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Abstract. In this work first order probabilistic Poisson and Gaussian neural nets with chem-
ical markers are investigated, analytically and by computer simulations. The investigation
of steady-state behavior of these systems is extended here to systems in which the refrac-
tory period is assigned to be 1 for all or some of the subpopulations of the net, whereas
the remainder are characterized by zero refractory periods. The interest is focused on the
effects of refractoriness on the neural activities. Results obtained show the existence of sev-
eral critical points at high initial activities, which are a consequence of the nonzero refrac-
tory periods. For these points a larger initial activity, above a certain critical level, results in
the reduction of activity to a lower stable steady-state, instead of the highest one. We also
find that in the Gaussian nets each critical point is lower than the corresponding one as in
the Poisson nets. Finally, a discussion of the results is made.
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1. Introduction

An area of considerable importance is that of biological nets, i.e. models of nets
that try to imitate the human or other living brain structure and functions in
an effort to understand such vital processes as memory, learning, understanding,
etc. Widely used models (not an exhaustive list) include the early pioneer work of
McCulloch and Pitts of assemblies of neurons as logical decision elements [1], the
mathematical formalism of Caianiello of the ‘neuronic equation’ [2], and the prob-
abilistic neural structure [3–6] that monitor the neural activity, i.e. the fraction of
neurons that become active per unit time. These models have been quite success-
ful towards our understanding of the above mentioned functions. In these models
a network is made of a large number of neurons (the elementary unit), which are
interconnected according to some rules. As each unit has several connections, and
there is a large number of units, it is quickly realized that the number of connec-
tions grows very fast, making the task of calculations quite difficult. But it should
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be realised that it is exactly this complicated connectivity structure that produces
the collective properties that neural nets possess.

The probabilistic neural nets initially were quite simple [5,6], but later got more
involved [7–12], and incorporate today several advanced characteristics met in
actual neural networks. Their theoretical basis is the binomial distribution, as one
tries to attribute some specific properties to a fraction of units out of the total
population. The mathematical formalism is quite involved, but straightforward.
Alternatively, we use a Monte Carlo simulation model to verify the analytical find-
ings. The two methods are used interchangeably, and direct comparison yields sat-
isfactory agreement.

In previous studies [9] we investigated the dynamical behavior of isolated neural
nets with chemical markers and high interneuronal connectivities and the rela-
tionship between structure, as expressed in patterns of interneuronal synaptic con-
nectivity, and ‘spontaneous’ activity. The Poisson and Gaussian distributions of
the connectivities of the constituent neurons were used. This investigation was
extended then to non-isolated netlets with markers, where it was assumed that the
netlet under consideration is attached to a cable of afferent fibers receiving through
it sustained inputs from another netlet with the same structure. Later [11], a gen-
eralization was attempted by including the possibility that different subsystems of
a neural net have different connectivity patterns, given by the appropriate distribu-
tion laws, Poisson or Gaussian, assigned to sections with different markers. Thus,
the overall net acquired a hybrid character.

In the present study, the dynamical behavior of isolated neural nets with chem-
ical markers is further investigated. Here, our interest is focused on the effect of
refractoriness on the dynamical steady-state behavior of pure Poisson or Gaussian
netlets. We consider nets in which r, the refractory period, is assigned a value of
r = 1 to all or some of their subsystems, whereas the remainder are characterized
by zero refractory period. It is shown here that the nonzero refractory period of
the constituent subsystems gives some interesting specific features on the dynam-
ical behavior of the neural structures. These features are related with the subse-
quent total activity of the net for high level initial activities. Due to the nonzero
refractory period, one or more critical points emerge at high levels for the initial
activities, which control the subsequent neural activity. Furthermore, if all subsys-
tems of the net have refractory periods r = 1, then all the stable steady-states for
the total neural activity are held in levels lower than the value of ass =0.5.

2. Material and Methods

2.1. assumptions and definitions

The present investigation makes use of the neural net models developed in our pre-
vious work [7,9]. It was assumed that neural nets are constructed of discrete sets
of randomly interconnected neurons with similar structure and function, which are
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termed ‘netlets’ [6], but the neural connections are set up by means of chemical
markers carried by the individual cells, according to the theory of neural specific-
ity [13–15]. Thus, the neural population of the netlet is treated as a set of subpop-
ulations of neurons, each of then characterized by a specific chemical marker. The
neurons are bistable elements, as was postulated by McCullogh and Pits [1], and
operate synchronously at discrete times.

It is assumed that if a neuron fires at time t , it produces the appropriate PSPs
(Post-Synaptic Potentials) after a fixed time interval called the synaptic delay, τ .
All PSPs arriving at a neuron are summed instantly and, if they exceed the speci-
fied threshold, will cause the neuron to fire. After firing neurons are insensitive to
further stimulation for a period of time called the ‘refractory period’. Thus, the
neurons are characterized by the absolute refractory property, r, the firing thresh-
old, θ , and the synaptic delay, τ . It is assumed here that the refractory period is
greater than the synaptic delay, but less than twice the synaptic delay. The parame-
ter r may take in general any integer value. For our purposes r was given the value
r =1 when refractoriness is assumed, and r =0 otherwise. From these assumptions
it follows that if a number of neurons fire simultaneously at time t , then all neural
activity resulting from this initial activity will be restricted to times t +τ, t +2τ, . . . ,
etc. The assumed time constraints (synaptic delay, refractory period, and summa-
tion time) are such that the neural activity depends exclusively on the activity at
the preceding firing interval. Thus, the dynamics of the netlet is a Markov pro-
cess and the mathematical expression for the activity is given by a first order finite
difference equation. The neural nets that follow such equation are termed first
order nets.

2.2. list of symbols

The subscript j is a marker label and indicates the properties of a subpopulation
in the network characterized by the j th marker.
Structural parameters of the neural net
τ synaptic delay
A total number of neurons in the network
N number of markers (subsystems)
mj fraction of neurons carrying the j th marker in the network
hj fraction of inhibitory neurons
µ+

j the average number of neurons receiving excitatory post-synaptic
potentials (EPSPs) from one excitatory neuron

µ−
j the average number of neurons receiving inhibitory post-synaptic

potentials (IPSPs) from one inhibitory neuron
K+

j the size of PSP produced by an excitatory neuron
K−

j the size of PSP produced by an inhibitory neuron
ϑj firing threshold of neurons of the j th marker
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Dynamical parameters
n an integer giving the number of elapsed synaptic delays
an the activity, i.e. the fractional number of active neurons in the netlet

at time t =nτ

2.3. mathematical formalism

A neural net with N markers is assumed to be constructed of A formal neurons.
A fraction h(0<h<1) of them are inhibitory neurons while the rest are excitatory.
Each neuron receives, on the average, µ+ EPSPs and µ− IPSPs. The size of the
PSP produced by an excitatory (inhibitory) unit is K+(K−).

The dynamic variable of interest is the neural activity an, which is the fraction of
neurons in the netlet (out of the total) that are active at time t =nτ . This quantity
is a scalar and does not specify which particular neurons are firing in the netlet.
The quantity an at time t =nτ depends exclusively on the firing record of the net-
let at time t = (n−1)τ , i.e., the previous time unit. Assuming that an is the netlet
activity at time t =nτ , then the expectation value of activity 〈an+1〉 for a netlet of
A neurons and N markers at time t = (n+1)τ is given by equation

〈an+1〉= (1−an)

N∑

j=1

mjPj (1)

where mj(j = 1,2, . . . ,N) is the fraction of neurons out of the total, carrying the
j th marker in the netlet and m1 +m2 +· · ·+mN =1. The quantity Pj , which is the
probability that a neuron of the j th marker receives a total PSP which exceeds its
threshold θj , may be expressed in terms of a Poisson or Gaussian distribution law
of the number of excitatory and inhibitory inputs to a cell. The expectation value
of activity 〈an+1〉 will also depend on whether there is refractoriness or not (r =1
or r =0). Thus, the factor (1−an) in this equation is neglected if no refractoriness
(r =0) is assumed.

For the Poisson approximation [7,9], Pj is given by the equation:

Pj =PPj =
Imax,j∑

I=0



1−
η′
j −1∑

L=0

PL,j



QI,j (2)

where PL,j , and QI,j are the probabilities that a neuron of the j th marker will
receive L-EPSPs and I-IPSPs, respectively, at time t = (n + 1)τ . The upper limits
Imax,j and η′

j are the total numbers of the inhibitory inputs and the minimum
number of excitatory inputs necessary to trigger a neuron, respectively. Equation
(2) results by adding all probabilities for all combinations of thresholds and PSPs
that produce firing.

If the average number of active inputs per neuron becomes sufficiently large, the
number of PSPs per neuron will follow a Gaussian distribution. In this case, Pj is
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given by the equation [9]:

Pj =PGj = 1√
2π

∞∫

xj,n+1

e
−x2

2 dx (3)

where

xj,n+1 = θj − ēj,n+1

δj,n+1
(4)

ēj,n+1 =anmj

[
µ+

j (1−hj )K
+ +µ−

j hjK
−
]

(5)

and

δ2
j,n+1 =anmj

[
µ+

j (1−hj )(K
+)2 +µ−

j hj (K
−)2

]
(6)

2.4. computer simulation model

We use Monte Carlo calculations for the net structure and properties, by assigning
specific values to the parameters of Section 2.2 (see below). We can produce picto-
rials of the microstates of the system at any time, with useful insight at the inter-
mediate excitation structures. Given the structural parameters of a network of A

neurons and N markers, the appropriate neuronal connectivity matrix {kij } is first
constructed. Each element kij denotes the synaptic strength of the connection from
j to i neuron (coupling coefficient). This may take either positive or negative val-
ues depending on the type of the synaptic neuron (excitatory or inhibitory, respec-
tively). The threshold (θ ) as well some other macroscopic parameters (K±,µ±) are
considered to vary randomly between a maximum and a minimum value in order
to produce more realistic behavior. After establishing all desired interconnections,
the network is activated by specifying the set of neurons which are randomly taken
to be active at time t = 0. One synaptic delay later, all neurons linked to them
will receive the appropriate inputs. The inputs arriving at a neuron are summed
instantly and if the sum exceeds the neuron threshold, then the neuron will fire.
All active neurons at the next time step are specified. The firing neurons for the
time step t =nτ define the state vector an. Refractoriness of neurons is taken into
account by imposing that a neuron firing at time t =nτ cannot fire at the next time
t = (n+1)τ .

3. Results and Discussion

The results shown below are taken on the basis of Equation (1) with the appropri-
ate expressions of Pj according to Poisson (Eq. (2)) or Gaussian (Eq. (3)) approxi-
mation. For the sake of clarity, in the examples presented here we consider isolated
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neural nets with two and three markers and appropriate combination of other
parameters, in an effort to exhibit the effect of refractory period on the dynamical
behavior of the net. We used

1. Plots of the expectation value of activity as a function of the preceding activity,
i.e. 〈an+1〉 versus an

2. Time course plots of neural activity, and
3. Time delay plots, i.e. plots which give the time that it takes for a netlet to reach

a stable steady-state (tss) as a function of the initial activity.

We examined the case of a netlet of A neutrons with two markers, mα = 0.25,
mb = 0.75 and refractory periods rα = 0 and rb = 1. Plots of 〈an+1〉 versus an for
both approximations Poisson and Gaussian are shown in Figure 1. The contribu-
tion to the total activity of each marker and simulation results are also depicted
here. For the chosen set of parameters we obtain a two-modal curve [8] of the
total activity for both approximations, Poisson and Gaussian. This curve labeled
T (total activity) in the range an = 0–0.6 has two modes (waves) along the corre-
sponding line. We can see here three stable steady-states, the zero level state ao

P ss =
ao
Gss = 0, and two nonzero states, which are the crossing points of the curve with

the straight line at 45◦ slope coming from above. We also have two unstable states,
equivalently, at the crossing points of the curve with the straight line at 45◦ slope
coming from below.
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Figure 1. Expectation value of the total neural activity 〈an+1〉 vs preceding activity an for an isolated
netlet with two chemical markers, a and b, with mα =0.25; mb =0.75; µ+

α =102, µ+
b =62; h=0; ϑα =3,

ϑb = 20; ra = 0, rb = 1; K+ = 1. The curves a and b represent the activities of each marker, whereas T

gives the total activity of the netlet. The solid lines are used for the Poisson approximation whereas the
dashed lines for the Gaussian one. The solid dots are simulation results.
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Figure 2. Time dependence of the total activity an for the netlet of Figure 1 with two chemical
markers, a and b. Initial activities: ao = 0.07,0.085,0.34,0.36,0.86,0.88 for the Poisson net and
ao =0.1, 0.12,0.36,0.38,0.82,0.84 for the Gaussian net.

In Figure 2 we monitor the time course of the total neural activity for the same
netlet of Figure 1 for several time units (here t = 15). Several initial activities are
chosen to exhibit as clearly as possible the stable and unstable steady-state levels.
We notice here a critical point at high (initial) activities ao = 0.87 for the Poisson
net (ao =0.83 for the Gaussian net), for which a high initial neural activity above
this level drops abruptly at the next time step to a region below the upper unsta-
ble steady-state level of neural activity, bringing the subsequent neural activity to
the lower stable steady-state level, ass = 0.24 for the Poisson net. We observe that
for the case of ao = 0.87 the activity sharply drops to a much lower level in the
first step (t =1). This is due to the fact that the nonzero refractory period yields a
negative slope for the T -curve (total activity) at an values an > 0.6 (see Figure 1).
We also notice that the nonzero Gaussian stable states are always lower than the
corresponding Poisson states, while the Gaussian unstable steady-states are higher
than those of the Poisson case. The Gaussian critical point, however, is lower than
the corresponding one of the Poisson net.

The corresponding time delay diagrams for the above netlet with the same set of
parameters are shown in Figure 3. These diagrams give the time, tss, that it takes
for a netlet to reach a stable steady-state as a function of the initial activity. Here,
unstable states are represented in general as ‘peaks’, while stable steady-states as
‘wells’. The peak, however, at ao =0.87 for the Poisson net (or at ao =0.83 for the
Gaussian net) corresponds to the above mentioned critical point of neural activity,
which controls the time-course behavior of the netlet for high-level initial activities.
If the activity at t = 0 is larger than 0.87 (see Figure 2), then the net will end up
in the lower stable steady-state, ass = 0.24, instead of the highest, ass = 0.55. This
effect is due to the refractoriness (rb =1) imposed on the larger marker, mb =0.75.
Theoretically speaking, just as for unstable steady-states, one can prepare a net-
work unable to reach a stable state. To do this one can give as an initial activity
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Figure 3. tss, the time it takes for the netlet to reach a stable steady-state versus the initial activity. Data
shown are for the netlet of Figure 1 with two markers a and b. The solid lines are used for the Poisson
approximation whereas the dashed lines for the Gaussian one.
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Figure 4. 〈an+1〉 versus an for an isolated netlet with three chemical markers, mα = 0.6, mb = 0.3 and
mc = 0.1, with µ+

α = 148, µ+
b = 235, µ+

c = 700; h = 0; ϑα = 36, ϑb = 14, ϑc = 3; ra = 1, rb = 1, rc = 1 and
K+ = 1. The curves a, b and c represent the activities of each marker, whereas T gives the total activ-
ity of the netlet. The solid lines are used for the Poisson approximation whereas the dashed lines for the
Gaussian one. The solid dots are simulation results.

of the network the exact value of a critical point. In such a case at the next time
step the activity will drop to the appropriate unstable steady-state remaining there
indefinitely, unable to move to any stable state.

A second group of curves are plotted in Figures 4–6 for netlets with three mark-
ers ma =0.6,mb =0.3,mc =0.1. In Figures 4 and 5 we present plots of 〈an+1〉 ver-
sus an and time course diagrams for these nets with nonzero refractory periods
for all of their subsystems (ra =1, rb =1, rc =1). In Figure 5, we show the Poisson
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Figure 5. Time dependence of the total activity an for the netlet of Figure 4 with three chemical mark-
ers, a, b and c. Initial activities: ao =0.024,0.026,0.18,0.19,0.36,0.38,0.62,0.64,0.8,0.84,0.95,0.99, for
the Poisson approximation.
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Figure 6. tss, the time it takes for the netlet to reach a stable steady-state versus the initial activity. Data
shown are for the netlet of Figure 4 with three markers a, b and c. The solid lines are used for the
Poisson approximation whereas the dashed lines for the Gaussian one.

approximation only, for more clearness. A similar representation we obtained for
the Gaussian case not shown here. The time delay diagrams for the netlet of Fig-
ure 4 are shown in Figure 6.

In Figure 5, we can see three critical points at ao = 0.63,0.82,0.97 for the
Poisson net that control the subsequent resulting neural activity. In Figure 6 these
points correspond to the three last peaks (to the right part of the figure) for the
Poisson case. The behavior of the nets (Poisson and Gaussian) in these figures is
similar to that of the previous nets with two markers, but now the three critical
points lead the neural activity to stable steady-state levels, in inverse relation to
their size, i.e. the higher the critical point, the lower is the final neural activity. This
effect is due to the refractoriness (r =1) imposed to all subsystems.
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4. Conclusions

In this paper we examined the effect of refractoriness on the dynamical steady-state
behavior of pure Poisson or Gaussian first-order probabilistic neural nets. We have
used neural nets in the spirit of mathematical models of our previous works as
they were described in Section 2. They include explicitly separate domains of sub-
populations characterized by chemical markers, as intercellular communication is
restricted to occur among neurons that exhibit similar chemical affinity. Neverthe-
less, the calculations in this work, as shown by the analytical formulae (1–6), pro-
vide the possibility to observe both approximations, Poisson and Gaussian, of our
models. Thus, we notice similar dynamical behavior in the two approximations and
an excellent agreement between these data and the simulation results.

The significant point of interest, however, is the existence of some critical points
at high neural activities (above the highest stable steady-state level), which control
the subsequent resulting steady-state behavior of the net. An initial neural activ-
ity above a critical point leads to the appropriate lower stable steady-state level
of neural activity. This is a phenomenon of neural net behavior which is analo-
gous to the synchronized alpha-activity just before visual attention, which is usu-
ally well synchronized waves and which after attention becomes less synchronized
with lower amplitudes [16]. We provided an explanation for the sharp drop in the
activity, an, at early times. The emergence of the critical points and the resulting
neural behavior are due to the nonzero refractory period imposed to the subsys-
tems. In these models, the slope of neural activity, as we can see in Figures 1 and
4, is negative at high activities (an > 0.6), resulting to a reduction of subsequent
neural activity. Using this mechanism we may interpret the observed abrupt drop
of the neural activity, in the case of highly excited neural nets.

From a functional point of view the role of critical points is similar to that of
the unstable steady-states, but they themselves do not represent steady-states. They,
however, lead at once in the subsequent time step in unstable steady-states. Their
feature, in contrast to the unstable steady-states, is that an initial activity above the
level of any critical point leads the neural function to a lower stable steady-state,
i.e. leads to a drop of activity to the appropriate lower level instead of the highest
level of activity. For the case that the critical points are more than one, (as in the
netlet with three markers of Figure 5, where three critical points appear), we notice
an inverse relation of the initial activities to the resulting stable steady-state levels,
according to the rule: ‘The higher the critical point (initial activity), the lower is
the resulting neural activity and the corresponding stable steady-state’. Thus, due
to the refractoriness, external stimulation may provide a regulative result for the
consequent neural activity, making the net to function in normal modes.

From the previously shown diagrams and other obtained results not exhibited
here, we also conclude that the number of critical points for a netlet with N mark-
ers depends on the number of markers for which the refractory period is equal to
one (r = 1). Thus, in a netlet with N markers each one of which has refractory
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period, r =1, there may appear up to N critical points, whereas in a netlet without
any refractoriness there are no critical points. Furthermore, N -modal functions for
the expectation value of activity (N -modal curves), and multiple hysteresis loops,
or, equivalently, multiple states, can be obtained in a netlet with N markers with-
out refractoriness (r =0), as well as, in a netlet with N markers of nonzero refrac-
tory periods (r =1) for all of its subsystems, i.e. the number of stable steady-states
is independent of the existence of refractoriness. In this later case, however, the sta-
ble steady-states are all at levels below the value ass = 0.5. This restriction of the
steady-state levels is another consequence of the existence of refractoriness, since
the refractory period (r = 1) results to a relevant reduction of the stable steady-
states of the net, due to the property imposed to the refractory active neurons, that
causes them to be unable to fire in the next time step.
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