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The spectrally resolved time-cvolution of free and trapped singlet excitons was obtained at liquid-helium temperature for
ternary crystals of perdeuteronaphthalene/naphthalene/betamethyinaphthalene (host/guest/supertrap). The naphthalene
guest (donor) concentration varied between 0.30 and 0.99 mole fraction. while the supertrap (acceptor) concentrations were
10741075, At the lower guest concentrations (0.50 and below) the naphthalene-exciton decay time approaches the natural
lifetime ( =122 ns). At higher concentrations. the decay is much shorter and extremely non-eaponential. This behavior is
inconsistent with simple homogeneous kinetics schemes that use a time-independent rate constant for energy transport. Above
the percolation concentration (0.60 naphthalene) we fitted the experimental results with a random-flight-kinetic model.
incorporating correlated random walks on the percolating guest cluster. The best fit was obtained for a ““coherence length™
(mean free path) of = 102 lattice units. These results are in good agreement with previous steady-state studies on the same
samples, and seem to indicate a partial coherence of the exciton transport in both pure and substitutionally disordered ervsials

at these low temperatures.

1. Introduction

The characteristics of transport in disordered
systems is a problem of current interest {1-8]. The
transport or migration of optical excitations offers
some simplifying features both theoretically. e.g.
no long-range Coulomb interactions, and experi-
mentally, e.g. the utilization of powerful laser exci-
tation and detection techniques with high tem-
poral, spatial and energy resolution. Recently there
has been a significant increase in the number of
theoretical papers on the transfer of excitation in
disordered molecular aggregates [6—-22]. We do not
consider here the interesting problem of transfer
from one donor to a set of randomly distributed
acceptors [23,24], but only the case of donor—donor
transfer and migration where the donors are ran-
domly distributed and where the occurrence of
donor-acceptor transfer is a rare (though im-
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portant) event. Experimentally we produced a sys-
tem that has random substitutional disorder but
positional and orientational order at the same
time. Moreover. for most practical purposes our
samples were perfect single crystals of high physi-
cal and chemical quality.

Much of the recent interest in exciton-transport
problems has been associated with the phenomena
of critical concentrarions [3.5.19] (charactenizing
significant enhancement of migration). To explain
these ““transitions” of transport, Anderson lo-
calization [6.27]. percolation [25.26.28]. and other
models [7.8] have been suggested. involving differ-
ent physical pictures of the exciton transport. Here
we describe experiments that are only marginally
related to the question of the Anderson transition.
However, these studies are of much relevance to
the topics of exciton diffusion (dispersive {8] or
percolative [29.30]). exciton coherence and exci-
ton—-phonon coupling. Furthermore, a quantitative
kinetic model is suggested where the controlling
factor is a form of **heterogeneous™ diffusion (per-
colation), which may have some wider applica-
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tions, such as for migration in photosynthetic sys-
tems [31}.

We have recently described in detail [32,33] a
model based on a Monte Carlo method that at-
tacks the problem of energy transport utilizing
simulations on large molecular lattices in the com-
puter memory. This model is quite versatile and
enables one to go beyond the common analytical
versions of random walks [34]. With this model we
can treat practically any dimensionality and any
combination of interactions for any number of
components at any given concentration. In addi-
tion, our model includes directional correlation
and memory of the motion. The parameter we
often measure is the extent of energy transfer
given by the number of molecular sites that have
carried energy at one time or another during the
“experiment”. This number, divided by the num-
ber of “steps”, gives the efficiency, e. We reported
[35,36] the efficiency as a function of time for
various parameters and over a range of several
exciton lifetimes.

We used the above model, in conjunction with a
series of steady-state experiments [33] (paper 1 of
this series) on the naphthalene system
(C,oHyz/C,,Dy/ betamethylnaphthalene-d,,,
guest/host/supertrap), to study some details of
excitonic energy transfer. This pointed towards the
existence of some “coherence” at liquid-helium
temperatures for this system. In the present study,
a continuation of the previous work, we investi-
gated the time-dependence of the system. We de-
veloped a kinetic scheme starting from the dif-
ferential equations for the concentrations of ex-
cited states in our system. The rate coefficients in
these equations (which are time-dependent) were
related to the above-mentioned efficiency of trans-
port model in a formalism discussed in section 3 of
this paper. These equations were solved numeri-
cally in section 4 for the excitation populations
with only one adjustable parameter, the coherence
length /, and the various solutions were compared
10 our experimental results. Our conclusions are
given in section 5, and pertain to exciton localiza-
tion and the partial coherence of the energy trans-
port in substitutionally disordered and pure
crystals at low temperatures.

2. Experimental

Most experimental details were described in
paper 1 (of this series [33]). At very narrow-band
excitation (of the order of 1 cm™ 1, the output of a
nitrogen laser pumped dye laser (Molectron DL
400) was used as the exciting light source,
frequency doubled. Since the laser light is tunable,
any component or energy level can be selectively
excited, even impurity molecules or the BMN (be-
tamethylnaphthalene-d,;) molecules. A typical ex-
citation frequency was 32000 cm™', which is well
above the naphthalene “0-0" energy level of the
first excited singlet state 'B,,. We occasionally
varied this frequency down to = 31280 cm™'. For
a C, = 0.50 concentration crystal the bottom of the
exciton band is = 31450 cm™!. We could thus
directly establish the bottom of the band, and we
found it to be in good agreement with the values
obtained by other methods [37,38]. The intensity
of the exciting light was also varied by several
factors of two to observe any effects on the emitted
signal. This was done quantitatively using a
polarizer, by changing the angle of polarization.
The results are given in section 4.

The spectra were taken at 1.8 and 4.2 K using
the same fluorescence bands as described earlier:
the “0-512” for C,,Hg and the “0-0" for BMN.
BMN is a monomer due to its low concentration,
and has a relatively high intensity. When the BMN
contribution to the total intensity was low its
time-evolution spectrum was very noisy or some-
times non-recordable. This was because at high
C,oHj; concentrations, even though the transfer is
very efficient, the BMN concentration is very small.
The small concentration is because that BMN
comes as a “natural” (perdeuterated) impurity in
the C,;D; host [33]. In all cases the C,,H; in-
tensity was strong enough for the time-resolved
spectra to be recorded.

3. Kinetic formalism

We assume that all excitation is generated on
the guest lattice sites. Experimentally, the excita-
tion initially localized on the host will decay rapidly
to the guest, and since the concentration of BMN
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is much lower than that of naphthalene, we can
neglect any direct excitation of BMN. The BMN
fluorescence is proportional to [BMN], the number
of excited BMN molecules. Also, the number of
excited guest molecules is [N}, and is assumed to
be small compared to the BMN and N concentra-
tions (however, see below). We neglect collisions
between excitons and saturation of the BMN
species. The energy transfer can then be thought of
as the migration of these guest singlet excitons.
and their spread throughout the lattice, followed
either by direct monomolecular decay or by trap-
ping by the BMN (and decay from there). Thus,
we arrive at the following kinetic equations that
describe the rate of change of the N and BMN
exciton concentrations [1,39]:

d[N]/dt= —k[N] -k (2)[N], (1)
d[BMN]/dr= —k4[BMN] + k(7)[N]. 2)

Here k, and kg are the experimental (monomolec-
ular) decay rates for isolated naphthalene and
BMN, respectively, and include radiative and
non-radiative processes, but no intermolecular en-
ergy transfer. The time-dependent coefficient k(r)
describes the energy transfer rate at time r. A(r) is
also related to the probability that a BMN super-
trap molecule will have trapped a naphthalene
exciton at time f. The solutions of these equations
can then be related to the time resolved spectra. In
these equations, ky and ky are independent and
well-known quantities, and k(z) is the only sys-
tem-dependent quantity.

The above kinetic scheme was previously pos-
tulated for binary systems [1]. We propose a new
quantitative approach for both binary and ternary
systems. For ternary systems we present a new
model based on the percolation approach. In par-
ticular, this involves the definition of the time-de-
pendent rate coefficient, k(7).

It has been shown [40] that the total probability
for trapping by BMN is given as

P=P_[1—exp(-SxC.)]. C/=C/C,. (3)

Here P, is the percolation probability [40], C is
the supertrap concentration (mole fraction), and y
is its trapping efficiency. Introducing the quantity
e (e=S,/n, where S, is the number of sites visited

[
v
W

in an n-step walk) one gets
P="P_[1 —exp(eny())]. (4)

Using a = C/yn/t, where ¢ is the time, we finally
obtain

P=P_[1 — exp(—aer)]. (5)

The change of probability per unit time is then
dP/dt and 1s equal to

dP/dt=P e “a(e+1des/dr). (6)

This quantity is proportional to A£(r) and it can be
shown (see appendix A) that the **proportionality
constant™ i1s equal to 1/(1 — P). Therefore we have
P_ae™"“(e+1desdr)
1—P_(1—e )

k(1)= €]

We emphasize that € is a function of C,. 1. L
and the topology. For C, > 0.70. for the square
lattice topology. P = 1.0 and eq. (7) becomes

k(t)=a(e+ rdesdr). (8)

This form is rigorously true for a binary system.
We saw above that k(z) depends on the quantity €.
and also depends (via a) on y and C,. Both y and
C, are properties of the system at hand. so we are
now in a position to calculate A(r). The differen-
tial equations now become

d[N]/dr= —k[N]—al(e+rdes/dr)[N]. (9)
d[BMN]/dr= —k,[BMN] + a(e+ rde/dr)[N].
(10)

We seek solutions to these coupled equations. It
has been shown [33] that ¢ follows an approxi-
mately exponential decay. We therefore fit the
simulation results of € 1o an exponential equation
to get the best fit (or alternatively. we fit log e to a
linear equation). Thus

e=ebr, (11)
loge=bhr+ A. (12)
de/dr= be, (13)
k(t)=al(e+ tde/dt)=ae(l + bt). (14)

This process predicts k(r) rather satisfactorily
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for most of the C, concentration range, but not so
well close to the critical percolation concentration
C.. At this point the approximation in eq. (11)
may give an error up to 50% in the fitted values of
€. and therefore it is advisable to use the full eq. 8
to calculate k(r). We solve eq. (8) numerically by
calculating the slope de/ds at each Ar interval.
The resulting function A(7) contains more noise
than the fitted k(r) of eq. (14) due to the inherent
statistical fluctuations in the slopes de/dr, but is a
much better approximation than eq. (14), at least
for the concentration region close to P.. In fig. 1 a
plot is shown for k(r) versus r. for a typical
calculation. As expected, k(7) is not a linear func-
tion of time.
Eq. (9) now becomes

d[N]/dr = —k[N]—ae(1 + br)[N]. (15)

and after separating variables and integrating:

log[N] = —f[k,,+ae(l + br)]dr. (16)

[N] =exp(—f[kN + ae(1 +bl)]dl). (17)

The integral on the right-hand side is then
evaluated numerically. Eq. (2) now becomes

&
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Fig. 1. Time-dependent rate-““constant™ behavior. The time-de-
pendent rate constant k(1) is plotted as a function of time,
according to eq. (9). The solution is given for a concentration
C,=0.0 for two coherence lengths, /=1 (A), and /=10
{gaussian distribution with standard deviation o = 3.0, curve
B). The units of k(r) are sites visited /ns. The two curves A and

B are the smoothed k(r), all noise being averaged out for
clearness.

d[BMN]/dr + kg[BMN] =k (¢)[N]. (18)

The general solution of this equation can also be
evaluated numerically since

[BMN](r) = e""'*'fe"“’k(t)[N](t)dt. (19)
[BMN](7) = e~*o [e*wiaeh+a(1 + br)[N]dz. (20)

Similar but more complex solutions apply when
P_=1. using the full eq. (7). The latter were
actually used numerically for the work reported
below.

A few comments are in order at this point. The
solutions in egs. (16) and (20) depend on P._. k(7).
a, b, and time. Here a and b are constants which
depend on the efficiency €, the supertrap con-
centration C,. and the ratio n/r, which is the
number of steps per unit time (but not the abso-
lute number of steps), but they (a and b) do not
depend on time or the coherence /. Similarly k(r)
depends on a and b via eq. (7). and it is also a
function of time. P__ is a static property of a given
lattice, but has no dependence upon any energy-
transfer mechanism (it depends only on the inter-
action topology and the guest concentrations).
Thus the only quantities reflecting the dynamical
nature of the system are € and the time (r). Notice
that the information about the coherence length /
is incorporated in e. This is so because € depends
on S, and §, is a strong function of L It was
found [35,36] that large / values increase S, at the
high C, range, but decrease S, at C; close to the
critical percolation concentration. We can use sim-
ple numerical solutions for €, which are now avail-
able in the literature [35,41]. These numerical re-
sults for € can be checked against other work
(using the generating function method or the el-
liptic integral method) only for the pure crystal
limit, and we found them to be in satisfactory
agreement [59,60]. We thus solved the kinetic
equations in terms of simple parameters that we
know how to calculate.

4. Results

We now proceed to derive the detailed solutions
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as discussed in the previous section. using the
proper experimental boundary conditions. We first
assume an instantaneous creation of the naph-
thalene excitons. so that. after normalizing. [N]=
1.00 at time 7= 0. This assumption is good if we
consider that it probably takes only a few picosec-
onds for the excitation to be localized on some
naphthalene guest site (compared to the experi-
mental resolution of a few nanoseconds). Simi-
larly, [BMN] =0 at time ¢ = 0. because we assume
no direct excitation of the supertrap (because of its
low concentration). and it takes. on the average. a
considerable number of steps before a BMN site
will be visited.

Experimentally the above boundary conditions
are good only in principle. i.e. only when the
excitation source is a delta function that creates
excitons in a time shorter than the order of one
jump. However. in practice this is not the case.
Our laser is a pulsed light source with each pulse
having an approximately gaussian width at half-
height of =5 ns (after doubling). This is of com-
parable magnitude with the exciton activity times.
and must be taken into account. A direct way of
doing this would be to record a blank laser signal
and then *“subtract it out” from the experimental
signal, ie. perform a deconvolution of the two
signals. This operation, however, presents serious
difficulties because, by nature. the experimental
signal contains random noise which is amplified in
the deconvolution process (which in effect is a
differentiation process). and the method thus fails
in practice. If the functional form of the experi-
mental signal is known the problem of random
noise can be easily eliminated and the deconvolu-
tion car be done, but as we noted in section 3
these solutions may turn out to be very complex
functions whose form is not immediately known.

We resort to a second alternative: We perform
a convolution of the calculated [N] and [BMN]
signals with the laser signal (which in effect corre-
sponds to an integration process). so as to make
the predicted curves look experiment-like. and in-
clude exactly the same effects. This operation is
somewhat complex, but feasible, and the details
are shown in ref. [49]. For background discussion
on convolution theory see refs. [50-55].

Because the excitation source has a relatively

high intensity. the question arose whether
exciton—exciton-interaction phenomena can be ne-
glected. In some crystal svstems. such as anthra-
cene, the exciton—exciton-annihilation process is
well-known [42]. Some information became availa-
ble recently [43] for the naphthalene singlet. but
only for high temperatures (77 K and above) and
pure lattices. Recently. results for binary crystals
appeared [44]. We tried a number of tests on this
system. such as reducing the intensity of the in-
coming light by a factor of two. several times. We
observed some differences over the course of
several runs. but the laser intensitv. focusing on
the crystal, clearness of the crystal. etc.. were not
constant in dav-to-dav operations. and therefore
we were not able to quantitatively determine any
effects from these runs. Further tests on the same
crystals [45]. using neutral density filters. showed
no significant effect. For our kinetic scheme equa-
tions we used the data where further cutting down
on the intensity produced no visible changes in the
relative spectral intensities. hoping that at this
point wé had reduced all exciton—exciton interac-
uons to a minimum. Speculating on our observa-
tions. we occasionallv noticed that at high light
intensities the guesi/trap emission ratio de-
creased. indicaung that the C,,H; exciton con-
centration decreased. The probable cause i1s exci-
ton—exciton fusion. The fusion effect was proba-
bly significant only at high C, (0.99). where the
BMN concentration was the lowest. thus en-
hancing the fusion/trapping ratio. The collision
rate constant for this process should be an interest-
ing topic of study [46].

Our experimental data have a considerable un-
certainty. It is not surprising that small variations
in the supertrap concentration (even within the
same crystal) could cause a doubling in the com-
ponent lifetime (defined here as the time necessarv
for the intensity to drop down 1o 1/¢ of its peak
value). For example. a change by a factor of 10 in
C. (from 1077 to 107 *) causes a change of 0.60 in
the probability for trapping (from 0.39 1o 0.99).
sce fig. 2 of ref. [41]. However. the decay times for
crystals from C,=0.70 to C,=0.99 range from
= 12 to 40 ns. which is a factor of 4. Also. the
calculated quantities show a similar variation. For
example. for the C,=0.80 crystal. for C,=1x
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10~4 the calculated decay times are 27, 16, and 45
ns, while for C,=1x 107 they are 100, 85, and
120 ns, a factor of 5 (for coherence lengths /=1,
10 and 100, respectively). We used the average of
all our decay measurements for each crystal. For
the calculations we used the proper “average”
supertrap concentration (see¢ paper I). Below the
critical percolation concentration the decay times
get longer, approaching the natural lifetime of
naphthalene. This happens because in this region
we have mostly isolated naphthalene clusters of
small size, with a low probability of containing
any BMN sites. Therefore, the C,;H; excitons
never get trapped, but instead “live” within these
small clusters throughout their natural lifetime.
The decay times in this region vary from 60 ns to
= 120 ns. The lifetime of neat naphthalene is
= 120 ns. A summary of all lifetimes is given in
table 1. Similar results for this region of C,, with
higher C,, were obtained by Parson and Kopelman
[29].

" The experimental time decays of fig. 3 are more
complex than simple exponentials, as we can easily
see when we plot the logarithmic spectra. This
situation is different from the work of Parson and
Kopelman [29], where they observed exponential
behavior in the guest lifetimes throughout the con-
centration range. The reason for this is that their
transport is very fast, due to the presence of 1-2
orders of magnitude more supertrap BMN. Their
actual nanosecond-domain kinetics is governed by
eqgs. (1) and (2) in the limit of k(¢)— constant,
with k(¢) — 0 for the lowest (0.42) guest con-

Table 1
Experimental lifetimes (ns).
G 1.8K 42K

C,oH; BMN C,oHj BMN
0.99 40 23
0.95 12 35 12 42
0.90 15 40 20 45
0.85 18 42 15 50
0.80 36 60 16 44
0.70 34 46 29 58
0.60 36 44 25 45
0.50 120 71 122 81
0.40 80 57 83 67
0.30 86 95 76

centration (following k(z) — co in the picosecond
domain, see appendix A). In our case it is not
surprising to find different results due to the lower
concentration of BMN which makes the nanose-
cond-domain transport dependent on larger values
of k(z) for longer times.

The experimental spectra were all recorded at
1.8 and 4.2 K. We¢ did not observe any consistent
trend between the two temperatures, such as we
observed in the steady-state spectra [33]. A typical
difference is shown in fig. 2, where we plotted the
spectra for both temperatures for the 0.70 mole
fraction guest concentration crystal. We, therefore,
averaged the integrated results of the two tempera-
tures .

* We cannot claim any definite switch in temperature effects as
was recently observed for the delayed fluorescence (i.e. triplet
transport) [61] and as was observed for the neat crystal
fluorescence (singlet) experiments (with protonated BMN
supertrap) at higher temperatures [62].
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Fig. 2. Experimental time-evolution spectra for two different

temperatures. The time-evolution spectra are shown for the

0.70 guest crystal, at two different temperatures, 1.8 K(top),

and 4.2 K(bottom). The naphthalene emission was monitored
in this case. In this crystal C,=1X107%,
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Fig. 3. Experimental and calculated time-evolution spectra.
Plots of the solutions of the differential equations together with
the experimental curves for several different guest concentra-
tions, as marked. The naphthalene guest emission was moni-

The effects of coherent versus incoherent walks
can be seen in the three calculated curves plotted
in fig. 3, where /=1, 10, and 100. Each one
predicts a different time evolution behavior. owing
to the difference in the S, values.

The most obvious conclusion from these curves
is that at high C,. where the /=1 curve shows a
considerably slower decay than the /=10 and
/=100 curves. the experimental curve is close to
the /= 10 and /= 100 curves, i.e. it shows a com-
paratively fast decay. At intermediate Cg, about
C,=0.70, the /=1 curve shifts and exhibits the
fastest decay, while the coherent cases (/= 10 and
= 100) show a slower decay, but still in agree-
ment with the experiment.

In order to get a quantitative measure of the
appropriateness of this picture we integrated the
areas under the decay curves and compared the
integrals. Table 2 shows the calculated integrals at
25, 50 and 100 ns, together with the experimental
integrals. when the naphthalene emission was
monitored. This corresponds to measuring the total

tored: (a) C, = 0.95. C,=17x1073; (b) C,=0.85. C,=5.1%
1073 (¢) C,=0.80. C,=6.8x10"% (d) ,=0.70, C,=1x
10~*. The BMN trap emission was monitored: (e) ¢, = 0.90,
C,=34x107% (f) G, =085 C,=51x10"% (g) C, =0.80.
C,=68%107% (h) C,=0.70. C,=1x107* The following
coherence lengths were used: /=1 (circles). / =10 (with stan-
dard dewviation o = 3.0, triangles), and /=100 (with standard
deviation o = 30.0. crosses). The calculated intensities were
adjusted using the factor a’ as discussed in the text. For
simplicity eq. (14) was used for the k(r) calculation, since the
error introduced is within our other uncertainties.

Table 2
Integrated experimental and calculated intensities — naphthalene
G 25 ns 50 ns 100 ns

exp. =1 =10 =100 exp. I=1 =10 =100 exp. =1 {=10 =100
0.99 10.2 11.0 11.0 11.0 242 320 310 211 377 61.3 56.8 570
0.95 9.8 11.0 10.9 10.9 18.6 29.6 26.3 26.1 24.6 50.7 39.0 40.3
0.90 99 10.9 10.7 10.7 17.3 217 22.8 23.8 19.7 43.7 29.5 323
0.85 10.2 10.9 10.5 10.6 199 26.1 20.9 219 24.6 38.7 256 38.2
0.80 11.6: 10.8 10.6 10.9 243 25.6 214 27.7 343 36.9 264 472
0.75 ' 10.8 10.8 11.0 (25) 255 242 308 (35) 36.8 329 59.1
0.70 11.8 10.9 10.9 11.0 256 26.1 279 323 36.7 391 469 63.2
0.65 10.9 11.0 11.0 (25) 216 313 321 (36.7) 44.1 59.7 62.8
0.60 10.1 11.0 11.0 11.0 25.0 29.8 32.6 326 36.8 52.8 64.0 64.0
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Table 3
Inteprated experimental and calculated intensities - BMN
G 25 ns 50 ns 100 ns

exp. I1=1 =10 =100 exp. I=1 =10 =100 exp. I=1 =10 1=100
095 4.7 5.8 58 279 29.6 29.7 66.7 59.1 59.5
0.90 6.3 5.2 6.9 6.7 275 29.0 29.8 300 443 63.0 49.1 51.9
0.85 5.6 5.8 7.5 6.2 27.6 297 29.1 30.0 49.0 588 437 56.6
0.80 58 6.0 73 6.3 30.2 298 293 300 4935 572 45.1 54.9
0.70 7.1 6.0 6.0 5.7 29.0 30.0 299 294 519 58.0 377 309
0.60 6.5 28.9 50.6

normalized intensity. i.e. summing over the emitted
photons that decay from the naphthalene level to
the ground state, and it is indicative of the extent
of the energy transfer. In table 3 we do the same
for the BMN emission.

The integrals up to 25 ns are of little interest.
because the time curves up to this point reflect to a
significant extent the laser signal. so no differenti-
ation can be made. We thus concentrated on the
50 and 100 ns cases.

Notice that in all of the above we assumed that
v = 1. The [N] solution, eq. (17), is rewritten as

[N]=exp(—kadt) exp(afe(l +bt)dt). (21)

We see that [N] increases exponentially with a.
Remembering that a = nyC, /1, any uncertainty we
have in v, n/r, or C, would carry exponentially to
[N]. We saw that [47-49] vy is less than 1.00,
ranging from = 0.1 to 0.5 within a factor of 2 or 3.
The problem of establishing the exact C value was
discussed previously, and using an “average” value.
we may also be off the actual value by a factor of
2 or 3. Finally. n/1, the number of steps per unit
time. was derived from an uncertainty-type rela-
tion [49] and this may also be off by a factor of 2
or 3.

To circumvent the above difficulties we made
an adjustment to the calculated values in relation
to the experimental results. At the crossover
concentration region (C, = 0.80) all types of walks
(i.e. different / values) show about the same behav-
ior, i.e. the same e. However, the experimental
intensities do not agree with the calculated ones.
The difference may be due to a combination of the

three factors with significant uncertainties. These
are n/t, v. and C_. which all combine to form
a=nyC//1. We therefore find an adjusted a. call
it a’. which when used in the differential equations
produces a calculated value in agreement with the
experiment for one given concentration value C, =
0.80. Since we use the same a' for all guest
concentrations, we preserve the relative magni-
tudes of the time-integrated intensities. The solu-
tions to the differential equations plotted in fig. 4
include the adjusted factor a’. as a function of C,
for /=1. 10 and 100. The results are shown in
table 4. for integrated intensities to 50 and 100 ns.
for naphthalene. and in table 5 for BMN. Now a
meaningful comparison with the experiment can
be made. We plot the results of tables 4 and 5 in
figs. 4 and 5. i.e. the total integrated intensities as
a function of C,. for different coherence values.

From these plots we conclude that the /=1
curve shows the biggest deviation from experi-
ment. while as / increases the curves get closer 10
the experiment. Here. /=100 gives the best fit.
Notice that we tested the adjusting factor a’ over
the total region of the “crossover™ concentration
(i.e. from guest concentration of = 0.75 1o 0.90).
and we came up with practically the same results
as in fig. 3. Finally. it should be pointed out that
the values obiained from the adjusted factor are
always within a factor of 2 of the unadjusted
values.

The shape of the integrated intensity curve (fig.
4) shows a minimum around 0.90. The reason for
this is a bit complex. We notice (table 1 of ref.
[33]) that the actual BMN concentration is not
constant in all crystals. but steadilv decreases. For
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Table 4
Reduced calculated intensities — naphthalene
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Cg 50ns 100 ns

exp. I=1 /=10 I=100 exp. I=1 =10 /=100

099 242 318 314 286 37.7 60.0 583 470
095 186 285 27.6 20.1 246 467 432 240
090 173 265 250 166 19.7 396 352 18.1
085 199 265 25¢ 166 246 35.1 324 236
080 243 247 247 232 343 345 343 344
0.75 (25) 25.0 27.0 290 (35) 354 414 540
0.70 256 265 30.0 319 36.7 41.0 540 62.1
0.65 (25.3) 28.2 320 31.7 (36.7) 46.7 62.0 618
0.60 250 31.1 326 326 368 58.0 644 640

example, from C, = 0.99 to 0.90 there is a factor of
10 difference in C,, but from 0.90 10 0.40 there is
only a factor of 4. This uneven distribution (direct

0.00
4

50,

40.00

TOTAL FLU%%SCENCE INTENSITY

A0

10.00

8 .
“hsg 0.60

0.78 060 0.90 100
CIGUEST)

Fig. 4. Integrated naphthalcne intensities as a function of C,.

The integrated intensities of table 4 are plotted as a function of

C,. The theoretical curves for the taree different coherence

lengths are shown together with the experimental one. The

naphthalene emission was monitored in this case.

Table 5
Reduced calculated intensities — BMN )
¢, 50ns 100 nsec

exp. =1 I=10 /=100 exp. {=1 I=10 /=100
095 286 29.1 286 64.6 62.5 412

090 275 295 299 255 445 598 555 312
0.85 27.6 299 299 283 490 553 52.1 401
0.80 30.2 30.0 300 298 49.5 54.6 545 480
0.75 299 293 299 555 61.3 460
0.70 290 299 292 295 51.9 57.7 602 508
0.60 289 285 280 280 50.6 64.2 626 625

dependence on the host concentration) has a dras-
tic effect on the fluorescence decay. Also, around
C, = 0.80 the efficiency of the random walk drasti-
cally changes. The /=100 walker at C,=0.90
visits 66000 sites, but at 0.70 it visits only 1000

00
I
'

S0 6000
n
]

40.00

TOTAL FLU%ROESCENCE INTENSITY

= 1:0
=10 : &
8 =100 : +
] EXPERIMENT: »
gl 1
8 " _ .
“bso 0.60 070 0.80 0.50 1.00
C(GUEST)

Fig. 5. Integrated BMN intensities as a function of C,. The
integrated intensities of table 5 are plotted as a function of C,.
The theoretical curves for the three different coherence lengths
are shown together with the experimental one. The BMN
emission was monitored in this case.
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sites, a factor of 6. It seems that these two oppos-
ing factors combined produce the resulting shape
of fig. 4.

The above results are in good agreement with
the results of the steady-state experiments we pre-
sented earlier [32,33]. The possible existence of
coherence or “correlated walk™ was first indicated
there, and it is verified here in the following sense:
The /=1 case presents the worst fit with the
experiment, especially at high C, and close to the
critical dynamic percolation concentration. Be-
cause of all the uncertainties we do not report the
value /= 100 as the nominal solution to the prob-
lem. We merely state that partial coherence (“cor-
related walk™) does describe our experiments in a
consistent fashion.

S. Discussion and conclusions

We first performed “standard” steady-state flu-
orescence experiments [32,33] on the naphthalene
system, and later the time-resolved tests described
here. These are in reasonably good agreement with
each other in the following way: (1) Based on the
time-integrated intensities of the time-resolved data
one gets results stmilar to those of the steady-state
measurements [49]. (2) Neither result can be inter-
preted by simple incoherent hopping expressed via
a simple random walk model (note that our “adju-
stable parameter” a’ cannot account for the guest
concentration dependence). (3) Using a
“coherence™ (correlation) parameter / one can
account for the observed concentration depen-
dence of both steady-state and time-evolution
experiments in a consistent way. We suggest that
our correlation (“coherence™) parameter does re-
late to partial coherence in terms of quantum-
mechanical wave packets; however, this relation-
ship is far from clear. This is our evidence for the
possible existence of partial coherence. Our time-
resolved spectra gave a good fit for “coherence”
over = 100 lattice units. Our typical computer
lattice size is 1000 X 1000 sites (for the two-dimen-
sional case). On these lattices we performed tests
for up to /=250. We noticed that for mixed
crystals with guest concentrations up to =0.95
any computer simulation with /> 100 gives the

same result as with /= 100. because the heavy
scattering by the host does not permit any differ-
entiation between long and very long mean free
paths. Therefore, our data would be the same had
we used an / = 1000 or greater (with a correspond-
ingly larger lattice). This simply means that at
C, < 0.95 coherence is necessarily broken by the
host scattering. Moreover, in the region C, <0.70
the shallow guest traps. due to finite clusters, may
cause additional scattering. Only for the neat (pure)
crystal limit. or when closely approaching it, could
higher / values be tested in principle, but in this
project we would not afford it. either computa-
tionally or experimentally. It is very difficult to
prepare a crystal with no impurities or defects, in
order to simulate the pure-crystal case. and test for
larger coherence lengths. Therefore, our resulis do
not preclude having / >> 100 when exrrarolated 10 a
perfect lamrice. We, therefore. concludz that we
have tentatively established the existence of
“coherence™. at these temperatures, and mention
that a value of = 100 lattice units is in good
agreement with our experiments. This means that.
extrapolated to the perfect pure naphthalene
crystal, we get /> 100 for the temperature range
studied (1.8-4.2 K).

A comparison with the absorption lineshapes of
the pure naphthalene ecrystals in terms of
exciton—phonon scattering was made in paper 1 of
this series [33]. It is obvious from our mixed-crystal
energy-transport data that the hosr scattering over-
shadows the exciton—phonon scattering in crystais
with = 0.95 guest concentration and below. This is
qualitatively consistent with the significant broad-
ening of the optical absorption lines at this and
lower concentrations [56,57)]. It is not clear to us
yet how to make quantitative comparisons be-
tween the two kinds of data.

We have definitely established that no simple
homogeneous kinetics model agrees with our data.
Our exponential decay curves (for naphthalene)
deviate so significantly from exponentiality that
no model based on “rate constants” or non-dis-
persive diffusion can account for this. These devia-
tions in our ternary crystals are much more drastic
than usually observed for binary (lightly doped)
crystals [1.44]. We note that there is still scepticism
in the field concerning results from lightly doped
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crystals [58), due to possible complications from
the supertrapping effects (e.g. the creation of large
funnels [1,44]). We do not expect such complica-
tions to affect our measured guest concentration
effects (see also ref. {47]) nor our large observed
deviations from exponentiality. Whether dispersive
diffusion models could account for our data re-
mains to be seen. However. we do believe that for
guest concentrations around 0.5 none of the above
models will account for the very low temperature
data. Here finite cluster states with energy mis-
matches equal or greater than &7 should dominate
the kinetics. Because of the near confinement of
guest excitons to finite guest clusters one should
approach the interesting limit of two disjoint
naphthalene exciton populations: (I) Excitons on
clusters connected to a trap. (11) Excitons on clus-
ters not connected to traps. Population (I) should
decay in the time domain of picoseconds and from
trapped BMN excitons. Population (II) should de-
cay with practically the natural lifetime of the
naphthalene singlet state. Evidence for such behav-
1or has been given by Parson and Kopelman [29].
In this concentration regime our data are of lower
quality but are in general agreement with such
behavior. We can thus state that the observed
exciton transport is only consistent with heteroge-
neous kinetics and that its full characterization is
far from trivial

The current models of energy transport in dis-
ordered materials [7-11] all seem to neglect the
effects of exciton coherence. This ties-in with the
vet unsolved aspects of localization versus delo-
calization in these systems [13,26,30]. We do not
purport to answer here the basic question of par-
tial coherence, but we present: (a) Experiments in
well-defined systems that appear to be relevant to
this question, whose interpretation will represent a
challenge to future theories. (b) A parameteriza-
tion via an oversimplified “coherence” parameter,
which consists of a correlation of random walks
and mimics a mean-free-path. In this model
“coherence” (correlation) enhances exciton trap-
ping under some conditions {pure crystal) and
de-enhances it under others (high substitutional
disorder). This seems to agree with the experimen-
tal results and may point towards the requirements
of a satisfactory quantum-mechanical model.

Appendix A: Proof of proportionality constant

There are two channels of decay of an N ex-
cited state as shown in eq. (1), one with the rate
constant k (with a probability of decay Q), and
one with the time-dependent constant k£(7) (with a
probability of decay P). The number of remaining
excitons N at any instance is proportional to the
probability of non-decay of these excitons. There-
fore N=(1—-0)(1 — P). Notethatatr=0, 0=
0. P =0, N = 1. The time-independent channel is a
single exponential, so

N=(1—P)exp(—knt).

dN/dt= —k(1 = P)exp(—kyt)
—(dPysdr) exp(—kyr).

(1/N)YAN/dt)= —ky~(1/1 — P)(dP/dr).

Utilizing eq. (1) we have

(1/N)YAN/dr)= —ky— k(1).

Combining these last two equations we have

—ky—[1/7(0 = P)J(dP/dt) = —ky —~ k(2),

which results in k(z)=[1/(1 — P)(dP/dr). QED.

We note that for the limit t — o0, P(t = o0) —
P, <1,(dPsdr), . — 0, and thus k(1 — co)— 0.
The N-decay thus becomes truly exponential, with
the *“natural” decay rate k. Concomitantly the
trapped exciton decay will also be exponential,
with rate constant k£ 5. We call this “the two-popu-
lation hmit” as there is no communication be-
tween the two and no coupling between the re-
spective differential equations.
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