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Fractal kinetics in drug release from finite fractal matrices

Kosmas Kosmidis and Panos Argyrakis
Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece

Panos Macheras
School of Pharmacy, University of Athens, 15771 Athens, Greece

(Received 2 June 2003; accepted 3 July 2003

We have re-examined the random release of particles from fractal polymer matrices using Monte
Carlo simulations, a problem originally studied by Bureteal.[J. Chem. Phys83, 5909(1985].

A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries
of the structure they are removed from the system. We find that the number of particles that escape
from the matrix as a function of time can be approximated by a Weilstiétched exponential
function, similar to the case of release from Euclidean matrices. The earlier result that fractal release
rates are described by power laws is correct only at the initial stage of the release, but it has to be
modified if one is to describe in one picture the entire process for a finite system. These results
pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery syster@®03©
American Institute of Physics[DOI: 10.1063/1.1603731

INTRODUCTION matrices'? This last interesting possibility was first studied

by Bundeet al® and is also the subject of the present study.
The problem of particle release from a matas many  Of course, in realistic situations for controlled release formu-

applications in several areas, including pharmaceutics, pafations, it is expected that the above mechanisms coexist si-

ticularly for the drug release from delivery systems. The bamultaneously. This fact usually complicates the analysis of

sic question posed here is how do the drug molecules escag&perimental data. In such cases Monte Carlo simulations

from a tablet or capsule that is taken orally and how are theynay be particularly useful.

delivered to the gastrointestinéBl) tract. It is well known In spite of the complexity of the phenomena involved in

that the release mechanism is dependent on the device usgflyg release mechanisms, the mathematical expressions used

and thus there is no single answer to the question posed helif. pharmaceutics to describe the kinetics of drug release

For immediate release formulations the entire quantity Oﬁ:rom a |arge Variety of devices are rather Simp'e’ and they
solid drug particles becomes available for dissolution in thecan be summarized briefly in three basic laws:

Gl fluids upon disintegration of the device. On the other
hand, for controlled release formulations, meaning a con(d
trolled release rate of drug over a time period, there are sev-
eral mechanisms that can be envisafjéatcording to the
simplest mechanism the release device is gradually dissolved
inside the Gl tract and the drug molecules follow the same
pattern. This is a simplified description of the model that
describes release from swellable polymer devices known in
the literature as case Il release, a model that has been
studied=® by several groups, and recently by fisr the case

of cylindrical devices with both axial and radial release. A(b)
second mechanism for the escape of drug molecules from the
release device is through Fickian diffusion before the device
is dissolved. For detailed studies of this model, see, for ex-
ample, Refs. 8-10, and references included therein. This
model has also been studied by means of Monte Carlo
simulationst** A third possibility is that the release devise,

as it is immersed in the GI tract fluids, it is penetrated by
these fluids, creating areas of high diffusivity. Thus, the dru
molecules can escape from the release device through diff ©)
sion from these high diffusivity “channels.” Now, the domi-
nant release mechanism is diffusion, but in a complex disor-
dered medium. The same is true when the polymer inside the
release device is assuming a configuration resembling a dis-
ordered medium. This is a model proposed for HPMC
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The Higuchi law?

M=A{D(2c,—Cy)t, (D)
whereM, is the cumulative amount of drug released at
time t, A is the surface area of the controlled release
device exposed to the release mediubnis the drug
diffusivity, and c, and cg are the initial drug concen-
tration and the drug solubility, respectively. This law is
valid for systems where the drug concentration is much
higher than the drug solubility.

The Peppas equation or the so-called power’&,

M
M
whereM,; andM, are the amounts of drug released at
timest and infinity, respectivelyk is an experimentally
determined parameter, andis an exponent that de-
pends on the geometry of the boundary of the system
which can be related to the drug release mechanisms.
The Weibull model?

kt", 2

M
M—x=1—exr(—atb), (3

wherea, b are constants. This model has the form of a
stretched exponential and it is sporadically used in drug
release studies in spite of its extensive empirical use in
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boundary but just from a portion of the boundary of the
release device under different interactions between the par-
ticles that are present.

The release problem can be seen as a study of the kinetic
reaction A+tB—B, where the A particles are mobile, the B
particles are static, and the scheme describes the well known
trapping problent® For the case of a Euclidean matrix the
entire boundaryi.e., the peripheryis made of the trap sites,
while for the present case of a fractal matrix only the por-
tions of the boundary that are part of the fractal cluster con-
stitute the trap sites. See Fig. 1 for a schematic. The differ-
ence between the release problem and the general trapping
problem is that in release, the traps are not randomly distrib-
uted inside the medium but are located only at the medium
boundaries. This difference has an important impact in real

FIG. 1. A percolation fractal embedded on a two-dimensional square Iatticeproblems for two reasons:
of size 50x50. Cyclic boundary conditions were used. We observe, espe- ) ) ) ) )
cially on the boundaries, that there are some small isolated clusters, bifl) Segregation is known to play an important role in diffu-

these are not isolated as they are actually part of the largest cluster because sjon in disordered media. In the release problem the
of the cyc_lic boundary conditions. Exifselease sitgsare marked with dark traps are “segregated“ from the beginning, so we expect
color, while all gray color areas are blocked areas. . ; .
to observe important effects related to this segregation.

(2) The problem is inherently a finite size problem. Results
that otherwise would be considered as “finite size ef-
fects” and should be neglected are in this case essential.
At the limit of infinite volume there will be no release at
all. Bundeet al’ found a power-law also for the case of
trapping in a model with a trap in the middle of the
system, i.e., a classical trapping problem. In such case,
which is different from the model examined here, it is
meaningful to talk about finite size effects. On the con-
trary, release from the surface of an infinite medium is
impossible.

dissolution studies. It was recently used by ts de-
scribe release results from Monte Carlo simulations
with higher accuracy than any of the other semiempir-
ical models.

An interesting problem comes up when the geometry of
the release device is not a homogeneous, Euclidean space,
but some irregular space, as, for example, a fractal. Several
diffusion properties have to be modified when we move from
Euclidean space to fractal and disordered media. The prob-

lem O.f the re!ease rate from 96\”063 W'th _fractal 9eOMetYre fractal kinetics treatment of the release problem goes as
was first studied by Bundet al.” They specifically reported ¢ 115\vs: The number of particles present in the syste®s-
that the release rate follows a power law. An attempt 10 €X3e) at timet is N. We expect that the particle escape rate will

fplaln d gxpe_rlmﬁptal Irﬁsultshusmg the abgve hresult can bBe proportional to the fractiohof particles that are able to
ound in Rinakiet al.™ In the present study, however, we reach an exit in a time intervalt, i.e., the number of par-

show that the above approach of a power law is valid only Micles that are sufficiently close to an exit. Initially all mol-

the initi_al stages .Of the release ProCess. Our results. show th@?:ules are homogeneously distributed over the percolation
the Weibull function is more appropriate for the entire dura’cluster. Later, due to the fractal geometry of the release sys-

tion of the release, and additionally it can describe releasgem segregation effects will become import4htie expect
both from fractal as well as from Euclidean matrices, thuschatf will be a function of time, so that(t) will b.e used to

providing a more generalized picture. Furthermore, this funcdescribe the effects of segregaticgeneration of depletion

tional form for the release is consistent with the theoreticanne$ which is known to play an important role when the
predictions under the frame of fractal kinetics. medium is disordered instead of homogentus
We thus expect a differential equation of the form,

THEORY OF THE RELEASE PROBLEM

Our main goal is to study the escape of particles from a d_N: —af(t)N 4
release device of fractal geometry. As such structure we use dt
a percolation cluster at the critical point, assuming cyclic
boundary conditions, embedded on a two-dimensional squate hold, wherex is a proportionality constant(t)N denotes
lattice, as shown schematically in Fig. 1. The concentratiorihe number of particles that are able to reach an exit in a time
of open sites is known to be approximately aroupd interval dt, and the negative sign denotes tih\atlecreases
=0.593. Particles are randomly placed with a given concenwith time. This is a kinetic equation for an+AB—B reac-
tration on the open sites only, and they perform independeriton. We have absorbed the constant trap concentrfdim
random walks on the sites of the cluster. Our intent is tathe proportionality constant. The basic assumption of frac-
derive the details of the release problem, which can be usewl kineticd® is thatf(t) has a formf(t)~t~™.
to describe release when particles escape not from the entire In this case Eq(4) will be
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dN N dN . 5
C T R ®
Integrating both sides we find that l=—at’+c, whereb
=1-—m and the above is written also as

N=Ngexp — at?), (6)

where we have used the initial condition thhf(t=0)
= NO . i
The form of Eq.(6) is a stretched exponential. In cases ]
where a system can be considered as infi(file example,
release from percolation fractals from an arbitrary site lo-
cated at the middle of the volumhéhen the number of par-
ticles N inside the system is practically unchanged. Treating
N as constant in the right-hand side of E4) will lead to a
power law for the quantitg N/dt. Since most physical prob-
lems belong to this class it is widely believed that release — ey S——
rate from fractal matrices follows a power law. In the case of 100 1000 10000
release from the periphery and if we want to study the sys- Time (MCS)
tem until all particles have escaped, as it is often the case for
practical applications, then E) is of practical importance. FIG. 2. Plot of the release ratiQ(t)/dt vs time. Lattice size is 5050 and
The above reasoning shows that the stretched exponethe initial concentration of particles ts=0.50. Points are the results given
tial function Eq.(6), or Weibull function as it is known, may in Ref. 1, while the line is the result of the current simulation.

be considered as an approximate solution of the release prob-
lem. An alternative derivation of the Weibull function in dis- __. . o . :
microstep time is incremented. The increment is chosen to

solution studies has also been giVéiThe advantage of this . . N
L L . be 1N, whereN is the number of particles remaining in the
choice is that it is general enough to allow us to describe

. . %¥stem. This is a typical approach in Monte Carlo simula-
release from vessels of various shapes, in the presence . .
}lons, and is necessary because the number of particles con-

absence of different mteracfuons, by adjusting the valqes o) inuously decreases, and thus, the time (mite Monte Carlo
the parametera andb. We will use Monte Carlo simulation - . (unle_ .
step characterizing the system is the mean time required for
methods to calculate the values of the parameterand . .
. all N particles present to move one step. We monitor the
(mainly) the exponenb. : o :
number of particles that are present inside the matrix as a
function of time until a fixed number of particlg§0 par-
ticles) remains in the matrix. Unless otherwise mentioned,
_ L we average our results using different initial random configu-
Following the procedure proposed by Bureteal,” we  rations over 100 realizations. We monitor the release rate
consider partially encapsulated percolation fractals on @Q/dt by counting the number of particles that diffuse into
square lattice, for which the percolation thresidlds p.  the leak area in the time interval betweeandt+ 1. This

=0.593. The fractal dimension of the percolation fractal iSquantity is used to directly compare our results with those
known to be 91/48. Calculations were preformed as dederived by Bundeet al?

scribed below. For each run we generate a new fractal matrix

using the method of Hoshen and queln’raraa,ssum_n_g Y- RESULTS AND DISCUSSION

clic boundary conditions. We start with a known initial drug

concentrationc=0.5 and with randomly distributed drug Figure 2 shows simulation resultine) for the release of

molecules inside the fractal matrix. We assume here that thparticles from a fractal matrix with initial concentratian

drug molecules move inside the fractal matrix by the mecha=0.50, on a lattice of size 5050. The simulation stops

nism of diffusion. We also assume excluded volume interacwhen more than 90% of the particles have been released

tions between the particles, meaning that two molecules carfrom the matrix. We see that this takes about 20 000 MCS. In

not occupy the same site at the same time. The matrix cathe same figure we include the data by Burdel! (sym-

leak from the intersection of the percolation fractal with thebols) which cover the range 50—2000 MCS. Because of the

boundaries of the square box where it is embeddégl. 1). limited range examined in that study, the conclusion was
The diffusion process is simulated by selecting a particlaeached that the release ra®Q/dt is described by a power

at random and moving it to a randomly selected nearedaw, with an exponent value between 0.65 and 0.75. With the

neighbor site. If the new site is an empty site, then the movextended range examined here we see that this conclusion is

is allowed and the particle is moved to this new site. If thenot true, as in longer timedQ/dt deviates strongly from

014 §
dQ/dt

0014 ]

METHODS

new site is already occupied, the move is rejedsdce we
assume excluded volume interactipn particle is removed

linearity, as a result of the finiteness of the problem.
In Fig. 3 we plotN(t)/Ngy as a function of time for

from the lattice as soon as it migrates to a site lying withinseveral different lattice sizes. We fit the data with a Weibull

the leak area. After each particle movene Monte Carlo

function[Eg. (6)] where the parameter ranges from 0.05 to
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FIG. 3. Plot of the number of particlgsormalized remaining in the per-
colation fractal as a function of timefor lattice sizes 108100, 150<150, FIG. 4. Log—log plot of the functiok(t) [defined by Eq(8)] as a function

and 200<200. N(t) is the number of particles that remain in the lattice at of time. The data describe fractal release from a percolation fractal embed-
time t and Ny is the initial number of particles. Simulation results are rep- ded in square lattices of sizes 20000 and 206200 sites.

resented by points. The solid lines represent the results of nonlinear fitting

with a Weibull function.

aries. Note, however, that although the functional form de-

0.01 and the exponerit from 0.35 to 0.39. In all cases we scribing the release is the same in Euclidean and fractal ma-
have performed nonlinear curve fitting using the Levenberg-trices, the value of the exponebtis, of course, different
Marquardt algorithn® In a previous publicatiot we have  reflecting the slowing down of the diffusion process in a
shown that Eq.6) also holds in the case of release from disordered medium.
Euclidean matrices. In that case the value of expohemas In Fig. 4 we present an additional way to investigate the
found to beb~0.70. validity of the fractal kinetics assumption directly from Eq.

Bundeet al. report that “the nature of drug release dras- (4). Let us indicate af(t) the number of particles that are
tically depends on the dimension of the matrix and is differ-released from the matrix up to time Then, Q(t)=N,
ent depending on whether the matrix is a normal Euclidean- N(t), whereN, is the number of particles in the vessel at
space or a fractal material such as a polymer, correspondingme t=0. Using the above notation E@t) can be written as
to the fact that the basic laws of physics are quite different in

a fractal environment® This conclusion is accurate for infi- — =af(t)N(t)= 7
nite problems but has to be modified in case of problems dt
where the finite size is inherent. The present results reveal dQ/dt

that the same law describes release both from fractal as well k(t)=af(t)= W (8

as from Euclidean matrices. In the previous work the conclu-

sion was reached by monitoring the release rate up to 200@here we have defined a functidft) = «f (t). We can use
time steps. But in the fractal release casteie to the slowing Eq. (8) in order to check the basic assumption of fractal
down of the diffusion process in the disordered medium theinetics, i.e., thatf(t) can indeed be approximated by a
system was not monitored for sufficiently long times in orderpower law. We use the same Monte Carlo simulation data for
to reveal the complete nature of the release law. The releadé(t). We perform a linear interpolation of these data fol-
rate is given by the time derivative of E¢6). For early lowed by a numerical differentiation in order to calculate
stages of the release calculating the derivative of(Bgand  dQ/dt and plot the ratia Q/dt/N(t) as a function of time in
performing a Taylor series expansion of the exponential willlogarithmic scale. The results for 18000 and 20&200
result in a power law for the release rate, just as Bietdd! lattices are shown in Fig. 4. To a large extent it can be re-
have observed. In the present paper and in a previous publifarded as a straight line and this supports the idea that choos-
cation concerning Euclidean matri¢ksve demonstrate that ing f(t) as a power law is a good assumptfdn.

in all lattices the behavior can be approximated with a  Our results reconcile with the approach of Buredel?
Weibull function. If we oversimplify the release problem by if we consider the following: We assume that the pre-
treating it as a classical kinetics problem, we would expect @&xponential parameter of the Weibull function is decreas-
pure exponential function instead of a stretched-exponentiahg when the size of the lattice increases. The reason for this
(Weibull) function.[The classical kinetics solution is derived is explained in detail elsewhetébut we can also see di-
by solving Eq.(4) in case off (t)=1.] The stretched expo- rectly thatM;—0 as a—0 for an infinite lattice or for a
nential arises due to the segregation of the particles becausatice with no leak sites at all, independently of the value of
of the fractal geometry of the environment. Concerning theexponent. Suppose that we consider release from two frac-
release from Euclidean matri¢ésve have demonstrated that tal lattices of different size, say 50 and 100100, just as
the stretched exponential functional form arises due to thén the case of Fig. 4 of Bundet al! From what is stated
creation of a concentration gradient near the releasing boundbove, we expect that in both ca$éd) will be described by
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FIG. 5. Log-log plot ofdQ/dt vs time, whereQ(t)=Ny—N(t) and N(t)
=exp(-at’), a=0.04 and 0.02 an®=0.37 in both caseglines). Points
represent the data of Bundet al. (Ref. 1) for 50x50 and 10100
matrices.

Eq. (6). We expect that the: values will differ, but the value

Fractal kinetics in drug release 6377

(2) This behavior is similar to the release from a Euclidean
matrix, apparently pointing to a universal release law
given by the Weibull distribution. The difference be-
tween the two cases is only in the two prefactors.

(3) The power law[Eq. (2)] may be considered as an ap-
proximation of Eq.(6) for short times.

The above considerations substantiate the use of the
Weibull function as a more general form for drug release
studies. They may provide a valuable tool in decision making
in pharmaceutics and other related fields, when facing the
dilemma of whether one should invest in expensive micro or
nanotechnology in order to achieve controlled release and
importance of the trade off when decreasing the length of the
release devices.
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