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Diffusion-driven spreading phenomena: The structure of the hull of the visited territory
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We study the hull of the territory visited byN random walkers aftert time steps. The walkers move on
two-dimensional substrates, starting all from the same position. For the substrate, we consider~a! a square
lattice and~b! a percolation cluster at criticality. On the square lattice, we~c! also allow for birth and death
processes, where at every time step,aN walkers die and are removed from the substrate, and simultaneously
the same number of walkers is added randomly at the positions of the remaining walkers, such that the total
numbers of walkers is constant in time. We perform numerical simulations for the three processes and find that
for all of them, the structure of the hull is self-similar and described by a fractal dimensiondH that slowly
approaches, with an increasing number of time steps, the valuedH54/3. For process~c!, however, the time to
approach the asymptotic value increases drastically with increasing fraction ofN/a, and can be observed
numerically only for sufficiently small values ofN/a.

DOI: 10.1103/PhysRevE.69.031101 PACS number~s!: 05.40.-a, 87.10.1e
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I. INTRODUCTION

Diffusion driven spreading phenomena have receiv
considerable interest in the past. The applications range f
particle diffusion or diffusion of members of a given spec
to the spread of diseases and the migration of populat
@1–5#. A central quantity of interest is the number of distin
sites ~the ‘‘territory’’ ! SN(t) visited by N random walkers
after t time steps. In particular on two-dimensional su
strates, the evolution ofSN with time is quite complex, even
in the simple cases when there are no interactions betw
the diffusing particles and the substrate is homogeneous

For N random walkers moving on regular or fractal su
strates, analytical expressions for the evolution of the te
tory have been obtained in Refs.@6–9#. When birth and
death processes are included@10#, an analytical treatment o
the territory is still lacking, but the mean distance betwe
the walkers as well as the position of their center of m
could be determined analytically@11#.

In this paper, we are interested in the structure of
external perimeter~‘‘hull’’ ! of the territory visited byN ran-
dom walkers moving~i! on a square lattice,~ii ! on a perco-
lation cluster at criticality, and~iii ! on a square lattice where
at every instant of time, a certain fraction of walkers dies a
is removed from the lattice, while simultaneously the sa
number of walkers is added randomly at the positions of
remaining walkers. For all these cases, the territorySN(t)
cannot be simply reduced to the productNS1(t) for popula-
tions whenN is large. Here,S1(t) is the territory visited by a
single random walker@12–16#. For illustrations of the hull
for the three cases; see Fig. 1.

It has been argued by Mandelbrot@17# that the hull of the
territory of a single random walker moving on a homog
neous 2d substrate is self-similar and described by a frac
dimensiondH54/3, which agrees with the fractal dimensio
of self-avoiding walks ind52. Here we find that for long
enough times, this value also describes the hull for the ca
1063-651X/2004/69~3!/031101~4!/$22.50 69 0311
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considered here. In~i! and~ii ! the convergence ofdH to 4/3
is quite fast, also for large populations, while in~iii ! the
asymptotic value can only be reached numerically when
fraction betweenN anda is quite small.

II. MODELS FOR SPREADING PHENOMENA

We have considered three models for the spreading p
nomena in 2d substrates. In each model,N random walkers
start from the same origin. In the first model, the walke
then move independently on a square lattice. In this ca
SN(t) can be calculated analytically for large values ofN @7#,
with the result

SN~ t !;5
t2, t!tx

t ln
N

ln t
, tx!t!tx8

Nt

ln t
, t@tx8 .

~1!

The crossover timestx and tx8 scale withN as tx; ln N, and
tx8;eN. Accordingly, even for small values ofN, the
‘‘trivial’’ third regime where the territory increases linearl
with N does not occur within a reasonable number of tim
steps. Hence, apart from the very short initial regime, o
regime II is relevant.

In the second model,N random walkers move on a pe
colating cluster at criticality. Now, abovetx5 ln N, SN(t)
scales as@8,9#

SN~ t !;@ ln~N!# (ds/2)(dw
l

21)tds/2, t@tx , ~2!

wheredw
l 5dw /dmin is the anomalous diffusion exponent

topological space,dw is the fractal dimension of a random
walk, dmin is the fractal dimension of the shortest path, a
©2004 The American Physical Society01-1
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ds is the spectral dimension. For a detailed discussion
these quantities see Ref.@18#. A third regime, whereSN(t)
;N, does not appear here.

In the third model,N random walkers move on a squa
lattice. At every time step,aN walkers die and are remove
from the lattice. Simultaneously the same number of walk
is added randomly at the positions of the remaining walk
@10,11#. The fact that walkers can die everywhere but can
born only at the present locations of already existing wa
ers, changes the dynamics of the population drastically:
mean square distance between the random walkers incre
as @11#

R2
2~ t !5r0

2F12expS 2
t

t0
D G , ~3!

reachingr0[A4dDt0 for t@t0[(N21)/2a, where D is
the diffusion constant. WhileR2 remains constant fort
@t0, the center of mass of theN particles diffuses as@11#

Rcm
2 ~ t !5

r0
2

2

t

t0
. ~4!

Thus, after an initial spreading period (t,t0), where the
center of mass moves as in the case ofN independent par-
ticles, the particles cluster around their center of mass wi
a ball of radiusr0 and diffuse as a whole. There is no an
lytic treatment of the territory visited by the random walke

III. RESULTS

In the numerical simulations,N particles are initially
placed at the center of a large square lattice, on the same
Multiple occupancy of a site is allowed and there is no
teraction between the particles. Periodic boundary conditi
are used, although in all calculations the lattice size w
large enough in order to exclude finite size effects. Af
placing the particles at the center of the substrate, we m
them by implementing a regular random walk. A particle
chosen at random and chooses with equal probability on
its nearest neighboring sites. If the site belongs to the s
strate, the particle moves to that site. Otherwise, it remain
the same position. In any case, time is increased by 1N.
Accordingly, one Monte Carlo step consists ofN attempts to
move the particles. We are interested in the way the struc
of the forefront of the ‘‘epidemics’’ changes with time. T

FIG. 1. The forefront of the territory covered byN5320 ran-
dom walkers~a! on a regular square lattice aftert5105 Monte
Carlo ~MC! steps,~b! on a two dimensional percolating cluster
criticality after 107 MC steps, and~c! for the migration model, with
a50.001 andt523105 MC steps.
03110
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this end, we continuously monitor the sites which constit
the external perimeter of the visited territory, and we me
sure its fractal dimensiondH as a function of time, by using
the following box counting technique@19,20#. For a given
time, the lattice is successively binned in square boxes
different linear sizel, ranging froml 54 to l 51000 and we
cover the entire lattice with such boxes. We count the nu
ber of boxesM ( l ) of linear sizel which include at least one
perimeter site. In practice, a box is considered to include p
of the perimeter if it includes parts of both the territory co
ered and the unvisited area. At a given timet, M ( l ) scales
with l as

M ~ l !; l dH. ~5!

Accordingly, when lnM is plotted versus lnl, a straight line
is expected with slopedH .

FIG. 2. ~a! For the case ofN particles performing random walk
on a regular square lattice of size 700037000, we showM ( l ), the
number of boxes of sizel that contain at least a part of the visite
area forefront, vsl. HereN580 and results are averaged over 1
realizations. From bottom to topt58.23103, 3.323104, 1.09
3105, 3.423105, 106, and 23106 Monte Carlo steps.~b! The
fractal dimension of the perimeter of the sampled area versus t
for N51 ~crosses, 1000 realizations! andN580 ~circles, 100 real-
izations!. The asymptotic value is consistent with 4/3.
1-2



n

r
th
i

n
-

W

l i

s in

of

arly
n

to

.

e-

e

ctal
is

.
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A. N random walkers on a square lattice

Figure 2~a! shows, in a double logarithmic presentatio
the number of boxes of lengthl, M ( l ), as a function ofl, for
t in the range between 103 and 107 Monte Carlo steps. Fo
large l values all curves are straight lines. The slopes of
lines represent the fractal dimension of the hull, which
then shown in Fig. 2~b!. We see thatdH gradually increases
with time, from the value 1.25 att.103 towards 4/3 att
.105. This value fordH is identical to the fractal dimensio
of a self-avoiding walk~SAW!. It has already been conjec
tured by Mandelbrot@17# that the hull of the territory cov-
ered by a single random walk has the structure of the SA
It is interesting that even though we are well belowtx8 ,
where the territorySN(t) is composed of the territoriesS1(t)
of single random walkers, the fractal dimension of the hul
equal to 4/3. Concerning the speed of convergence todH
54/3, it is obvious from Fig. 2~b! that it is faster for the case
of many particles than in the case of a single particle.

FIG. 3. ~a! M ( l ) vs l for the case ofN580 particles moving on
a percolation cluster embedded on a 300033000 square lattice
From bottom to top:t58.23103, 3.323104, 1.093105, 3.42
3105, 106,and 3.23106,Monte Carlo steps.~b! The fractal dimen-
sion dH vs time, forN51 ~crosses!, N580 ~circles!, N5320 ~dia-
monds!, andN51280~squares!. Results are averaged over 100 r
alizations.~For N51, 1500 realizations were used!.
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B. N random walkers on a percolation cluster

Next we discuss the hull of the epidemics that spread
the fractal percolating cluster at criticality. Figure 3~a! shows
M ( l ) versusl for several different times. From the slopes
the lines we can deducedH . Figure 3~b! shows that already
after 33104 time steps the asymptotic value ofdH54/3 is
approached, as in the regular lattice case. This result cle
differs from the fractal dimension of a SAW on percolatio
cluster at criticality, which isdF

SAW.1.27@21,22#. The fractal
dimension of the hull of the percolation cluster was found
be dH51.75 @23,24#, but using a slightly different definition

FIG. 4. ~a! M ( l ) vs l for the migration model on a square lattic
of size 700037000. HereN51000 anda50.01. The symbols cor-
respond to the rescaled simulation data~in arbitrary units!, while
the continuous lines are the best fits. From bottom to top:t58.2
3103, 3.323104, 1.093105, 3.423105, 106, 3.23106, and 9.8
3106 Monte Carlo steps. The slopes of these lines give the fra
dimensiondH of the external perimeter, whose time evolution
depicted in Fig. 5.~b! N51000 anda50.1. ~c! N510 and a
50.5. ~d! N58 anda50.5.

FIG. 5. Time evolution ofdH for the four cases presented in Fig
4. From bottom to top we have data forN51000 anda50.01,N
51000 anda50.1, N510 anda50.5, andN58 anda50.5.
1-3
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of the hull and regarding next nearest neighbors of the
rimeter as connected, Grossmann and Aharony founddF

(Hull )

to bedF
(Hull ).4/3 @18,19,25,26#. Thus, the fractal dimension

of the hull of the epidemics is the same as the fractal dim
sion of the external perimeter of the percolation cluster. F
thermore, it turns out from Fig. 3~b! that the bigger the value
of N the faster the conversion to the 4/3 value.

C. Migration model

Figure 4 shows, in a double logarithmic presentation,
number of boxes of lengthl, M ( l ), as a function ofl, for t
values between 103 and 107 time steps. Each panel corre
sponds to a different value ofN/a. From the slopes we ob
tain the values of the fractal dimension of the hull, which a
shown in Fig. 5.

For a50.5 andN58 and 10 the fractal dimension of th
hull converges, relatively fast, todH54/3. In this case,t0
s

H.

y,

o
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5(N21)/2a is quite small, and the asymptotic regime whe
a ‘‘ball’’ of size r0 diffuses can be seen numerically. Clear
the structure generated is the territory of a single rand
walker that moves slowly on a lattice with spacingr0.
Hence, for sufficiently large times we expectdH54/3. This
argument also holds for arbitraryN and a values, but for
r0@1, the asymptotic regime cannot be observed within
reasonable number of time steps. In these cases the hu
still a self-similar object, but the fractal dimension can
well below 4/3: dH.1.18 ~for N51000 anda50.01! and
dH.1.22 ~for N51000, anda50.1!, for t between 105 and
107 Monte Carlo steps.
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