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Diffusion-driven spreading phenomena: The structure of the hull of the visited territory

Eleni Arapaki and Panos Argyrakis
Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece

Armin Bunde
Institut fir Theoretische Physik Ill, Justus-Liebig-Universitaiessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
(Received 4 August 2003; published 8 March 2004

We study the hull of the territory visited b random walkers aftet time steps. The walkers move on
two-dimensional substrates, starting all from the same position. For the substrate, we ctmsidsquare
lattice and(b) a percolation cluster at criticality. On the square lattice,(@)ealso allow for birth and death
processes, where at every time stepl walkers die and are removed from the substrate, and simultaneously
the same number of walkers is added randomly at the positions of the remaining walkers, such that the total
numbers of walkers is constant in time. We perform numerical simulations for the three processes and find that
for all of them, the structure of the hull is self-similar and described by a fractal dimedgidhat slowly
approaches, with an increasing number of time steps, the dalaet/3. For procesfc), however, the time to
approach the asymptotic value increases drastically with increasing fractibiiagf and can be observed
numerically only for sufficiently small values &/ «.
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[. INTRODUCTION considered here. Ifi) and(ii) the convergence ay to 4/3
is quite fast, also for large populations, while (i) the
Diffusion driven spreading phenomena have receivedisymptotic value can only be reached numerically when the
considerable interest in the past. The applications range froiaction betweerN and « is quite small.
particle diffusion or diffusion of members of a given species

to the spread of diseases and the migration of populations Il. MODELS FOR SPREADING PHENOMENA
[1-5]. A central quantity of interest is the number of distinct . .
sites (the “territory”) Sy(t) visited by N random walkers We have considered three models for the spreading phe-

after t time steps. In particular on two-dimensional sub-nomena in @ substrates. In each modé&l,random walkers
strates, the evolution @, with time is quite complex, even start from the same origin. In the first model, the walkers
in the simple cases when there are no interactions betwedfen move independently on a square lattice. In this case,
the diffusing particles and the substrate is homogeneous. Sn(t) can be calculated analytically for large values\df7],

For N random walkers moving on regular or fractal sub-with the result
strates, analytical expressions for the evolution of the terri-

tory have been obtained in Refg6—9]. When birth and t?, <ty
death processes are includdd], an analytical treatment of N
the territory is still lacking, but the mean distance between thh—, t<t<t,
the walkers as well as the position of their center of mass Sn(t)~ Int @
could be determined analyticallt1]. Nt ,
In this paper, we are interested in the structure of the Int’ >,

external perimetet‘hull” ) of the territory visited byN ran-
dom walkers movindi) on a square latticdji) on a perco-
oo e T, " Accordngly. even' for small vaiues o the
) Yy " S ‘trivial” third regime where the territory increases linearly
is removed from the lattice, while simultaneously the same

number of walkers is added randomly at the positions of thé’vIth N does not occur within a reasonable number of time

remaining walkers. For all these cases, the territSgyt) ?(te(;?rieme ir;cre e’l :\E);r:t from the very short initial regime, only
Sannotr:)e ;”.“FI"V redE'cedSto ;chg ?LOdtNﬁ.lt(t) fo.r !ct)ogléla- In the second modeN random walkers move on a per-
lons wheni Is large. rere 1(1) is he termtory visited by a colating cluster at criticality. Now, abovg=InN, Sy(t)
single random walkef12—-16. For illustrations of the hull
) . scales a$8,9]

for the three cases; see Fig. 1.

It has been argued by Mandelbfdf7] that the hull of the (@2~ 1)d2
territory of a single random walker moving on a homoge- Sn(t) ~[IN(N) JHE= 8™ Dt05 1, 2
neous 2 substrate is self-similar and described by a fractal
dimensiond,, =4/3, which agrees with the fractal dimension wherelede/dmm is the anomalous diffusion exponent in
of self-avoiding walks ind=2. Here we find that for long topological spaced,, is the fractal dimension of a random
enough times, this value also describes the hull for the casegalk, d,,;, is the fractal dimension of the shortest path, and

The crossover times, andt, scale withN ast,~InN, and
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FIG. 1. The forefront of the territory covered By=320 ran- M(D)
dom walkers(a) on a regular square lattice after=10° Monte 10°F .
Carlo (MC) steps,(b) on a two dimensional percolating cluster at F A 3
criticality after 10 MC steps, andc) for the migration model, with [ o X * ]
@=0.001 andt=2x 10° MC steps. 10'E oX
(@ o E
ds is the spectral dimension. For a detailed discussion of N T T
these quantities see R¢fl8]. A third regime, whereSy(t) 107 10 100 1000
~N, does not appear here. 1
In the third modelN random walkers move on a square 140 [— I
lattice. At every time stepgN walkers die and are removed | i
from the lattice. Simultaneously the same number of walkers L35k i
is added randomly at the positions of the remaining walkers : o 900 s HERY:
[10,11). The fact that walkers can die everywhere but can be i MXXXXXXXX
born only at the present locations of already existing walk- 130 OO XXX .
. . : 0o X
ers, changes the dynamics of the population drastically: The - O o xxxxx ]
mean square distance between the random walkers increase d;; 125+ o -
as[11] i " i
¢ 120 9 X N=1 -
R(t)=p§ 1—exp( - 7) : (3 [ ox X o X%
0 n .
1.15 (b)
reachingp,=4dDr, for t>7,=(N—1)/2«, whereD is i | | | 1
the diffusion constant. WhileR, remains constant fot L T —
> 74, the center of mass of the particles diffuses agl1] 10 - 10 10 10
0 Time (MC steps)

2
2 py=Pot
REn(1)=7 - @

Thus, after an initial spreading period<(7,), where the
center of mass moves as in the caseNahdependent par-

FIG. 2. (a) For the case o particles performing random walks
on a regular square lattice of size 7000000, we showM (1), the
number of boxes of sizethat contain at least a part of the visited
area forefront, v$. HereN=280 and results are averaged over 100
realizations. From bottom to top=8.2x10%, 3.32x10%, 1.09

ticles, the particles cluster around their center of mass withir¢ 10, 3:42<1¢°, 1¢F, and 2<10° Monte Carlo steps(b) The

a ball of radiuspy and diffuse as a whole. There is no ana-
lytic treatment of the territory visited by the random walkers.

Ill. RESULTS

fractal dimension of the perimeter of the sampled area versus time,
for N=1 (crosses, 1000 realizationand N= 80 (circles, 100 real-

izationg. The asymptotic value is consistent with 4/3.

this end, we continuously monitor the sites which constitute

the external perimeter of the visited territory, and we mea-
laced at the center of a large square lattice, on the same sif&. . its fractal dimensiody; as a function of time, by using
b 9¢ sq . e following box counting techniquEl9,20. For a given

Multlp_le occupancy of a site Is aIIo_vve_d and there is N9 IN"ime, the lattice is successively binned in square boxes of
teraction between the particles. Periodic boundary cond|t|ona. , . . o .
ifferent linear sizd, ranging froml=4 to | =1000 and we

are used, although in all calculations the lattice size was . ' i
) - . cover the entire lattice with such boxes. We count the num-
large enough in order to exclude finite size effects. After : . o
- . ber of boxedM (1) of linear sizel which include at least one
placing the particles at the center of the substrate, we move_ . . . . . .
them by implementing a regular random walk. A particle iSperlmeter site. In practice, a box is considered to include part

chosen at random and chooses with equal probabili c%f the perimeter if it includes parts of both the territory cov-
qual probability one s : .

its nearest neighboring sites. If the site belongs to the sub‘::'r.ed and the unvisited area. At a given timéV (1) scales

strate, the particle moves to that site. Otherwise, it remains at ith | as

the same position. In any case, time is increased by 1/

Accordingly, one Monte Carlo step consistshvhttempts to

move the particles. We are interested in the way the structur@ccordingly, when IrM is plotted versus lh a straight line

of the forefront of the “epidemics” changes with time. To is expected with slopd,, .

In the numerical simulationsN particles are initially

M(1)~19. (5)
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FIG. 3. (8 M(l) vs| for the case oN=80 particles moving on
a percolation cluster embedded on a 388000 square lattice.
From bottom to top:t=8.2x10%, 3.32x10%, 1.09x10°, 3.42
X 10, 10F,and 3. 10°,Monte Carlo stepgb) The fractal dimen-
siondy vs time, forN=1 (crossey N=280 (circles, N=320 (dia-
mondg, andN=1280(squares Results are averaged over 100 re-
alizations.(For N=1, 1500 realizations were used

A. N random walkers on a square lattice

Figure Za) shows, in a double logarithmic presentation,
the number of boxes of lengthM(l), as a function of, for
t in the range between 3@nd 10 Monte Carlo steps. For

largel values all curves are straight lines. The slopes of the
lines represent the fractal dimension of the hull, which is

then shown in Fig. @). We see that,, gradually increases
with time, from the value 1.25 at=10° towards 4/3 att
=10°. This value fordy is identical to the fractal dimension
of a self-avoiding walk(SAW). It has already been conjec-
tured by Mandelbrof17] that the hull of the territory cov-

ered by a single random walk has the structure of the SAW.

It is interesting that even though we are well belogy,
where the territonySy(t) is composed of the territorie3; (t)

of single random walkers, the fractal dimension of the hull is

equal to 4/3. Concerning the speed of convergencd.to
=4/3, itis obvious from Fig. () that it is faster for the case
of many particles than in the case of a single particle.
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FIG. 4. (a) M(l) vs| for the migration model on a square lattice
of size 700 7000. HereN=1000 ande=0.01. The symbols cor-
respond to the rescaled simulation déta arbitrary unitg, while
the continuous lines are the best fits. From bottom to tep3.2
x10°%, 3.32x10%, 1.09x1C°, 3.42x10°, 1(F, 3.2x1CP, and 9.8
X 10° Monte Carlo steps. The slopes of these lines give the fractal
dimensiond,, of the external perimeter, whose time evolution is
depicted in Fig. 5.(b) N=1000 anda=0.1. (c) N=10 and «
=0.5.(d) N=8 anda=0.5.

B. N random walkers on a percolation cluster

Next we discuss the hull of the epidemics that spreads in
the fractal percolating cluster at criticality. FigureaBshows
M (l) versusl for several different times. From the slopes of
the lines we can deduah, . Figure 3b) shows that already
after 3x 10* time steps the asymptotic value df,=4/3 is
approached, as in the regular lattice case. This result clearly
differs from the fractal dimension of a SAW on percolation
cluster at criticality, which isl>*=1.27[21,27. The fractal
dimension of the hull of the percolation cluster was found to
bedy=1.75[23,24), but using a slightly different definition

T T LR | T
135 —
130 -
125 =
1.20 W =
sl e/e,/e—e—e—/’e"o i
T T e e

Time

FIG. 5. Time evolution ofl, for the four cases presented in Fig.
4. From bottom to top we have data fr=1000 ande=0.01,N
=1000 ande=0.1,N=10 anda=0.5, andN=8 anda=0.5.
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of the hull and regarding next nearest neighbors of the pe=(N—1)/2« is quite small, and the asymptotic regime where
rimeter as connected, Grossmann and Aharony fafiti”  a “ball” of size p,, diffuses can be seen numerically. Clearly,
to bed'""V=4/3[18,19,25,2& Thus, the fractal dimension the structure generated is the territory of a single random
of the hull of the epidemics is the same as the fractal dimenwalker that moves slowly on a lattice with spacing.
sion of the external perimeter of the percolation cluster. FurHence, for sufficiently large times we expekt=4/3. This
thermore, it turns out from Fig.(B) that the bigger the value argument also holds for arbitrafyl and a values, but for

of N the faster the conversion to the 4/3 value. po>1, the asymptotic regime cannot be observed within a
reasonable number of time steps. In these cases the hull is
C. Migration model still a self-similar object, but the fractal dimension can be

. . o . well below 4/3:d,=1.18 (for N=1000 anda=0.01) and
Figure 4 shows, in a double logarithmic presentation, they 1 oo (for N=1000, ande=0.1), for t between 18 and
number of boxes of length M(1), as a function of, for t 187 Monte Carlo steps,. ’

values between fOand 10 time steps. Each panel corre-
sponds to a different value ®/«. From the slopes we ob-
tain the values of the fractal dimension of the hull, which are ACKNOWLEDGMENT
shown in Fig. 5.

For «=0.5 andN=8 and 10 the fractal dimension of the = This work was supported by a joint grant from IKY and
hull converges, relatively fast, tdy=4/3. In this caser, DAAD.
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