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ABSTRACT Two different approaches were used to study the kinetics of the enzymatic reaction under heterogeneous
conditions to interpret the unusual nonlinear pharmacokinetics of mibefradil. Firstly, a detailed model based on the kinetic
differential equations is proposed to study the enzymatic reaction under spatial constraints and in vivo conditions. Secondly,
Monte Carlo simulations of the enzyme reaction in a two-dimensional square lattice, placing special emphasis on the input and
output of the substrate were applied to mimic in vivo conditions. Both the mathematical model and the Monte Carlo simulations
for the enzymatic reaction reproduced the classical Michaelis-Menten (MM) kinetics in homogeneous media and unusual
kinetics in fractal media. Based on these findings, a time-dependent version of the classic MM equation was developed for the
rate of change of the substrate concentration in disordered media and was successfully used to describe the experimental
plasma concentration-time data of mibefradil and derive estimates for the model parameters. The unusual nonlinear
pharmacokinetics of mibefradil originates from the heterogeneous conditions in the reaction space of the enzymatic reaction.
The modified MM equation can describe the pharmacokinetics of mibefradil as it is able to capture the heterogeneity of the
enzymatic reaction in disordered media.

INTRODUCTION

Michaelis-Menten (MM) kinetics is a basic enzyme kinetics

scheme (Michaelis and Menten, 1913), used extensively in

chemistry and biology for the study of enzymatic cataly-

sis as it is a relatively simple model from a mathematical

point of view. It is of central importance in the field of

biotransformation of drugs and is the core of nonlinear

pharmacokinetics (Wagner, 1993). The foundation of MM

formalism relies on the mass-action law as applied to

enzymatic reactions. However, the application of the mass-

action law and the derivation of MM kinetics both assume

that the substrate-enzyme reaction takes place in a homoge-

neous medium, i.e., well-mixed, three-dimensional (3D)

space and dilute conditions. Although this assumption is

usually satisfied under in vitro conditions, the complexity of

biological media makes it questionable when MM kinetics is

considered under in vivo conditions. Indeed, various reports

indicate that cellular media are structurally heterogeneous

(Scalettar et al., 1991; Minton, 1993, 1998; Luby-Phelps

et al., 1987; Frauenfelder et al., 1999) and this has an impact

on the validity of Fick’s law of diffusion in living cells

(Agutter et al., 1995). The reason is (see Berry, 2002 and

references therein) that diffusion depends on the Euclidean

dimension d of the medium in which it occurs. For a medium

with d. 2, a diffusing molecule explores only a low fraction

of the accessible volume and thus it always escapes its initial

position (noncompact diffusion). For a medium with d , 2,

the molecule eventually returns to its initial position with

probability 1 (compact diffusion) and thus diffusion is not

a perfectly mixing process in low dimensions (Montroll and

Weiss, 1965). This has important consequences on the mean-

squared displacement of the molecule, which scales with time

as ÆR2æ} tn: The exponent n ¼ 1 denotes Fickian diffusion

whereas n , 1, observed in many low-dimensional media,

denotes anomalous diffusion. Nonclassic diffusion has been

observed in cellular media for water (Köpf et al., 1996), and

fluorescence probes (Schwille et al., 1999; Wachsmuth et al.,

2000). In general, many cellular reactions take place under

dimensionally restricted conditions, e.g., two-dimensional

(2D) membranes, quasi-one-dimensional tubes or other

disordered media. This type of reaction has been found to

exhibit noninteger kinetic orders in in vitro experimental

studies (Sadana, 2001; Ramakrishnan and Sadana, 2002) and

in simulation (Koo and Kopelman, 1991), rather than the

usual integer kinetic order derived from mass-action kinetics.

These noninteger kinetic orders are related to the fractal

dimension of the space in which the reaction occurs;

therefore, the nonconventional kinetics have been referred

to as ‘‘fractal kinetics’’ (Kopelman, 1988). Typically when

power-law behavior is observed, this is manifested in a log-

log plot with a straight line section. At short times the system

is still not equilibrated enough and as this regime is amplified

by the log-log plotting, a straight line is not observed. This

happens only when the system has the chance to reach some

sort of equilibrium and this usually happens at long times.

In this context, theoretical approaches (López-Quintela

and Casado, 1989; Berry, 2002; Savageau, 1998) based on

fractal principles have been used to describe enzyme kinetics

in low-dimensional disordered media. One of these ap-

proaches (López-Quintela and Casado, 1989) has been also

used to interpret experimental data of carrier-mediated
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transport (Macheras, 1995; Ogihara et al., 1998). It is

proposed that the liver is a fractal-like object. In fact

Javanaud (1989), using ultrasonic wave scattering, has

measured the fractal dimension of the liver as approximately

df � 2 over a wavelength domain of 0.15–1.5 mm. Recently,

Fuite et al. (2002) proposed that the fractal structure of the

liver with attendant kinetic properties of drug elimination can

explain the unusual nonlinear pharmacokinetics of mibe-

fradil (Skerjanec et al., 1996; Welker, 1998). In this work we

study the effect of species segregation on the kinetics of the

enzyme reaction, firstly by using a microscopic pharmaco-

kinetic model, and secondly by carrying out Monte Carlo

(MC) simulations mimicking the intravenous (i.v.) and per os

(p.o.) administration of the substrate for an enzyme reaction

taking place in fractal media. The substrate profiles gen-

erated from both approaches were found to be in accord with

mibefradil experimental observations. Based on these find-

ings we developed a modified MM equation incorporating

the time dependence in the Michaelian ‘‘constant,’’ and we

further used it to interpret the unusual nonlinear pharmaco-

kinetics of mibefradil (Fuite et al., 2002; Skerjanec et al.,

1996; Welker, 1998) at the macroscopic level. We would like

to emphasize that the models presented below represent only

one possible explanation for reactions occurring in disordered

media and they are certainly not the only possible approach.

METHODS

The MM model of enzyme kinetics consists of three elementary chemical

reactions:

E1 S%
k1

k�1

C/
k2

E1P; (1)

where E, S, P, and C represent the enzyme, substrate, product, and enzyme-

substrate complex, respectively, and ki is the rate coefficient associated with

the elementary step i.
Because, after an initial prestabilized period, the concentration of the

complex (C) in Eq. 1 remains practically constant, a quasistationary state

assumption is used for simplification purposes (Wagner, 1993). This

simplification allows the derivation of the classic MM Eq. 1:

v ¼ vmaxpS
KM 1 pS

; (2)

where v and vmax refer to reaction and maximum reaction rate, respectively,

ps is the substrate concentration whereas the term KM represents the MM

constant that is related to the kinetic constants of the reaction scheme (Eq. 1)

as follows:

KM ¼ ðk2 1 k�1Þ=k1:

Mathematical formulation of a microscopic
reaction model of MM kinetics under
in vivo conditions

To model the above reaction scheme (Eq. 1) under in vivo conditions we

have to take into account that the substrate (drug) is not confined at the

reaction medium (liver), but it arrives at the liver either from the portal vein

(oral administration) or through circulation (intravenous administration);

a part of the substrate is metabolized (Fig. 1) while the rest exits from the

liver and returns later through circulation, and so on.

We propose a reaction model that incorporates this fact, without,

however, dealing in detail with the drug partition between the blood and the

liver, by making the assumption that the substrate molecules that exit from

the liver at time t will return to it some time later. We also assume that this

time of delay is not constant, but it follows a Gaussian distribution with

mean T and variance s2. We further assume that E and C remain inside the

liver and that only P and S get out and return through the circulatory system.

Thus, the mathematical model for the in vivo MM reaction takes the form:

dpC
dt

¼ �dpE
dt

¼ k1pEpS � ðk�1 1 k2ÞpC (3)

dpS
dt

¼ �k1pEpS 1 k�1pC 1RSextðtÞ

� a1 pS 1

Z u¼t

u¼0

a2 pS ðuÞ
e
�ððt�ðu1TÞÞ2

2s
2ffiffiffiffiffiffi

2p
p

s
du (4)

dpP
dt

¼ k2pC � a1 pp 1

Z u¼t

u¼0

a3 pp ðuÞ
e
�ððt�ðu1TÞÞ2

2s
2ffiffiffiffiffiffi

2p
p

s
du; (5)

where pi is the concentration of species i at time t. Eqs. 4 and 5 represent

modifications of the classic system of ordinary differential equations used to

describe the MM scheme. The extra terms that have been added in Eqs. 4 and

5 are listed below along with their physical meaning:

1. RSext(t) in Eq. 4 is the arrival rate of S to the liver from the

gastrointestinal tract. It depends on the way the drug enters the

circulatory system at the liver area, and may have the following forms:

i.v. bolus injection: RSext(t) ¼ 0 and the system of Eqs. 3–5 has to

be solved with the initial condition ps(t ¼ 0) ¼ S0 . 0.

Zero-order input: RSext(t) ¼ k0 for t # Ta and 0 for t . Ta, where k0
is a constant and Ta is the duration of input from the

gastrointestinal (GI) tract. The system of Eqs. 3–5 has to be

solved with the initial condition ps(t ¼ 0) ¼ 0.

First-order input: RSext(t) ¼ ka 3 X0 3 e�ka�t where X0 is a constant

quantity (initial concentration of drug in the GI) and ka is the

first-order rate constant. Again the system of Eqs. 3–5 has to be

solved with the initial condition ps(t ¼ 0) ¼ 0.

FIGURE 1 A microscopic model for the enzymatic reaction in the liver.

The topology of the reaction space in the liver can be considered either

Euclidean or fractal. RSext denotes the rate of substrate input.
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2. �a1 pS in Eq. 4 is the rate of exit of drug molecules.

3.
R u¼t

u¼0
a2 pS ðuÞðe�ððt�ðu1TÞÞ2=2s2Þ=

ffiffiffiffiffiffi
2p

p
sÞdu in Eq. 4 models the re-

entrance of drug due to the circulation. The term a2pSðuÞis the number

of drug molecules that exit at time u and the other term is the probability

that a drug molecule that exits at u will return at the liver at time t. We

integrate to account for the contribution from all times 0 , u , t.

4. �a1 pp in Eq. 5 is the rate of exit of product molecules.

5.
R u¼t

u¼0
a3 pp ðuÞðe�ððt�ðu1TÞÞ2=2s2Þ=

ffiffiffiffiffiffi
2p

p
sÞdu in Eq. 5 models the re-

entrance of product due to the circulation.

The above system of integro-differential equations becomes even more

complicated as we have to take into consideration segregation effects that

will arise if we consider some degree of disorder in the medium. The basic

fractal kinetics assumption, which is supported by Monte Carlo simulations

(Kopelman, 1988; Berry, 2002; Kosmidis et al., 2003b), is that segregation

effects arising due to the fractal structure (in this case, the liver) can be

incorporated in the model if we assume that k1, a1,and a2 are not constant but

follow a power law. Thus, in the above model:

k1/
k1

tb
; a1/

a1

t
m; a2/

a2
t
m: (6)

In all results presented below, we have, for simplicity, assumed that a3 ¼
0, i.e., that the product molecules that exit the liver area do not return to

it. Because the quantity we are primarily interested in is the blood

concentration ps of substrate in the liver region this will not change the

results of the numerical solutions. It may, however, make a difference in the

Monte Carlo simulation results for ps at long times.

Monte Carlo simulations of enzyme reaction in
fractal media

We simulated the Michaelis-Menten reaction depicted in Eq. 1 using a 2D

square lattice and the Monte Carlo algorithm described below. See Fig. 2 for

a graph of a 50 3 50 percolation fractal. Each molecule type performs

a random walk on the lattice with excluded volume interactions. To model

the complexity of the environment we have two choices, both of them very

well known from percolation theory. Either we simply introduce immobile

obstacles at a given concentration, cb, and force particles to move anywhere

on the lattice but not on the obstacle sites, or we first introduce immobile

obstacles at a given concentration cb and then we use a cluster labeling

technique (as, e.g., the one proposed by Hoshen and Kopelman (1976)) to

identify the largest cluster and allow the reaction to occur only at the largest

cluster. The largest cluster at the percolation threshold is known as the

percolation fractal. Below we will refer to the first model as the ‘‘all-clusters

model’’ and to the second as the ‘‘largest-cluster model.’’ Both models will

produce statistically the same results at low concentrations of obstacles, but

will differ at long times if the concentration of obstacles is high and the

enzyme concentration is low. The reason is that every site of the ‘‘largest

cluster’’ is connected to every other site, whereas in the ‘‘all-clusters model’’

there are also several smaller ‘‘islands,’’ where there may be some substrate

molecules but no enzyme molecules can access them. Of course these small

‘‘islands’’ may be interpreted as areas where the MM reaction is more

difficult to occur and both models may lead to useful results. Obviously,

when no obstacles are used, then the matrix represents a Euclidean space

with dimensionality equal to two. It should be noted that the ‘‘largest-cluster

model’’ has been used in the past in problems related to drug release from

polymeric devices (Bonny and Leuenberger, 1991, 1993; Kosmidis et al.,

2003a,b). The ‘‘all-clusters model’’ on the other hand was recently used by

Berry (2002) for simulating enzyme reactions in restricted geometries.

Although the liver is a 3D organ we utilize here a 2D model. This is

mainly due to simplicity, especially because both a 2D and a 3D percolation

cluster at criticality have the same spectral dimension. This exponent ds
characterizes the area visited by a random walker in a medium. A 2D lattice

has ds ¼ 2, whereas a disordered lattice (percolation fractal) has a spectral

dimension ds ; 1.34, both in 2D and 3D lattices (Argyrakis et al., 1993). By

inserting immobile obstacles in a 2D lattice and varying their concentration

we are able to control the spectral dimension of the medium in a continuous

way from 2 to 1.34. The value of the spectral dimension of the liver given by

Fuite et al. (2002) is ds ; 1.84, which is within the above interval (1.34–

2.50) and in agreement with our proposed picture. Actually, it was possible

to fit the same experimental data as Fuite with our 2D model and produce

a better more accurate fit. Thus, using a 2Dmodel per se, is not misleading or

questionable.

To mimic the enzyme reaction under in vivo conditions, special emphasis

is given to the input and output of the substrate and the output of the product.

To this end, we introduce sites that function as exits with a concentration cout
and sites that function as entrances with a concentration cin, (see Fig. 2). In all
cases presented below (unless otherwise denoted) we have used a 1003 100

lattice with cin ¼ 0.3 and cout ¼ 0.1.

Reaction-diffusion processes are usually simulated using a random-walk

model. To model a Michaelis-Menten type of reaction, which is actually a set

of three elementary reactions (see Eq. 1) we have to introduce three reaction

probabilities f, r, and g. These probabilities are proportional to the rate

coefficients k1, k�1, and k2 (see below and also Berry, 2002). To mimic i.v.

bolus injection-type delivery of the drug, at the beginning of each

simulation, the E and S molecules are randomly placed on the permissible

clusters of the lattice.

To mimic first-order drug delivery we calculate the number of substrate

molecules Next that enter the liver, through the GI tract, from time t until

t 1 1 using the relation Next ðtÞ ¼
R t11

t
ka X0 Expð�ka tÞ dt; where X0 is the

initial quantity of drug in the GI and ka is the first-order rate constant. In

simulations using the ‘‘largest-cluster’’ model we set the substrate

concentration cs at a constant value and we set X0 ¼ cs lf, where lf is the

size of the percolation fractal. (For a 1003 100 lattice the average size of the

percolation fractal is a little more than 2500 sites). Those X0 molecules are

gradually placed at the percolation fractal. At each MCS we place Next

substrate molecules around the sites labeled as entrances.

At each MC step, an occupied lattice site is chosen at random (excluding

obstacle sites). The rules for movement and reaction depend on the nature of

the selected molecule:

1. If the selected molecule is an S, a destination site is chosen at random

from its four nearest neighbors. If the destination site is unoccupied, the

molecule moves to it directly. If the destination site is occupied by an E

molecule, a random number is chosen between 0 and 1. If this number is

lower than the reaction probability f, the destination site is turned to a C

FIGURE 2 A 50 3 50 percolation fractal. Only the largest cluster is

shown. Particles are allowed to move on the white sites only. Black sites are

restricted area obstacles. Substrate molecules enter to the lattice from

randomly chosen white sites labeled as entrances.
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molecule and the initial S site becomes unoccupied. In all other cases,

the S molecule remains at its initial position. Note that this is also valid

if the chosen destination site is an obstacle.

2. If the selected molecule is an E, the process is similar to case 1, i.e.,

depends on the occupancy status of the randomly chosen destination

site. There is a movement if unoccupied, whereas there is a reaction

with a probability f if occupied by S, or there is no change in all other

cases.

3. If the selected molecule is a C, a random number is chosen between

0 and 1. If this number is lower than the reaction probability r then the C

molecule dissociates into an E and an S. The new E molecule is placed

on the initial C site, whereas for the new S molecule we choose a site at

random. If the site is occupied we abort the decomposition process. The

initial C molecule dissociates into an E and a P in a similar fashion, if

the random number is .r but lower than r 1 g. Finally, if the random

number is greater than r 1 g, the C molecule is allowed to move to

a randomly chosen unoccupied nearest neighbor site.

4. If the chosen molecule is a P, it moves to a randomly chosen

unoccupied nearest-neighbor site.

5. Sites marked as exits function as block sites for E and C molecules. This

accounts for the fact that the enzyme and substrate molecules are not

allowed to exit from the liver area. On the other hand a P molecule that

meets an exit site is permanently removed from the system.

6. If an S molecule moves to an exit site at time t, a random number x is

drawn from a Gaussian distribution with mean t and standard deviation

s. This particle will return to the system at time t 1 x and it will be

placed at a randomly chosen nearest neighbor of an entrance site.

After each particle move time is incremented by 1/N, where N is the

current number of molecules on the lattice. One time unit thus statistically

represents the time necessary for each molecule to move once. The

simulation goes on until a prescribed total time is reached. We average our

results over 50 realizations for statistical purposes.

RESULTS AND DISCUSSION

Microscopic modeling and MC Simulations

In Fig. 3 we present a plot of pS versus time based on the

numerical solution of the microscopic reaction model and

subsequent fitting to the experimental in vivo data (also

shown in the plot) using a Levenberg-Marquardt nonlinear

fitting algorithm (Press et al., 1988). The fitted line describes

the experimental data nicely. Notice the hump around t ¼ 50
min, which is predicted from the model and also observed

experimentally. It is due to the fact that the drug molecules

that exit from the liver return to it after some time, thus

temporally increasing ps, which subsequently is decreased

again due to the continuous exiting of substrate particles

from the system. The estimates of the parameters (in

arbitrary units) of the system of Eqs. 3–6 are: ps(0) ¼ 0.3,

pe(0) ¼ 0.05, k1 ¼ 1, k�1 ¼ 0.02, k2 ¼ 0.09, a1 ¼ 0.0302,

a2 ¼ 0.0305, t ¼ 48, s ¼ 10, b ¼ 0.39, m ¼ 0.07. The

correspondence of arbitrary time and density units to the

actual units is also determined by the Levenberg-Marquardt

and it is found that 1 arbitrary density unit corresponds to

477.99 ng/mL and that 1 arbitrary time unit corresponds to

1.07 min. Particular emphasis should be placed on the

estimate b ¼ 0.39 for the power-law exponent of

‘‘segregation’’ term k1/t
b (in Eq. 6) because it indicates

a reaction taking place at a highly disordered environment.

This result is in good agreement with the results of Berry

(2002) who also found that k1 is in essence a time-dependent

coefficient in topologically constrained media. It is also

interesting to note that the estimate for m was found to be

close to zero (m ¼ 0.07), which indicates that both the exit

and reentrance of the drug are governed by typical rate

constants a1 and a2 ; respectively, Eq. 6.
To check the validity of the MC simulations in Fig. 4 we

plot pS versus time for several different enzyme con-

centrations (pE) assuming that no obstacles are present,

which is a case of normal Euclidean space. We assume i.v.

bolus injection delivery of the drug. So all drug molecules

are placed at the 2D matrix at random positions at time t¼ 0.

The values assumed for the reaction probabilities are f ¼ 1,

r ¼ 0.02 and g ¼ 0.04, and ps(0) ¼ 0.2. The results indi-

cate that the substrate concentration decreases exponentially

at long times, which is the classically expected behavior

anticipated from the Michaelis-Menten reaction scheme in

saturated conditions (Wagner, 1993). The condition for this

exponential decrease is Km � ps, i.e., when the substrate

concentration becomes much less than the Michaelis

constant (Murray, 1993).

Fig. 5 is a semilog plot of the Monte Carlo simulation data

for pS versus time assuming delivery of the drug through

first-order kinetics. We have assumed a fractal structure

using the largest-cluster model. The values assumed for the

reaction probabilities are f ¼ 1, r ¼ 0.02, and g ¼ 0.04 and

the initial enzyme concentration was set to pe ¼ 0.06. All

lines represent simulation results. Notice the reaction

FIGURE 3 Plot of pS versus time using the microscopic model of the

enzymatic reaction. Points are experimental in vivo data from Fuite et al.

(2002). The solid line represents results of the numerical solution of the

system of Eqs. 3–5 assuming fractal kinetics (i.e., Eq. 6) combined with

a Levenberg-Marquardt fitting algorithm. The fitted results are rescaled to

change to actual units. Rescaling factors are also determined by Levenberg-

Marquardt fitting.

Michaelis-Menten Pharmacokinetics 1501

Biophysical Journal 87(3) 1498–1506



slowdown (slope change) at large times in contrast to the

classical behavior presented in Fig. 4. This can be interpreted

as an indication of ‘‘fractal’’ instead of classical kinetics.

High values of the first-order rate constant ka approximate

injection delivery whereas low values of ka mimic slow oral

drug input. Experimental results (see also discussion of Fig.

7) show that a high ka value exhibits a deviation from the

classically expected Michaelis Menten behavior, but this is

not observed in the oral administration of drug. Simulation

results shown in Fig. 5 indicate that high ka values lead to

higher initial drug concentration and to ‘‘fractal kinetics’’

(Berry, 2002) behavior whereas this effect is not so obvious

for low ka values. In fact, fractal kinetics is completely

masked for the simulations with low initial substrate

concentration and low value of ka.
In all Monte Carlo simulations that monitor the time

evolution of a system the time unit of the simulation is 1

Monte Carlo step (MCS). The correspondence of this time

unit to the actual time units used in the experimental

measurements is determined by a nonlinear fitting and is

found that 1 MCS corresponds to 0.88 min.

In Fig. 6 we present a plot of pS versus time based on the

Monte Carlo method. Points are the experimental in vivo

data from Fuite et al. (2002), same as in Fig. 3. The dashed

line is the MC simulation result using the ‘‘all-clusters

model’’ and the solid line is the MC result using the ‘‘largest-

cluster model.’’ We performed several simulations under

different conditions. In all cases, to achieve the best possible

fitting, we had to assume a fractal structure for the liver either

by assuming a concentration of obstacles near the percola-

tion threshold in Monte Carlo simulations or by assuming

a power-law form for the ‘‘constants’’ as in Eq. 6 in the

mathematical modeling. Visual inspection of Fig. 6 reveals

that the MC results derived from the ‘‘all-clusters model’’

describe better the experimental data than the ‘‘largest-

cluster model.’’ Any attempt to explain the experimental

results using the classical Michaelis-Menten was completely

unsatisfactory.

Development and application of an MM equation
with time-variant Km

In addition to the detailed mathematical model that we have

presented above, we would like to provide a simpler,

approximate, treatment of the problem, which is much easier

to use in practical applications.

An algebraic manipulation of the system of Eq. 3–6, using

the classical quasistationary assumption and the additional

assumptions that a1, a2 are small compared to k1 and that in

most cases RSext(0) is also small, implies that a time-variant

KM will be a suitable approximation. In fact, the above

analysis indicates that a power-law form is probably the most

appropriate for the time-variant KM as follows: KM ¼ KM0 �
th, where h is a dimensionless exponent and KM0 is a constant

expressed in concentration (time)�h units. Under homoge-

neous conditions, the terms KM and KM0 become identical

and express the classic Michaelis constant since h¼ 0. Using

the time-variant expression of KM, the time-dependent

version of MM kinetics can be formulated as:

FIGURE 4 Semilog plot of pS versus time for several initial values of

enzyme concentration, pE, in a Euclidean space (zero density of obstacles)

using MC simulation. We assume injection-type drug delivery, i.e., at t ¼
0 all drug molecules are supposed to be in the lattice, randomly distributed.

The values assumed for the reaction probabilities are f¼ 1, r¼ 0.02, and g¼
0.04. The initial substrate concentration was set to ps ¼ 0.2.

FIGURE 5 MC simulations using the ‘‘largest-cluster model’’. Semilog

plot of pS versus time assuming delivery of the drug through first-order

kinetics for several values of the first-order constant, ka, and two levels of

the initial substrate concentration. The values assumed for the reaction

probabilities are f ¼ 1, r ¼ 0.02, and g ¼ 0.04 and the initial enzyme

concentration is pe ¼ 0.06.
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v ¼ vmaxpS

KM0t
h
1 pS

: (7)

Equation 7 reveals that the rate of the enzyme reac-

tion depends on ps and t. This time dependency of KM (KM¼
KM03 th) leads to an increase of this term with time (depend-

ing also on the value of the exponent, h). This character-

istic constitutes the underlying cause for the successful

application of Eq. 7 to mibefradil data.

Assuming one-compartment model disposition (Wagner,

1993), Eq. 7 was used to analyze the concentration-time data

of mibefradil after i.v. and per os administration (Fuite et al.,

2002; Skerjanec et al., 1996; Welker, 1998). For comparative

purposes the classic Eq. 2 was also used to analyze the same

data. Since Eqs. 2 and 7 were applied to concentration-time

data (Fuite et al., 2002), the term vmax was substituted with

v*max denoting the normalized maximum rate, in terms of the

volume of distribution of the compartment. These appropri-

ately modified Eqs. 2 and 7 were fitted to experimental data

(Fuite et al., 2002; Skerjanec et al., 1996; Welker, 1998)

using a program developed in FORTRAN for the numerical

solution of the differential equations. A Levenberg-Mar-

quardt algorithm was utilized for the optimization process.

To compare the utilized models as for their ability to

successfully describe the data, the Akaike information

criterion (AIC), and the Schwarz information criterion

(SIC) were used (Gabrielsson and Weiner, 1997).

Fig. 7 A shows a semilogarithmic plot of the results

derived from the fitting of Eq. 7 to the first set of human

bolus intravenous data (Fuite et al., 2002). The inset in Fig.7

A represents the fitting results of Eq. 2 to the same data. The

values of the optimized parameters are quoted in Table 1.

Visual inspection of Fig. 7 A and its inset reveals that Eq. 7

can successfully describe these data, whereas this is not

the case for the classic MM approach (Eq. 2). The same

conclusions can be derived from the analysis of the second

set of intravenous data (Skerjanec et al., 1996), which are

shown in Fig.7 B (for Eq. 7) and at the inset of Fig.7 B for

Eq. 2. Again, Eq. 7 shows a very good description of the

experimental data, whereas the classic MM model fails to

describe the data adequately. The parameter estimates for the

second set of intravenous data derived after optimization

along with the statistical criteria values are listed in Table 1.

It should also be noted that these observations agree with the

values of the corresponding statistical criteria (AIC, SIC)

(see Table 1).

The analytical power of Eqs. 2 and 7 was also tested using

mibefradil data obtained after oral administration (Skerjanec

et al., 1996; Welker, 1998). To this end, the fitting of Eqs. 2

and 7 was applied only to the data of the declining limb of the

concentration-time curve. For both oral data sets examined,

the two models described the data correctly (results are not

FIGURE 6 Plot of pS versus time. Points are experimental in vivo data

from Fuite et al. (2002). Dashed line represents MCS results using the ‘‘all-

clusters model’’. The values assumed for the reaction probabilities are f¼ 1,

r ¼ 0.02, and g ¼ 0.04. The following parameters have given the best fitting

results: ps(0) ¼ 0.2, pe(0) ¼ 0.2, T ¼ 48, s ¼ 12. Thin solid line represents

MCS results using the ‘‘largest-cluster model’’. The following parameters

have given the best fitting results: f ¼ 1, r ¼ 0.015, g ¼ 0.02, ps(0) ¼ 0.6,

pe(0)¼ 0.2, T¼ 48, s¼ 10. We rescale to change fromMonte Carlo units to

actual time units. Rescaling factors are determined by Levenberg-Marquardt

fitting. In both cases it turns out that 1 min ¼ 0.88 MC steps.

FIGURE 7 Semilogarithmic concentration (ps) versus time plots of

mibefradil after intravenous bolus administration. Data were taken from

reference Fuite et al. (2002) (A), and reference Skerjanec et al. (1996) (B).

The solid lines represent the fittings of Eqs. 2 (A and B insets) and 7 (A and

B) to experimental data.
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shown). The estimates of the model parameters and the

values of the statistical criteria for the oral data fittings are

listed in Table 1 under the two columns with the p.o. sign.

The discrepancy of the fitting results between the

intravenous and oral data is associated with the specific

kinetic characteristics of the two types of administration.

After intravenous bolus administration the entire quantity of

drug reaches the liver as a ‘‘bolus’’ through the hepatic

artery. On the contrary, the drug (substrate) reaches the liver

gradually via the portal vein following the rate of uptake

after oral administration. Besides, mibefradil exhibits

extensive first-pass effect and therefore the portal vein

concentration of the gradually absorbed mibefradil is

considerably lower than the plasma concentrations of

intravenous bolus administration. All these observations

substantiate the view that only the i.v. bolus administration

creates favorable conditions for the manifestation of fractal

kinetics characteristics of the enzyme reaction.

To further verify our physically based interpretation for

the differences noted in the analysis of i.v. and oral

experimental data, a pharmacokinetic simulation study was

undertaken. A model with one-compartment disposition,

first-order input and elimination following Eq. 7 was

utilized. Two sets of oral data were generated utilizing a high

value for the absorption rate constant, ka¼ 1.0 (arbitrary time

units)�1 to mimic a rapid ‘‘intravenous-like’’ drug admin-

istration and a low value for ka ¼ 0.01 (arbitrary time

units)�1 implementing a slower input rate. Again, Eqs. 2 and

7 were utilized for the analysis of the declining phase data.

The fitting results obtained from the simulation data, Fig. 8,

were found to be in agreement with the results of the

experimental data. The time-dependent MM model (Eq. 7)

described nicely both the two sets of data (Fig. 8, A and B). In
contrast, Eq. 2 described the data correctly when a low value

was assigned to the absorption rate constant (Fig. 8 B inset)
and failed to describe the data adhering to the higher input

rate (Fig. 8 A inset).
A decrease in metabolic clearance with time for certain

drugs is usually attributed to self-inhibition (Wolf et al.,

1997). However, the manifestation of self-inhibition requires

repetitive administration of the drug inhibiting its own

metabolism. In this study, the mechanism that caused the

time dependency of KM for mibefradil was attributed to

spatial restriction of the in vivo reactions because the

reduction in clearance was observed during the time course

of a single i.v. bolus administration. To the best of our

knowledge, this is the first physically based mechanism

proposed for the reduction in metabolic clearance with time.

However, a singular observation for the increase of

Michaelis constant (KM) of cyclosporine during the first

four months after transplantation (Wolf et al., 1997) has not

been elucidated as yet. This mechanism could be proposed,

because both the simulation (Berry, 2002) and the

experimental results quoted above indicate that the ‘‘time-

scale’’ for the manifestation of KM reduction depends on the

‘‘reaction conditions’’ (substrate (drug), enzyme, substrate

density (dose), route of administration, input rate). In

parallel, one should also add that cyclosporine causes

hepatic toxicity leading to histological changes that can

progressively affect the topological constraints of the

reaction space because in vivo reactions occur on mem-

branes or channels of the hepatic cells (Savageau, 1998). It

was shown above that the microscopic model and the Monte-

Carlo simulations for the enzyme reaction taking place in

TABLE 1 Parameter values derived after optimization of two models using experimental and simulated data

Data set* (route, reference)

Parameter

i.v.

(Fuite et al., 2002)

i.v. (Skerjanec

et al., 1996)

p.o. (Skerjanec

et al., 1996)

p.o. (Welker,

1998) sim1y sim2z

Eq. 2

v*max (ng/mL/min) 6791.4 (48,366.7) 467.9 (1098.2) 1.03 (0.3) 19.9 (2.9) 222.7 (169.5) 157.1 (10.3)

KM (ng/mL) 70,215.0 (499,008.0) 12404.9 (29,369.9) 506.4 (172.9) 10,819.6 (1678.7) 36,052.5 (26,024.0) 61,166.2 (32,94.9)

AIC§ 97.2 112.1 36.4 30.8 73.0 23.3

SIC{ 97.8 112.7 35.7 30.4 73.8 24.1

Eq. 7

v*max (ng/mL/min) 71.9 (6.5) 88.4 (6.8) 0.824 (0.04) 0.269 (0.05) 1.168 (0.05) 1.029 (0.09)

KM0 (ng/mL 3 (min)�h) 154.8 (18.4) 273.4 (38.8) 50.3 (9.1) 2.59 (1.8) 4.681 (0.37) 272.02 (28.8)

h 1.0 (0.0) 0.84 (0.02) 0.325 (0.02) 0.595 (0.04) 0.760 (0.007) 0.0636 (0.03)

AIC§ 71.9 83.0 30.9 30.0 33.7 28.9

SIC{ 72.8 83.9 29.7 29.4 34.9 30.1

Values of the statistical criteria applied to the optimization results of the two models.

*The value in parentheses represents standard deviation.
ySimulated data were generated using ka ¼ 1.0 (arbitrary time units)�1 to mimic a rapid ‘‘intravenous-like’’ drug administration; estimates for v*max, KM, and

Km0 are in arbitrary units.
zSimulated data were generated using ka ¼ 0.01 (arbitrary time units)�1 to mimic oral drug administration; estimates for v*max, KM, and Km0 are in arbitrary

units.
§Akaike information criterion (Gabrielsson and Weiner, 1997).
{Schwarz information criterion (Gabrielsson and Weiner, 1997).
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a disordered medium can explain the unusual nonlinear

pharmacokinetics of mibefradil. These findings allow one

to infer that fractal kinetics governs the biotransformation

of mibefradil at the microscopic level and this is actually

observed at the macroscopic level. Based on the above we

propose a novel pharmacokinetic model that provides a more

realistic approach than the conventional MM formalism,

and it is much simpler to implement than the complete

mathematical treatment of Eqs. 3–6. We emphasize once

more that the macroscopic model described by Eq. 7 is not

supposed to represent the unique approach for the de-

scription of anomalous MM kinetics. However, Eq. 7 was

not derived empirically but it was based on our MC

simulations.
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