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The spectrally resolved rime-evolution of free and trapped singlet c&tons was ohtsincd II liquid-helium temperature for 
ternary cestals of perdeuteronaphthalene/naphrhalene/betamsth\-Inaphthalrms (host/_eue~r/supsr:rsp). The nsphthalenc 
guest (donor) concentration varied between 0.30 and 0.99 mole fraction. while the supertrap (acceptor1 concentrations were 
lO-‘-lO-5. AI the lower guest concentrations (0.50 and below) the naphthalene-esciton decay time approaches the natural 
lifetime ( = 122 ns). At higher concentrations. the decay is much shorter and sxtremcl\- non-exponentid. This behavior is 

inconsistent with simple homogeneous kinetics schemes that use a time-independent rate consrant for energy transport. Above 
the percolation concentration (0.60 naphthalens) we fitted the esperimental results with a random-flight-kinetic model. 
incorporating correlated random walks on the percolating guest cluster. The best fit was obtained for a --coherence length” 
(mean free path) of = 10’ lattice units. These results are in good agrscmcm \vith previous srccdy-s~ste studies on the same 

samples, and seem to indicate a partial coherence of the exiton transport in holh pure and substitutionally disordered crystals 
at these low temperatures. 

1. Introduction 

The characteristics of transport in disordered 
systems is a problem of current interest [l-S]. The 
transport or migration of optical excitations offers 
some simplifying features both theoretically, e.g. 
no long-range Coulomb interactions, and experi- 
mentally, e.g. the utilization of powerful laser exci- 
tation and detection techniques with high tem- 
poral, spatial and energy resolution. Recently there 
has been a significant increase in the number of 
theoretical papers on the transfer of excitation in 
disordered molecular aggregates [6-221. We do not 
consider here the interesting problem of transfer 
from one donor to a set of randomly distributed 
acceptors [23,24], but only the case of donor-donor 
transfer and migration where the donors are ran- 
domly distributed and where the occurrence of 
donor-acceptor transfer is a rare (though im- 
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portant) event. Experimentally we produced a sys- 
tern that has random substitutional disorder but 
positional and orientational order at the same 
time. Morcover. for most practical purposes our 
samples were perfect single crystals of high physi- 
cal and chemical quality. 

Much of the recent interest in exciton-transport 
problems has been associated with the phenomena 
of crirical concemrarions [3.5.19] (characterizing 
significant enhancement of migration). To explain 
these --transitions” of transport. Anderson lo- 
calization [6.27]. percolation [25_26_2S]. and other 
models [7.S] have been suggested. involving differ- 
ent physical pictures of the esciton transport. Here 
we describe experiments that are only marginally 
related to the question of the Anderson transition 
However, these studies are of much relevance to 
the topics of exciron diffusion (dispersive [S] or 
percolative [29.30]). exciton coherence and exci- 
ton-phonon coupling. Furthermore. a quantitative 
kinetic model is suS!gested where the controlling 
factor is a form of “heterogeneous” diffusion (per- 
colation). which may have some wider applica- 
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tions, such as for migration in photosynthetic sys- 
tems [31]. 

We have recently described in detail [32,33] a 
model based on a Monte Carlo method that at- 
tacks the problem of energy transport utilizing 
simulations on large molecular lattices in the com- 
puter memory. This model is quite versatile and 
enables one to go beyond the common analytical 
versions of random walks [34]. With this model we 
can treat practically any dimensionality and any 
combination of interactions for any number of 
components at any given concentration. In addi- 
tion, our model includes directional correlation 
and memory of the motion. The parameter we 
often measure is the extent of energy transfer 
given by the number of molecular sites that have 
carried energy at one time or another during the 
“experiment”. This number, divided by the num- 
ber of “steps”, gives the efficiency, l . We reported 
[35,36] the efficiency as a function of time for 
various parameters and over a range of several 
exciton lifetimes. 

We used the above model, in conjunction with a 
series of steady-state experiments [33] (paper I of 
this series) on the naphthalene system 
(C ,,H ,/C ,,,D,/ betamethylnaphthalene-d,,, 
guest/host/supertrap), to study some details of 
excitor& energy transfer. This pointed towards the 
existence of some “coherence” at liquid-helium 
temperatures for this system. In the present study, 
a continuation of the previous work, we investi- 
gated the time-dependence of the system. We de- 
veloped a kinetic scheme starting from the dif- 
ferential equations for the concentrations of ex- 
cited states in our system. The rate coefficients in 
these equations (which are time-dependent) were 
related to the above-mentioned efficiency of trans- 
port model in a formalism discussed in section 3 of 
this paper. These equations were solved numeri- 
cally in section 4 for the excitation populations 
with only one adjustable parameter, the coherence 
length I, and the various solutions were compared 
to our experimental results. Dur conclusions are 
given in section 5, and pertain to exciton localiza- 
tion and the partial coherence of the energy trans- 
port in substitutionally disordered and pure 

crystals at low temperatures. 

2. Experimental 

Most experimental details were described in 
paper I (of this series [33]). At very narrow-band 
excitation (of the order of 1 cm-‘), the output of a 
nitrogen laser pumped dye laser (Molectron DL 
400) was used as the exciting light source, 
frequency doubled. Since the laser light is tunable, 
any component or energy level can be selectively 
excited, even impurity molecules or the BMN (be- 
tamethylnaphthalene-d,,) molecules. A typical ex- 
citation frequency was 32000 cm-‘, which is well 
above the naphthalene “O-O” energy level of the 
first excited singlet state ‘hU_ We occasionally 
varied this frequency down to = 31280 cm-‘. For 
a Cs = 0.50 concentration crystal the bottom of the 

exciton band is = 31450 cm- ‘. We could thus 
directly establish the bottom of the band, and we 
found it to be in good agreement with the values 
obtained by other methods [37,38]. The intensity 
of the exciting light was also varied by several 
factors of two to observe any effects on the emitted 
signal. This was done quantitatively using a 
polarizer, by changing the angle of polarization. 
The results are given in section 4. 

The spectra were taken at 1.8 and 4.2 K using 
the same fluorescence bands as described earlier: 
the “0-512” for C,,H, and the “O-O” for BMN. 
BMN is a monomer due to its low concentration, 
and has a relatively high intensity. When the BMN 
contribution to the total intensity was low its 
time-evolution spectrum was very noisy or some- 
times non-recordable. This was because at high 
C,,Hs concentrations, even though the transfer is 
very efficient, the BMN concentration is very small. 
The small concentration is because that BMN 
comes as a “natural” (perdeuterated) impurity in 
the C,cDs host [33]. In all cases the C,,Hs in- 
tensity was strong enough for the time-resolved 
spectra to be recorded. 

3. Kinetic formalism 

We assume that all excitation is generated on 
the guest lattice sites. Experimentally, the excita- 
tion initially localized on the host will decay rapidly 

to the guest, and since the concentration of BMN 



is much lower than that of naphthalene. we can 
neglect any direct excitation of BMN. The BMN 
fluorescence is proportional to [BMN], the number 
of excited BMN molecules. Also, the number of 
excited guest molecules is [N], and is assumed to 
be small compared to the BMN and N concentra- 
tions (however, see below). We neglect collisions 
between excitons and saturation of the BMN 

species. The energy transfer can then be thought of 
as the migration of these guest singlet excitons. 
and their spread throughout the lattice, followed 
either by direct monomolecular decay or by trap- 
ping by the BMN (and decay from there). Thus, 
we arrive at the following kinetic equations that 
describe the rate of change of the N and BIMN 
esciton concentrations [ 1,391: 

d[N]/dt = -k,[Nl -k(t)]N], (1) 

d[BMN]/dt= -k,[BMN]+k(t)[N]. (2) 

Here k, and k, are the experimental (monomolec- 
ular) decay rates for isolated naphthalene and 
BMN, respectively, and include radiative and 
non-radiative processes, but no intermolecular en- 
ergy transfer. The time-dependent coefficient k( r ) 
describes the energy transfer rate at time t. k(t) is 
also related to the probability that a BMN super- 
trap molecule will have trapped a naphthalene 
exciton at time t. The solutions of these equations 
can then be related to the time resolved spectra. In 
these equations, k, and k, are independent and 
well-known quantities, and k(t) is the only sys- 
tem-dependent quantity_ 

The above kinetic scheme was previously pos- 
tulated for binary systems [l]. We propose a new 
quantitative approach for both binary and ternary 
systems. For ternary systems we present a new 
model based on the percolation approach. In par- 
ticular, this involves the definition of the time-de- 
pendent rate coefficient, k(t). 

It has been shown [40] that the total probability 
for trapping by BMN is given as 

P=P=[l -exp(-SnyC’,)]. C,l=CJC,_ (3) 

Here Pm is the percolation probability [do], C, is 
the supertrap concentration (mole fraction), and Y 
is its trapping efficiency. Introducing the quantity 
r (e = S,,/n, where S,, is the number of sites visited 

in an rl-step walk) one gets 

P= Pso[l -exp(fnyC.)]_ (4) 

Using CI = C;y)~/r, where r is the time, we finally 
obtain 

P=P,[l -exp(-arr)]. (5) 

The change of probability per unit time is then 
d P/d t and is equal to 

dP/dt = P,e-““a(c + rdr/dr). (6) 

This quantity is proportional to X-(r) and it can be 
shown (see appendix A) that the “proportionality 
constant” is equal to I/( 1 - P)_ Therefore we have 

We emphasize that c is a function of C,. I. 1. 
and the topology. For Cs 2 0.70. for the square 
lattice topology_ P, = 1.0 and eq. (7) becomes 

x-(t) = n(c + rdc/dr). (8) 

This form is rigorously true for a binary system. 
We saw above that X-(I) depends on the quantity E. 
and also depends (via a) on y and Ci. Both -1 and 
C, are properties of the system at hand. so Eve are 
now in a position to calculate k(r). The differen- 
tial equations now become 

d[N]/dz = -k,[N] - a(r i- rde/dr)[N]. (9) 

d[BiMN]/dr = -X-,[BMN] +a(~ + rde/dr)[N]. 

(101 

We seek solutions to these coupled equations_ It 
has been shown [35] that c follows an approsi- 
mately exponential decay. We therefore fit the 
simulation results of E to an exponential equation 
to get the best fit (or alternatively_ we fit log c to a 
linear equation)_ Thus 

E = ebl--.4_ 
(11) 

logc=br+A. (12) 
de/dt = 6~. (13) 
k(r)=n(~+rdc/dt)=n<(l+bbt)_ (14) 

This process predicts k(z) rather satisfactorily 
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for most of the Cs concentration range, but not so 
well close to the critical percolation concentration 
C,. At this point the approximation in eq. (11) 
may give an error up to 50% in the fitted values of 
t, and therefore it is advisable to use the full eq. 8 
to calculate A-( r ). We solve eq. (8) numerically by 
calculating the slope dr/dr at each dt interval. 
The resulting function k(r) contains more noise 
than the fitted k(r) of eq. (14) due to the inherent 
statistical fluctuations in the slopes dr/dr. but is a 
much better approximation than eq. (14). at least 
for the concentration region close to PC_ In fig. 1 a 
plot is shown for X-(r) versus I. for a typical 
calculation. As expected, k(r) is not a linear func- 
tion of time. 

Eq. (9) now becomes 

d[N]/dr = -A-,[N] -ar(l + bt)[N]. (15) 

and after separating variables and integrating: 

log[N] = - /[k,, + a~( 1 + br)]dr. 

[N]=exp( -_/[xTlr.+oc(l +br)]dr). 

(16) 

(17) 

The integral on the right-hand side is then 
evaluated numerically. Eq. (2) now becomes 

z 
d 

Co 
x 
i= s 
co 

=_ 
el.uJ 4am ao.00 ao.00 1W.M 

TItlElNSEC) 

Fig. 1. Time-dependent rate-“constant” behavior. The time-de- 

pendent rate constant k(r) is plotted as a function of time, 
according to eq. (9). The solution is given for a concentration 
C, = 0.70 for LWO coherence lengrhs. I = 1 (A), and I= 10 
(gaussian discribulion with standard deviation (I = 3.0, curve 
B). The units of k(r) are sites visited/ns. The two curves A and 
B are the smoothed k(r), all noise being averaged out for 
clearness. 

d[BMN]/dr+A-a[BMN]=k(t)[N]. (18) 

The general solution of this equation can also be 
evaluated numerically since 

[BMN]( t) = e-‘e’/e’nrX.( t )[N]( r)dt. (19) 

[BMN](Z) = e-‘Br/e’+cle”+u( 1 + br)[N]dr. (20) 

Similar but more complex solutions apply when 
P, z 1. using the full eq. (7). The latter were 
actually used numerically for the work reported 
below. 

A few comments are in order at this point. The 
solutions in eqs. (16) and (20) depend on P,. k(r). 
a. b, and time. Here II and b are constants which 
depend on the efficiency E, the supertrap con- 
centration C,. and the ratio n/r. which is the 
number of steps per unit time (but not the abso- 
lute number of steps), but they (a and 6) do not 
depend on time or the coherence 1. Similarly X-(r) 
depends on CI and b via eq. (7). and it is also a 
function of time. P, is a static property of a given 
lattice, but has no dependence upon any energy- 
transfer mechanism (it depends only on the inter- 
action topology and the guest concentrations). 
Thus the only quantities reflecting the dynamical 
nature of the system are z and the time (1). Notice 
that the information about the coherence length 1 
is incorporated in c. This is so because L depends 

on S,, and S, is a strong function of I. It was 
found [35,36] that large 1 values increase S,, at the 
high Cs range, but decrease S, at C, close to the 
critical percolation concentration. We can use sim- 
ple numerical solutions for E, which are now avail- 
able in the literature [35,41]. These numerical re- 
sults for l can be checked against other work 
(using the generating function method or the el- 
liptic integral method) only for the pure crystal 
limit, and we found them to be in satisfactory 
agreement [59,60]. We thus solved the kinetic 
equations in terms of simple parameters that we 
know how to calculate. 

4. Results 

We now proceed to derive the detailed solutions 



as discussed in the previous section. using the 
proper experimental boundary conditions. We first 
assume an instantaneous creation of the naph- 
thalene excitons. so that. after normalizing. (N] = 
1.00 at time I = 0. This assumption is good if we 
consider that it probably takes only a few picosec- 
onds for the excitation to be localized on some 
naphthalene guest site (compared to the esperi- 
mental resolution of a few nanoseconds). Simi- 

larly, [BMN] = 0 at time z = 0. because \ve assume 
no direct excitation of the supertrap (because of its 
low concentration)_ and it takes. on the average. a 
considerable number of steps before a BMN site 
will be visited_ 

Experimentally the above boundary conditions 
are good only in principle. i.e. only when the 
excitation source is a delta function that creates 
excitons in a time shorter than the order of one 
jump. However. in practice this is not the case. 
Our laser is a pulsed light source with each pulse 
having an approximately gaussian width at half- 
height of = 5 ns (after doubling). This is of com- 

parable magnitude with the exciton activity times. 
and must be taken into account. A direct \vay of 
doing this would be to record a blank laser signal 
and then “subtract it out” from the experimental 
signal, i.e. perform a deconvolution of the two 
signals. This operation, however, presents serious 
difficulties because, by nature. the experimental 
signal contains random noise which is amplified in 
the deconvolution process (Lvhich in effect is a 
differentiation process). and the method thus fails 
in practice. If the functional form of the experi- 
mental signal is known the problem of random 

noise can be easily eliminated and the deconvolu- 
tion can be done, but as we noted in section 3 
these solutions may turn out to be very complex 
functions whose form is not immediately known. 

We resort to a second alternative: We perform 
a convolution of the calculated [N] and [BMN] 
signals with the laser signal (which in effect corre- 
sponds to an integration process). so as to make 
the predicted curves look experiment-like. and in- 
clude exactly the same effects. This operation is 
somewhat complex, but feasible. and the details 
are shown in ref. [49]. For background discussion 
on convolution theory see refs. [50-551. 

Because the excitation source has a relatively 

high intensity_ the question arose whether 
exciton-exciton-interaction phenomena can be ne- 
glected. In some crystal systems. such as anthra- 
cene. the exciton-exciton-annihilation process is 
well-known [42]. Some information became availa- 
ble recently [43] for the naphthnlrne singlet_ but 
only for high temperatures (77 K and above) and 
pure lattices. Recently. results for binary crystals 
appeared [44]. We tried 2 number of tests on this 

system. such as reducing the intensity of the in- 
coming light by a factor of two. several times. We 
observed some differences o\-er the course of 
several runs. but the laser intcnsitv. focusing on 
the crystal, clearness of the crystal. etc.. were not 
constant in day-to-day operations_ aud therefore 
we were not able to quantitatively determine any 
effects from these runs. Further tests on the same 
crystals [45]. using neutral density filters. showed 
no significant effect. For our kinetic scheme equa- 
tions we used the data \vhere further cutting down 
on the intensity produced no visible changes in the 
relative spectral intensities. hoping that at this 
point we had reduced all exciton-exciton inrcrac- 
tions to a minimum. Speculating on our observa- 
tions. we occasionall_v noticed that at high light 
intensities the guest/ trap emission ratio de- 
creased- indicating that the C,,Hs esciton con- 
centration decreased_ The probable cause is esci- 
ton-esciton fusion. The fusion effect was proba- 
bly significant only at high C, (0.99). where the 
BMN concentration was the lowest. thus en- 
hancing the fusion/ trapping ratio. The collision 
rate constant for this process should be an interest- 
ing topic of study [46]. 

Our experimental data have a considerable un- 
certainty. It is not surprising that small variations 
in the supertrap concentration (even within ths 
same crystal) could cause a doubling in the com- 
ponent lifetime [defined here as the time necessary 
for the intensity IO drop down to l/e of its peak 
value). For example. a change by a factor of 10 in 
C, (from lo-’ to 10eJ) causes a change of 0.60 in 
the probability for trapping (from 0.39 to 0.99). 
see fig. 2 of ref. [41]. However. the decay times for 
crystals from C% = 0.70 to CS = 0.99 range from 
= 12 to 40 ns. which is a factor of 4. Also. the 
calculated quantities show a similar variation. For 
example. for the C, = OX0 crystal. for CS = 1 x 
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10S4 the calculated decay times are 27, 16, and 45 
ns, while for C, = 1 x lo-’ they are 100, 85, and 
120 ns, a factor of 5 (for coherence lengths I = 1, 
10 and 100, respectively). We used the average of 
all our decay measurements for each crystal. For 
the calculations we used the proper “average” 
supertrap concentration (see paper I). Below the 
critical percolation concentration the decay times 
get longer, approaching the natural lifetime of 
naphthalene. This happens because in this region 
we have mostly isolated naphthalene clusters of 
small size, with a low probability of containing 
any BMN sites. Therefore, rhe C,,Hs excitons 
never get trapped, but instead “live” within these 
small clusters throughout their natural lifetime. 
The decay times in this region vary from 60 ns to 
= 120 ns. The lifetime of neat naphthalene is 
= 120 ns. A summary of all lifetimes is given in 
table 1. Similar results for this region of Cs, with 
higher C,, were obtained by Parson and Kopelman 

t291. 
TKe experimental time decays of fig. 3 are more 

complex than simple exponentials, as we can easily 
see when we plot the logarithmic spectra. This 
situation is different from the work of Parson and 
Kopehnan [29], where they observed exponential 
behavior in the guest lifetimes throughout the con- 
centration.range. The reason for this is that their 
transport is very fast, due to the presence of l-2 
orders of magnitude more supertrap BMN. Their 
actual nanosecond-domain kinetics is governed by 
eqs. (1) and (2) in the limit of k(r) --, constant, 
with k(r)+ 0 for the lowest (0.42) guest con- 

Table 1 
Experimental lifetimes (ns). 

=s 1.8 K 4.2 K 

Go% BMN ‘Go% BMN 

0.99 40 23 
0.95 12 35 12 42 
0.90 15 40 20 45 

0.85 18 42 15 50 
0.80 36 60 16 44 
0.70 34 46 29 58 
0.60 36 44 25 45 
0.50 120 71 122 81 

0.40 80 57 83 67 
0.30 86 95 76 

centration (following k(t) + co in the picosecond 
domain, see appendix A). In our case it is not 
surprising to find different results due to the lower 
concentration of BMN which makes the nanose- 
cond-domain transport dependent on larger values 
of k(t) for longer times. 

The experimental spectra were all recorded at 
1.8 and 4.2 K. We did not observe any consistent 
trend between the two temperatures, such as we 
observed in the steady-state spectra [33]. A typical 
difference is shown in fig. 2, where we plotted the 
spectra for both temperatures for the 0.70 mole 
fraction guest concentration crystal. We, therefore, 
averaged the integrated results of the two tempera- 
tures *. 

* We cannot claim any definite switch in temperature effects as 
was recently observed for the delayed fluorescence (i.e. triplet 
transport) 1611 -and as was observed for the neat crystal 

fluorescence (singlet) experiments (with protonated BMN 
supertrap) at higher temperatures [62]. 

%% 12O.M 160110 
TIBE(NSEC) 

200.00 

Fig. 2. Experimental time-evolution spectra for two different 
temperatures. The time-evolution spectra are shown for the 
0.70 guest crystal, at two different temperatures, 1.8 K(top), 
and 4.2 K@ottom). The naphthalene emission was monitored 
in this case. In this crystal C, = I X IO+. 
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Fig. 3. For caption see next page. 
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Fig. 3. Experimental and calculated time-evolution spectra. 
PIOIS of the solutions of the differential equations together with 
the experimental curves for several different guest concentra- 
tions, as marked. The naphthalene guest emission was moni- 

Table 2 

Integrated experimental and calculated intensities - naphthalene 

The effects of coherent versus incoherent walks 
can be seen in the three calculated curves plotted 
in fig. 3, where I= 1. 10. and 100. Each one 
predicts a different time evolution behavior. owing 
to the difference in the S,, values. 

The most obvious conclusion from these curves 
is that at high Cg. where the I= 1 curve shows a 
considerably slower decay than the I= 10 and 
I = 100 curves. the experimental curve is close to 
the I= 10 and I = 100 curves, i.e. it shows a com- 
paratively fast decay. At intermediate Cp, about 
Cg = 0.70, the I = 1 curve shifts and exhibits the 
fastest decay. while the coherent cases (I = 10 and 
I = 100) show a slower decay, but still in agree- 
ment with the experiment. 

In order to get a quantitative measure of the 
appropriateness of this picture we integrated the 
areas under the decay curves and compared the 
integrals. Table 2 shows the calculated integrals at 
25. 50 and 100 ns. together with the experimental 
integrals. when the naphthalene emission was 
monitored. This corresponds to measuring the total 

tored: (a) Cs = 0.95. C, = 1.7 x 10e5; (b) C, = 0.85. C, = 5.1 x 
lO-s; (c) C,=O.SO. C,=6.8~10-~; (d) C,=O.70, C,=lx 
IO-‘. The BMN trap emission was monitored: (e) Cs = 0.90, 
C, = 3.4x 10-5; (f) Cs = 0.85. C, = 5.1 x lo-‘: (9) Cs = 0.80. 
C, = 6.8 x 10m5; (h) Cs = 0.70, C, = 1 x 10M3. The following 
coherence lengths were used: I = 1 (circles). I = 10 (with stan- 
dard deviation CT = 3.0, triangles), and I = 100 (with standard 
deviation a = 30.0. crosses). The calculated intensities were 
adjusted using the factor a’ as discussed in the text. For 

simplicity eq. (14) was used for the k(r) calculation. since the 
error introduced is within our other uncertainties. 

25 ns 

exp. I=1 f=lO I=100 

50 ns 

aP. I=1 I=10 I=100 

0.99 10.2 11.0 11.0 11.0 24.2 32.0 31.0 31.1 
0.95 9.8 11.0 10.9 10.9 18.6 29.6 26.3 26.1 
0.90 9.9 10.9 IO.7 10.7 17.3 27.7 22.8 23.8 
0.85 10.2 10.9 10.5 10.6 F9.9 26.1 20.9 21.9 
0.80 Il.67 10.8 10.6 10.9 24.3 25.6 21.4 27.7 
0.75 10.8 10.8 11.0 (25) 25.5 24.2 30.8 
0.70 11.8 10.9 10.9 11.0 25.6 26.1 27.9 32.3 
0.65 10.9 11.0 11.0 (25) 27.6 31.3 32. I 
0.60 10.1 11.0 11.0 11.0 25.0 29.8 32.6 32.6 

100 ns 

exp. 

37.7 
24.6 50.7 39.0 
19.7 43.7 29.5 
24.6 38.7 25.6 
34.3 36.9 26.4 

(35) 36.8 32.9 
36.7 39.1 46.9 

(36.7) 44.1 59.7 
36.8 52.8 64.0 

I=1 

61.3 56.8 

I=10 /=lOO 

57.0 
40.3 
32.3 
38.2 
47.2 
59.1 
63.2 
62.8 
64.0 



25 ns 50 ns 100 ns 

exp. I=1 I=10 I= 100 e?tp. I=1 I=10 I=100 tXp. I=1 I= 10 I=100 

0.95 

0.90 

0.85 

0.80 

0.70 

0.60 

6.3 

5.6 

5.8 

7.1 

6.5 

4.7 5.8 5.8 

5.2 6.9 6.7 

5.8 7.5 6.2 

6.0 7.3 6.3 

6.0 6.0 5.7 

27.5 

27.6 

30.2 

29.0 

2x9 

27.9 

29.0 

29.7 

29.8 

30.0 

29.6 

29.8 

29.1 

29.3 

29.9 

29.1 

30.0 

30.0 

30.0 

29.4 

44.5 

49.0 

49.5 

51.9 

50.6 

66.7 59. I 59.5 

63.0 49.1 51.9 

5x.s 43.7 56.6 

57.2 45.1 54.9 

5x.0 57.7 50.9 

normalized intensity. i.e. summing over the emitted 
photons that decay from the naphthalene level to 
the ground state. and it is indicative of the extent 
of the energy transfer. In table 3 we do the same 
for the BMN emission. 

The integrals up to 25 ns are of little interest_ 
because the time curves up to this point reflect to a 
significant extent the laser signal. so no differenti- 
ation can be made. We thus concentrated on the 
50 and 100 ns cases. 

Notice that in all of the above we assumed that 
y = 1. The [N] solution, eq. (17). is rewritten as 

[N] = exp( -/k,dr) exp( alr(l + br)dr). (21) 

We see that [N] increases exponentially with u. 
Remembering that a = t&/t, any uncertainty we 
have in y, n/r. or C, would carry exponentially to 
(N]. We saw that [47-491 y is less than 1.00, 
ranging from = 0.1 to 0.5 within a factor of 2 or 3_ 
The problem of establishing the exact C, value was 
discussed previously. and using an “average” value. 
we may also be off the actual value by a factor of 
2 or 3. Finally. n/r, the number of steps per unit 
time. was derived from an uncertainty-type rela- 
tion [49] and this may also be off by a factor of 2 
or 3. 

To circumvent the above difficulties we made 
an adjustment to the calculated values in relation 
to the experimental results. At the crossover 
concentration region (C, = 0.80) all types of walks 
(i.e. different 1 values) show about the same behav- 
ior. i.e. the same e. However. the experimental 
intensities do not agree with the calculated ones. 
The difference may be due to a combination of the 

three factors with significant uncertainties. These 
are II/I. y. and C%. which all combine to form 
a = nyC:/r. We therefore find an udjrmed a. call 
it CI’. which when used in the differential equations 
produces a calculated value in agreement with the 
experiment for one given concentration value C, = 
OSO. Since we use the same a’ for all guest 
concentrations. we preserve the relative magni- 
tudes of the time-integrated intensities. The solu- 
tions to the differential equations plotted in fig. 4 
include the adjusted factor a’. as a function of C; 
for I = 1. 10 and 100. The results are shown in 
table 4. for intsgratsd intensities to 50 and 100 ns. 
for naphthalene. and in table 5 for BMN. Now a 
meaningful comparison with the experiment can 
be made. We plot the results of tables 4 and 5 in 
figs. 4 and 5. i.e. the total integrated intensities as 
a function of Cs_ for different coherence values_ 

From these plots we conclude that the I = 1 
curve shows the biggest deviation from experi- 
ment_ while as I increases the curves get closer to 
the experiment. Here. I= 100 gives the best fit. 
Notice that we tsstsd the adjusting factor a’ over 
the total region of the “crossovei concentration 
(i.e. from guest concentration of = 0.75 to 0.90). 
and we cnmc up with practically the same results 
as in fig. 3. Finally. it should be pointed out that 
the values obtained from the adjustsd factor are 
always within a factor of 2 of the unadjusted 
\Ynues. 

The shape of the integrated intensity CUTVS (fig_ 
4) shows a minimum around 0.90. The mason for 
this is a bit complex. We notice (table 1 of ref. 
[33]) that the actual BMN concentration is not 
constant in all crystals. hut steadily decreasrs. For 
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Table 4 Table 5 
Reduced calculated intensities - BMN Reduced calculated intensities - naphthalene 

=a 50 ns loo ns 

exp. /=I 1=10 1=100 exp. I=1 r=lO f=loo 

0.99 24.2 31.8 31.4 28.6 37.7 60.0 58.3 47.0 
0.95 18.6 28.5 27.6 20.1 24.6 46.7 43.2 24.0 
0.90 17.3 26.5 25.0 16.6 19.7 39.6 35.2 18.1 
0.85 19.9 26.5 25.0 16.6 24.6 35.1 32.4 23.6 
0.80 24.3 24.7 24.7 23.2 34.3 34.5 34.3 34.4 
0.75 (25) 25.0 21.0 29.0 (35) 35.4 41.4 54.0 
0.70 25.6 26.5 30.0 31.9 36.7 41.0 54.0 62.1 
0.65 (25.3) 28.2 32.0 31.7 (36.7) 46.7 62.0 61.8 
0.60 25.0 31.1 32.6 32.6 36.8 58.0 64.4 64.0 

example, from Cs = 0.99 10 0.90 there is a factor of 

10 difference in C,, but from 0.90 to 0.40 there is 

only a factor of 4. This uneven distribution (direct 

7------ 

?l!-iu O.-m li~(G”ESTLkl O.&l 1.m 

Fig. 4. Integrated naphthalcne intensities as a function of Cs. 
The integrated intensities of table 4 are plotted as a function of 

Fig. 5. Integrated BMN intensities as a function of C,. The 

C,. The theoretical curves for the t-hree different coherence 
integrated intensities of table 5 are plotted as a function of Cs. 
The theoretical curves for the three different coherence lengths 

lengths are shown together with the experimental one. The are shown together with the experimental one. The BMN 
naphthalcne emission was monitored in this case. emission was monitored in this case. 

=s 50 ns 

exp. I=1 I=10 I=100 

0.95 28.6 29.1 28.6 
0.90 27.5 29.5 29.9 25.5 
0.85 27.6 29.9 29.9 28.3 
0.80 30.2 30.0 30.0 29.8 
0.75 29.9 29.3 29.9 
0.70 29.0 29.9 29.2 29.5 
0.60 28.9 28.5 28.0 28.0 

100 nsec 

exp. I=1 

64.6 
44.5 59.8 
49.0 55.3 
49.5 54.6 

55.5 
51.9 57.7 
50.6 64.2 

I=10 I=100 

62.5 41.2 
55.5 31.2 
52.1 40.1 
54.5 48.0 
61.3 46.0 
60.2 50.8 
62.6 62.5 

dependence on the host concentration) has a dras- 

tic effect on the fluorescence decay. Also, around 

Cg = 0.80 the efficiency of the random walk drasti- 

cally changes. The I= 100 walker at Cs = 0.90 
visits 66000 sites, but at 0.70 it visits only 1000 

0.70 as0 
UGIJESTI 

a90 
4 
1.m 
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sites, a factor of 6. It seems that these two oppos- 
ing factors combined produce the resulting shape 
of fig. 4. 

The above results are in good agreement with 
the results of the steady-state experiments we pre- 
sented earlier [32,33]. The possible existence of 
coherence or “correlated walk” was first indicated 
there, and it is verified here in the following sense: 
The I = 1 case presents the worst fit with the 
experiment, especially at high Cs and close to the 
critical dynamic percolation concentration. Be- 
cause of all the uncertainties we do not report the 
value I = 100 as the nominal solution to the prob- 
lem. We merely state that partial coherence (“cor- 
related walk”) does describe our experiments in a 
consistent fashion. 

5. Discussion and conclusions 

We first performed “standard” steady-state flu- 
orescence experiments [32,33] on the naphthalene 
system, and later the time-resolved tests described 
here. These are in reasonably good agreement with 
each other in the following way: (1) Based on the 
tinre-iprtegruted intensities of the time-resolved data 
one gets results similar to those of the steady-state 
measurements [49]. (2) Neither result can be inter- 
preted by simple incoherent hopping expressed via 
a simple random walk model (note that our “adju- 
stable parameter” u’ cannot account for the guest 
concentration dependence). (3) Using a 
“coherence” (correlation) parameter I one can 
account for the observed concentration depen- 
dence of both steady-state and time-evolution 
experiments in a consistent way. We suggest that 
our correlation (“coherence”) parameter does re- 
late to partial coherence in terms of quantum- 
mechanical wave packets: however, this relation- 
ship is far from clear. This is our evidence for the 
possible existence of partial coherence. Our time- 
resolved spectra gave a good fit for “coherence” 
over = 100 lattice units. Our typical computer 
lattice size is 1000 X 1000 sites (for the two-dimen- 
sional case). On these lattices we performed tests 
for up to 1= 250. We noticed that for mixed 
crystals with guest concentrations up to = 0.95 
any computer simulation with 1) 100 gives the 

same result as with I= 100. because the heavy 
scattering by the host does not permit any differ- 
entiation between long and very long mean free 
paths. Therefore. our data would be the same had 
we used an I = 1000 or greater (with a correspond- 
ingly larger lattice)_ This simply means that at 
C, < 0.95 coherence is necessarily broken by the 
host scattering. Moreover, in the region Cs < 0.70 
the shallow guest traps. due to finite clusters. may 
cause additional scattering. Only for the neat (pure) 
crystal limit. or when closely approaching it, could 
higher I values be tested in principle, but in this 
project we would not afford it. either computa- 
tionally or experimentally. It is very difficult to 
prepare a crystal with no impurities or defects, in 
order to simulate the pure-crystal case. and test for 
larger coherence lengths. Therefore, our results do 
not preclude having I >> 100 rvIre!r esrrarolared IO a 
perfect larrice. We. therefore. conclude that we 
have tentatively established the existence of 
“coherence”. at these temperatures. and mention 
that a value of = 100 lattice units is in good 
agreement with our experiments. This means that. 
extrapolated to the perfect pure naphthalene 
crystal. we get 1% 100 for the temperature range 
studied (1.8-4.2 K). 

A comparison with the absorption lineshapes of 
the pure naphthalene crystals in terms of 
exciton-phonon scattering was made in paper I of 
this series [33]. It is obvious from our mixed-crystal 
energy-transport data that the hosr scattering over- 
shadows the exciton-phonon scattering in crystais 
with = 0.95 guest concentration and below. This is 
qualitatively consistent with the significant broad- 
ening of the optical absorption lines at this and 
lower concentrations [56.57]. It is not clear to us 
yet how to make quantitative comparisons be- 
tween the two kinds of data. 

We have definitely established that no simple 
homogeneous kinetics model agrees with our data. 
Our exponential decay curves (for naphthalene) 
deviate so significantly from exponentiality that 
no model based on “rate constants” or non-dis- 
persive diffusion can account for this. These devia- 
tions in our ternary crystals are much more drastic 
than usually observed for binary (lightly doped) 
crystals [ 1.441. We note that there is still scepticism 
in the field concerning results from lightly doped 
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crystals [58], due to possible complications from 
the supertrapping effects (e.g. the creation of large 
funnels [l&l]). We do not expect such complica- 
tions to affect our measured guest concentration 
effects (see also ref. [47]) nor our large observed 
deviations from exponentiality. Whether dispersive 
diffusion models could account for our data re- 
mains to be seen. However. we do believe that for 
guest concentrations around 0.5 none of the above 
models will account for the very low temperature 
data. Here finite cluster states with energy mis- 
matches equal or greater than kT should dominate 
the kinetics. Because of the near confinement of 
guest excitons to finite guest clusters one should 
approach the interesting limit of two disjoint 
naphthalene exciton populations: (I) Excitons on 
clusters connected to a trap. (11) Excitons on clus- 
ters not connected to traps. Population (I) should 
decay in the time domain of picoseconds and from 

trapped BMN excitons. Population (ii) should de- 
cay with practically the natural lifetime of the 
naphthalene singlet state. Evidence for such behav- 
ior has been given by Parson and Kopelman [29]. 
In this concentration regime our data are of lower 
quality but are in general agreement with such 
behavior. We can thus state that the observed 
exciton transport is only consistent with heteroge- 
neous kinetics and that its full characterization is 
far from trivial_ 

The current models of energy transport in dis- 
ordered materials [7-l 11 all seem to neglect the 
effects of exciton coherence. This ties-in with the 
yet unsolved aspects of localization versus delo- 
calization in these systems [13,26,30]. We do not 
purport to answer here the basic question of par- 
tial coherence, but we present: (a) Experiments in 
well-defined systems that appear to be relevant to 
this question, whose interpretation will represent a 
challenge to future theories. (b) A parameteriza- 
tion via an oversimplified “coherence” parameter, 
which consists of a correlation of random walks 
and mimics a mean-free-path. In this model 
“coherence” (correlation) enhances exciton trap- 
ping under some conditions (pure crystal) and 
de-enhances it under others (high substitutional 
disorder). This seems to agree with the experimen- 
tal results and may point towards the requirements 
of a satisfactory quantum-mechanical model. 

Appendix A: Proof of proportionality constant 

There are two channels of decay of an N ex- 
cited state as shown in eq. (l), one with the rate 
constant k, (with a probability of decay Q), and 
one with the time-dependent constant k(r) (with a 
probability of decay P)_ The number of remaining 
excitons N at any instance is proportional to the 
probability of non-decay of these excitons. There- 
fore, N = (1 - Q) (1 - P)_ Note that at z = 0, Q = 
0. P = 0, N = 1. The time-independent channel is a 
single exponential. so 

N=(l -P)exp(--X-,t). 

dN/dl= -L-,(1 - P) exp( -li,r) 

- (dP/dr) exp( -k,r), 

(l/N)(dIV/dr) = -k, - (1/l - P)(dP/dr). 

Utilizing eq. (1) we have 

(l/hr)(dhr/dr) = -k, - k(r). 

Combining these last two equations we have 

-k, - [l/(1 - P)](dP/dt) = -k, -k(t), 

which results in k(r)= [l/(1 - P)](dP/dr). QED. 
We note that for the limit t --, co, P(r + co) -+ 

P, < 1, (dJ’/df),,, - 0, and thus A-( z - co) --, 0. 
The N-decay thus becomes truly exponential, with 
the “natural” decay rate k,. Concomitantly the 
trapped exciton decay will also be exponential, 
with rate constant k,. We call this “the two-popu- 
lation limit” as there is no communication be- 
tween the two and no coupling between the re- 
spective differential equations. 
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