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Fractal kinetics in drug release from finite fractal matrices
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We have re-examined the random release of particles from fractal polymer matrices using Monte
Carlo simulations, a problem originally studied by Bundeet al. @J. Chem. Phys.83, 5909~1985!#.
A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries
of the structure they are removed from the system. We find that the number of particles that escape
from the matrix as a function of time can be approximated by a Weibull~stretched exponential!
function, similar to the case of release from Euclidean matrices. The earlier result that fractal release
rates are described by power laws is correct only at the initial stage of the release, but it has to be
modified if one is to describe in one picture the entire process for a finite system. These results
pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems. ©2003
American Institute of Physics.@DOI: 10.1063/1.1603731#
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INTRODUCTION

The problem of particle release from a matrix1 has many
applications in several areas, including pharmaceutics,
ticularly for the drug release from delivery systems. The
sic question posed here is how do the drug molecules es
from a tablet or capsule that is taken orally and how are t
delivered to the gastrointestinal~GI! tract. It is well known
that the release mechanism is dependent on the device
and thus there is no single answer to the question posed
For immediate release formulations the entire quantity
solid drug particles becomes available for dissolution in
GI fluids upon disintegration of the device. On the oth
hand, for controlled release formulations, meaning a c
trolled release rate of drug over a time period, there are s
eral mechanisms that can be envisaged.2 According to the
simplest mechanism the release device is gradually disso
inside the GI tract and the drug molecules follow the sa
pattern. This is a simplified description of the model th
describes release from swellable polymer devices know
the literature as case II release, a model that has b
studied3–6 by several groups, and recently by us7 for the case
of cylindrical devices with both axial and radial release.
second mechanism for the escape of drug molecules from
release device is through Fickian diffusion before the dev
is dissolved. For detailed studies of this model, see, for
ample, Refs. 8–10, and references included therein. T
model has also been studied by means of Monte C
simulations.1,11 A third possibility is that the release devis
as it is immersed in the GI tract fluids, it is penetrated
these fluids, creating areas of high diffusivity. Thus, the d
molecules can escape from the release device through d
sion from these high diffusivity ‘‘channels.’’ Now, the dom
nant release mechanism is diffusion, but in a complex dis
dered medium. The same is true when the polymer inside
release device is assuming a configuration resembling a
ordered medium. This is a model proposed for HPM
6370021-9606/2003/119(12)/6373/5/$20.00
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matrices.12 This last interesting possibility was first studie
by Bundeet al.1 and is also the subject of the present stu
Of course, in realistic situations for controlled release form
lations, it is expected that the above mechanisms coexis
multaneously. This fact usually complicates the analysis
experimental data. In such cases Monte Carlo simulati
may be particularly useful.

In spite of the complexity of the phenomena involved
drug release mechanisms, the mathematical expressions
in pharmaceutics to describe the kinetics of drug rele
from a large variety of devices are rather simple, and th
can be summarized briefly in three basic laws:

~a! The Higuchi law,8

Mt5AAD~2co2cs!t, ~1!

whereMt is the cumulative amount of drug released
time t, A is the surface area of the controlled relea
device exposed to the release medium,D is the drug
diffusivity, and co and cs are the initial drug concen
tration and the drug solubility, respectively. This law
valid for systems where the drug concentration is mu
higher than the drug solubility.

~b! The Peppas equation or the so-called power law,9,10

Mt

M`
5ktn, ~2!

whereMt andM` are the amounts of drug released
timest and infinity, respectively.k is an experimentally
determined parameter, andn is an exponent that de
pends on the geometry of the boundary of the syst
which can be related to the drug release mechanism

~c! The Weibull model,13

Mt

M`
512exp~2atb!, ~3!

wherea, b are constants. This model has the form o
stretched exponential and it is sporadically used in d
release studies in spite of its extensive empirical use
3 © 2003 American Institute of Physics
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dissolution studies. It was recently used by us7 to de-
scribe release results from Monte Carlo simulatio
with higher accuracy than any of the other semiemp
ical models.

An interesting problem comes up when the geometry
the release device is not a homogeneous, Euclidean sp
but some irregular space, as, for example, a fractal. Sev
diffusion properties have to be modified when we move fr
Euclidean space to fractal and disordered media. The p
lem of the release rate from devices with fractal geome
was first studied by Bundeet al.1 They specifically reported
that the release rate follows a power law. An attempt to
plain experimental results using the above result can
found in Rinaki et al.14 In the present study, however, w
show that the above approach of a power law is valid only
the initial stages of the release process. Our results show
the Weibull function is more appropriate for the entire du
tion of the release, and additionally it can describe rele
both from fractal as well as from Euclidean matrices, th
providing a more generalized picture. Furthermore, this fu
tional form for the release is consistent with the theoreti
predictions under the frame of fractal kinetics.

THEORY OF THE RELEASE PROBLEM

Our main goal is to study the escape of particles from
release device of fractal geometry. As such structure we
a percolation cluster at the critical point, assuming cyc
boundary conditions, embedded on a two-dimensional sq
lattice, as shown schematically in Fig. 1. The concentrat
of open sites is known to be approximately aroundp
50.593. Particles are randomly placed with a given conc
tration on the open sites only, and they perform independ
random walks on the sites of the cluster. Our intent is
derive the details of the release problem, which can be u
to describe release when particles escape not from the e

FIG. 1. A percolation fractal embedded on a two-dimensional square la
of size 50350. Cyclic boundary conditions were used. We observe, es
cially on the boundaries, that there are some small isolated clusters
these are not isolated as they are actually part of the largest cluster be
of the cyclic boundary conditions. Exits~release sites! are marked with dark
color, while all gray color areas are blocked areas.
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boundary but just from a portion of the boundary of t
release device under different interactions between the
ticles that are present.

The release problem can be seen as a study of the kin
reaction A1B→B, where the A particles are mobile, the
particles are static, and the scheme describes the well kn
trapping problem.15 For the case of a Euclidean matrix th
entire boundary~i.e., the periphery! is made of the trap sites
while for the present case of a fractal matrix only the p
tions of the boundary that are part of the fractal cluster c
stitute the trap sites. See Fig. 1 for a schematic. The dif
ence between the release problem and the general trap
problem is that in release, the traps are not randomly dist
uted inside the medium but are located only at the med
boundaries. This difference has an important impact in r
problems for two reasons:

~1! Segregation is known to play an important role in diff
sion in disordered media. In the release problem
traps are ‘‘segregated’’ from the beginning, so we exp
to observe important effects related to this segregatio

~2! The problem is inherently a finite size problem. Resu
that otherwise would be considered as ‘‘finite size
fects’’ and should be neglected are in this case essen
At the limit of infinite volume there will be no release a
all. Bundeet al.1 found a power-law also for the case o
trapping in a model with a trap in the middle of th
system, i.e., a classical trapping problem. In such ca
which is different from the model examined here, it
meaningful to talk about finite size effects. On the co
trary, release from the surface of an infinite medium
impossible.

The fractal kinetics treatment of the release problem goe
follows: The number of particles present in the system~ves-
sel! at timet is N. We expect that the particle escape rate w
be proportional to the fractionf of particles that are able to
reach an exit in a time intervaldt, i.e., the number of par-
ticles that are sufficiently close to an exit. Initially all mo
ecules are homogeneously distributed over the percola
cluster. Later, due to the fractal geometry of the release
tem segregation effects will become important.16 We expect
that f will be a function of time, so thatf (t) will be used to
describe the effects of segregation~generation of depletion
zones! which is known to play an important role when th
medium is disordered instead of homogenous.16

We thus expect a differential equation of the form,

dN

dt
52a f~ t !N ~4!

to hold, wherea is a proportionality constant,f (t)N denotes
the number of particles that are able to reach an exit in a t
interval dt, and the negative sign denotes thatN decreases
with time. This is a kinetic equation for an A1B→B reac-
tion. We have absorbed the constant trap concentration@B# in
the proportionality constanta. The basic assumption of frac
tal kinetics16 is that f (t) has a formf (t);t2m.

In this case Eq.~4! will be

e
-
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dN

dt
52a

N

tm
,

dN

N
52at2mdt. ~5!

Integrating both sides we find that lnN52atb1c, whereb
512m and the above is written also as

N5N0 exp~2atb!, ~6!

where we have used the initial condition thatN(t50)
5N0 .

The form of Eq.~6! is a stretched exponential. In cas
where a system can be considered as infinite~for example,
release from percolation fractals from an arbitrary site
cated at the middle of the volume! then the number of par
ticles N inside the system is practically unchanged. Treat
N as constant in the right-hand side of Eq.~4! will lead to a
power law for the quantitydN/dt. Since most physical prob
lems belong to this class it is widely believed that relea
rate from fractal matrices follows a power law. In the case
release from the periphery and if we want to study the s
tem until all particles have escaped, as it is often the case
practical applications, then Eq.~6! is of practical importance

The above reasoning shows that the stretched expo
tial function Eq.~6!, or Weibull function as it is known, may
be considered as an approximate solution of the release p
lem. An alternative derivation of the Weibull function in dis
solution studies has also been given.17 The advantage of this
choice is that it is general enough to allow us to descr
release from vessels of various shapes, in the presenc
absence of different interactions, by adjusting the values
the parametersa andb. We will use Monte Carlo simulation
methods to calculate the values of the parametersa and
~mainly! the exponentb.

METHODS

Following the procedure proposed by Bundeet al.,1 we
consider partially encapsulated percolation fractals on
square lattice, for which the percolation threshold18 is pc

50.593. The fractal dimension of the percolation fractal
known to be 91/48. Calculations were preformed as
scribed below. For each run we generate a new fractal ma
using the method of Hoshen and Kopelman,19 assuming cy-
clic boundary conditions. We start with a known initial dru
concentrationc50.5 and with randomly distributed dru
molecules inside the fractal matrix. We assume here that
drug molecules move inside the fractal matrix by the mec
nism of diffusion. We also assume excluded volume inter
tions between the particles, meaning that two molecules c
not occupy the same site at the same time. The matrix
leak from the intersection of the percolation fractal with t
boundaries of the square box where it is embedded~Fig. 1!.

The diffusion process is simulated by selecting a part
at random and moving it to a randomly selected nea
neighbor site. If the new site is an empty site, then the m
is allowed and the particle is moved to this new site. If t
new site is already occupied, the move is rejected~since we
assume excluded volume interactions!. A particle is removed
from the lattice as soon as it migrates to a site lying with
the leak area. After each particle move~one Monte Carlo
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microstep! time is incremented. The increment is chosen
be 1/N, whereN is the number of particles remaining in th
system. This is a typical approach in Monte Carlo simu
tions, and is necessary because the number of particles
tinuously decreases, and thus, the time unit~one Monte Carlo
step! characterizing the system is the mean time required
all N particles present to move one step. We monitor
number of particles that are present inside the matrix a
function of time until a fixed number of particles~50 par-
ticles! remains in the matrix. Unless otherwise mentione
we average our results using different initial random config
rations over 100 realizations. We monitor the release r
dQ/dt by counting the number of particles that diffuse in
the leak area in the time interval betweent and t11. This
quantity is used to directly compare our results with tho
derived by Bundeet al.1

RESULTS AND DISCUSSION

Figure 2 shows simulation results~line! for the release of
particles from a fractal matrix with initial concentrationc
50.50, on a lattice of size 50350. The simulation stops
when more than 90% of the particles have been relea
from the matrix. We see that this takes about 20 000 MCS
the same figure we include the data by Bundeet al.1 ~sym-
bols! which cover the range 50–2000 MCS. Because of
limited range examined in that study, the conclusion w
reached1 that the release ratedQ/dt is described by a powe
law, with an exponent value between 0.65 and 0.75. With
extended range examined here we see that this conclusi
not true, as in longer timesdQ/dt deviates strongly from
linearity, as a result of the finiteness of the problem.

In Fig. 3 we plot N(t)/N0 as a function of time for
several different lattice sizes. We fit the data with a Weib
function @Eq. ~6!# where the parametera ranges from 0.05 to

FIG. 2. Plot of the release ratedQ(t)/dt vs time. Lattice size is 50350 and
the initial concentration of particles isc50.50. Points are the results give
in Ref. 1, while the line is the result of the current simulation.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e
rg

m

s-
er
ea
di
t i
-
m
ve
w
lu
0

th
e
a

i

ub
t

a
y

ct
t
d
-
au
th
t
th

un

e-
ma-

a

he
q.
e

at

tal
a
for
l-
te

re-
oos-

e-
-
this
-

of
ac-

at
p-
ttin

bed-
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0.01 and the exponentb from 0.35 to 0.39. In all cases w
have performed nonlinear curve fitting using the Levenbe
Marquardt algorithm.20 In a previous publication11 we have
shown that Eq.~6! also holds in the case of release fro
Euclidean matrices. In that case the value of exponentb was
found to beb'0.70.

Bundeet al. report that ‘‘the nature of drug release dra
tically depends on the dimension of the matrix and is diff
ent depending on whether the matrix is a normal Euclid
space or a fractal material such as a polymer, correspon
to the fact that the basic laws of physics are quite differen
a fractal environment.’’1 This conclusion is accurate for infi
nite problems but has to be modified in case of proble
where the finite size is inherent. The present results re
that the same law describes release both from fractal as
as from Euclidean matrices. In the previous work the conc
sion was reached by monitoring the release rate up to 2
time steps. But in the fractal release case,1 due to the slowing
down of the diffusion process in the disordered medium
system was not monitored for sufficiently long times in ord
to reveal the complete nature of the release law. The rele
rate is given by the time derivative of Eq.~6!. For early
stages of the release calculating the derivative of Eq.~6! and
performing a Taylor series expansion of the exponential w
result in a power law for the release rate, just as Bundeet al.1

have observed. In the present paper and in a previous p
cation concerning Euclidean matrices11 we demonstrate tha
in all lattices the behavior can be approximated with
Weibull function. If we oversimplify the release problem b
treating it as a classical kinetics problem, we would expe
pure exponential function instead of a stretched-exponen
~Weibull! function.@The classical kinetics solution is derive
by solving Eq.~4! in case off (t)51.] The stretched expo
nential arises due to the segregation of the particles bec
of the fractal geometry of the environment. Concerning
release from Euclidean matrices11 we have demonstrated tha
the stretched exponential functional form arises due to
creation of a concentration gradient near the releasing bo

FIG. 3. Plot of the number of particles~normalized! remaining in the per-
colation fractal as a function of timet for lattice sizes 1003100, 1503150,
and 2003200. N(t) is the number of particles that remain in the lattice
time t andN0 is the initial number of particles. Simulation results are re
resented by points. The solid lines represent the results of nonlinear fi
with a Weibull function.
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aries. Note, however, that although the functional form d
scribing the release is the same in Euclidean and fractal
trices, the value of the exponentb is, of course, different
reflecting the slowing down of the diffusion process in
disordered medium.

In Fig. 4 we present an additional way to investigate t
validity of the fractal kinetics assumption directly from E
~4!. Let us indicate asQ(t) the number of particles that ar
released from the matrix up to timet. Then, Q(t)5N0

2N(t), whereN0 is the number of particles in the vessel
time t50. Using the above notation Eq.~4! can be written as

dQ

dt
5a f~ t !N~ t !⇒ ~7!

k~ t ![a f~ t !5
dQ/dt

N~ t !
, ~8!

where we have defined a functionk(t)5a f (t). We can use
Eq. ~8! in order to check the basic assumption of frac
kinetics, i.e., thatf (t) can indeed be approximated by
power law. We use the same Monte Carlo simulation data
N(t). We perform a linear interpolation of these data fo
lowed by a numerical differentiation in order to calcula
dQ/dt and plot the ratiodQ/dt/N(t) as a function of time in
logarithmic scale. The results for 1003100 and 2003200
lattices are shown in Fig. 4. To a large extent it can be
garded as a straight line and this supports the idea that ch
ing f (t) as a power law is a good assumption.21

Our results reconcile with the approach of Bundeet al.1

if we consider the following: We assume that the pr
exponential parametera of the Weibull function is decreas
ing when the size of the lattice increases. The reason for
is explained in detail elsewhere,11 but we can also see di
rectly that Mt→0 as a→0 for an infinite lattice or for a
lattice with no leak sites at all, independently of the value
exponentb. Suppose that we consider release from two fr
tal lattices of different size, say 50350 and 1003100, just as
in the case of Fig. 4 of Bundeet al.1 From what is stated
above, we expect that in both casesN(t) will be described by

g

FIG. 4. Log–log plot of the functionk(t) @defined by Eq.~8!# as a function
of time. The data describe fractal release from a percolation fractal em
ded in square lattices of sizes 1003100 and 2003200 sites.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6377J. Chem. Phys., Vol. 119, No. 12, 22 September 2003 Fractal kinetics in drug release
Eq. ~6!. We expect that thea values will differ, but the value
of b will be approximately the same in both cases, of t
order of b50.37. We use the data of Bundeet al.1 and fit
them to the functiondQ/dt ~which is equal to2dN/dt)
calculated using Eq.~6!, and consideringa to be an adjust-
able parameter. From the fit we find thata50.04 for the
503500 anda50.02 for the 1003100 lattice. In Fig. 5 we
include the data of Bundeet al.1 as points, and the quantit
dQ/dt using the above parameter values. We observe
dQ/dt follows a power law for the time ranget
550– 2000 MCS and that the exponents of the power law
within the range 0.65–0.75, exactly as in Bundeet al.1 This
is due to the fact that both results come from the deriva
of a Weibull function with the same exponent but differe
pre-exponential terms.

CONCLUSIONS

We have described a model for drug release from a fr
tal matrix as a result of a diffusion process assuming
cluded volume interactions between the drug molecules.
work showed that:

~1! Similarly to the case of release from Euclide
matrices11 release from a fractal matrix as a function
time is approximated by a Weibull~stretched exponen
tial! function, which is theoretically predicted using th
basic assumptions of fractal kinetics.16

FIG. 5. Log–log plot ofdQ/dt vs time, whereQ(t)5N02N(t) andN(t)
5exp(2atb), a50.04 and 0.02 andb50.37 in both cases~lines!. Points
represent the data of Bundeet al. ~Ref. 1! for 50350 and 1003100
matrices.
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~2! This behavior is similar to the release from a Euclide
matrix, apparently pointing to a universal release la
given by the Weibull distribution. The difference be
tween the two cases is only in the two prefactors.

~3! The power law@Eq. ~2!# may be considered as an a
proximation of Eq.~6! for short times.

The above considerations substantiate the use of
Weibull function as a more general form for drug relea
studies. They may provide a valuable tool in decision mak
in pharmaceutics and other related fields, when facing
dilemma of whether one should invest in expensive micro
nanotechnology in order to achieve controlled release
importance of the trade off when decreasing the length of
release devices.
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