying out the training over longer periods
(more iterations) and/or increasing the number of hidden nodes. However, the
asymptotic best results achievable are difficult to predict and the expense in
computer time may become prohibitive.

Neural network training is equivalent to expanding a function in terms
of basis functions, where each hidden node is a basis function described, for
example, by an optimally parameterized logistic function (or other such lower
and upper bounded function). The backpropagation algorithm is an effective
means of achieving the parameterization. However, it is not clear if it is the
best algorithm to achieve this end. The patterns that must be taught to a net
must usually be of the same nature as the patterns for which we will require
the net to perform the deconvolution. In other words there must be some
rough prior knowledge of the type of signal expected.

Other investigations are similarly finding the neural network approach use-
ful for these types of problems. Attempts [13, 14] have also been made to
deconvolve experimental functions using neural network methods. In a pre-
liminary study [13] a CMAC (Cerebellar Model Arithmetic Computer) was
successfully used to deconvolve a decaying sinusoid impulse function convolved
with low level white noise. However, it was less successful at the lower signal
to noise ratios considered here. A similar type of net [15] was also used for
the deconvolution (separation) of two overlapping chromatographic peaks, but
these signals usually contain no noise. Finally, an algorithm [14] was devised
that is suited to implementation in a neural net type electronic circuit, and
also performs deconvolution satisfactorily. It utilizes a steady-state feedback
type of network and it is able to perform well also in the presence of noise.
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