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Abstract. The selfconsistent diagram approximation (SCDA) is generalized for three-dimensional lattice
gases with nearest neighbor repulsive interactions. The free energy is represented in a closed form through
elementary functions. Thermodynamical (phase diagrams, chemical potential and mean square fluctua-
tions), structural (order parameter, distribution functions) as well as diffusional characteristics are inves-
tigated. The calculation results are compared with the Monte Carlo simulation data to demonstrate high
precision of the SCDA in reproducing the equilibrium lattice gas characteristics. It is shown that simi-
larly to two-dimensional systems the specific statistical memory effects strongly influence the lattice gas
diffusion in the ordered states.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.60.-k Transport processes –
05.70.Ce Thermodynamic functions and equations of state

1 Introduction

Extensive applications of lattice models [1–7] for the de-
scription of a variety of physical systems and processes
make it topical to improve statistical-mechanical meth-
ods of their investigation. The approaches developed ear-
lier are characterized either insufficient precision (different
mean field approximations [8,9]) or require tedious calcu-
lations (series expansions [4,10]) and cannot be used for
most practical calculations. Although lattice models are
described by a discrete vector of states and the Marko-
vian master equation the strong interparticle interactions
being accounted of lead to their complex properties and
give rise to considerable difficulties well known in many
body theories.

Properties of lattice systems crucially depend on the
type of interparticle interactions. For example, attractive
interactions lead to first order phase transitions while or-
der – disorder phase transitions are ordinary observed for
repulsive interactions. Therefore, many approaches appro-
priate for the former cannot be used for the later or at least
must be considerably modified because the ordering in a
lattice system lowers its symmetry and requires to divide
the lattice into sublattices.

Recently [11] the selfconsistent diagram approxima-
tion (SCDA) was suggested and applied to lattice gases
with attractive nearest neighbor interactions [11,12]. It
was shown that SCDA well reproduces the thermody-
namic (chemical potential versus concentration, its con-
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centration derivative, phase transition curves) and struc-
tural (probabilities for a pair of lattice sites to be occupied
by particles or vacancies) properties for two- (2D) as well
as three-dimensional (3D) systems. Moreover, it was suc-
cessfully used for describing the diffusional properties of
lattice gases [12,13]. Here we generalize SCDA for nearest
neighbor repulsive interactions on 3D low packed (simple
cubic (SC) and body centered cubic (BCC)) lattices.

The paper is organized as follows. In the next section
the necessary definitions are introduced and the free en-
ergy is represented as a diagram expansion in renormal-
ized Mayer functions. Section 3 is devoted to evaluation
of the mean potentials that renormalize the Mayer func-
tions on the basis of the concept of minimal susceptibility.
In Section 4 statistical mechanical calculations are com-
pared with Monte Carlo simulation results. The last sec-
tion concludes.

2 The free energy and the order parameter

For lattice gases with repulsive interparticle interactions
at sufficiently low temperatures different ordered states
can exist. The sublattice decomposition of the lattice is
used for the analysis whether the system is in an ordered
or disordered state [14]. We consider the simplest case
when the lattice is represented by two sublattices (A and
B). Lattice gases with repulsive nearest neighbor (NN)
interactions on honeycomb, square, simple cubic and body
centered cubic lattices are examples of such systems. The
potential energy of the system of n particles on N lattice
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sites can be written as

U =
J

2

N∑
i=1

z∑
j=1

nα
i nβ

j , (1)

where z is the coordination number of the lattice, J > 0
is the interaction energy of particles occupying NN sites.
More distant interactions are not taken into account.
nα

i = 0 or 1 is the occupation number of lattice site i,
which belongs to sublattice α = A or B. In the canonical
ensemble the occupation numbers obey the normalization
conditions

nA =
N/2∑
i=1

nA
i , nB =

N/2∑
j=1

nB
j , nA + nB = n. (2)

Concentrations of particles cα = cα
1 = 2nα/N and va-

cancies cα
0 = 1− cα

1 on the sublattices as well as the mean
concentrations c = c1 = n/N and c0 = 1 − c over the
lattice can be introduced. The order parameter

ζ = (cA − cB)/2 (3)

is equal to zero in a disordered state and characterizes the
strength of the ordering of the ordered state.

The SCDA employs the reference system that in the
case under consideration is characterized by mean po-
tentials φβ

j (nα
i ) describing the interaction of a particle

(nα
i = 1) or vacancy (nα

i = 0) on site i of α-sublattice
with site j of β-sublattice. Its energy

Ur =
N∑

i=1

N∑
j=1

1∑
nα

i =0

ϕβ
j (nα

i ). (4)

The interaction of a site with itself is equal to zero
(ϕβ

j (nβ
j ) = 0). It is worth to note that although the near-

est neighbor interactions are only taken into account the
mean potentials can include more distant interactions. In
fact, they reflect correlations between different sites of the
system.

Equilibrium properties can be deduced from the par-
tition function

Q = Sp{n1,n2,...,nN}[exp(−βU)], (5)

where Sp{n1,n2,...,nN} designates summation over all pos-
sible combinations of the occupation numbers satisfying
the normalization condition equation (2), β = (kBT )−1

is inverse temperature, kB the Boltzmann constant. The
partition function can be rewritten [11] as

Q = Qr

〈
N∏

i=1

N∏
j=i+1

(1 + fαβ
ij )

〉
r

, (6)

where 〈...〉r means equilibrium averaging over states of the
reference system, Qr is the partition function of the latter
and renormalized Mayer functions

fαβ
ij = f(nα

i , nβ
j )

= exp
{
−β
[
Φijn

α
i nβ

j − ϕβ
j (nα

i ) − ϕα
i (nβ

j )
]}

− 1 (7)

are introduced. For nearest neighbor sites i and j the in-
teraction potential Φij = J . For more distant neighbors
Φij = 0.

Due to one-particle character of the reference system
energy [Eq. (4)] its partition function is factored as follows

Qr =

[
1∏

l=0

(
QA

l /(cl − (−1)lζ)
)cl−(−1)lζ

]N/2

×
[

1∏
l=0

(
QB

l /(cl + (−1)lζ)
)cl+(−1)lζ

]N/2

, (8)

where

Qnα
i

=
N∏

j=1

Xβ
j (nα

i ), Xβ
j (nα

i ) = exp
[
−βϕβ

j (nα
i )
]
. (9)

According to equation (6) the free energy per lattice
site is represented by two terms

F = −(kBT/N)lnQ = Fr + Fd, (10)

where Fr and Fd are the free energy of the reference system
and the diagram part of the free energy, respectively

Fr = −(kBT/N)lnQr, (11)

Fd = −(kBT/N)ln

〈
N∏

i=1

N∏
j=i+1

(
1 + fαβ

ij

)〉
r

· (12)

The latter can be written as a diagram expansion [11] in
the renormalized Mayer functions
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+ ..., (13)

where the edges correspond to the renormalized Mayer
functions, open and filled circles designate sites of sublat-
tices A and B, respectively. The diagonal edges connect
next nearest neighbor (NNN) sites.

The free energy can be considered as a function of
the sublattice concentrations. However, it is advisable to
consider it as a function of the lattice concentration c and
the order parameter ζ. The latter can be determined from
the extremity condition

∂F

∂ζ
= 0, (14)
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which is equivalent to the requirement that the chemical
potentials on both sublattices are equal

µA =
∂F

∂cA
1

, µB =
∂F

∂cB
1

, µA = µB = µ =
∂F

∂c
· (15)

If the assumption of structural similarity of the origi-
nal and reference systems (i.e., their order parameters are
equal) is accepted the extremity condition leads to the
equation for the order parameter

ζ2 − πA + πB

πA − πB
ζ + c(1 − c) = 0, (16)

where

πα =
∞∏

k=1

(ηα
k )zk , ηα

k = Xα
k (1)/Xα

k (0),

Xα
k (m) = Xk(nα

i = m) (17)

and it is taken into account that the mean potentials are
identical for all the pairs of lattice sites that are neighbors
of the same order k, zk is the coordination number of kth
coordination sphere. Thus, to calculate the free energy
and the order parameter we need to calculate the mean
potentials.

3 The mean potentials evaluation

Equation (6) is an identity and the partition function
does not depend on the mean potentials. However, the
mean potentials renormalize interparticle interactions and
if properly found reduce values of the renormalized Mayer
functions leading to better convergence of the free energy
expansion (i.e. its diagram contribution) in these func-
tions. To this end the self-consistency condition [11] can be
formulated on the basis of the minimal susceptibility prin-
ciple. One can consider a few first terms in the expansion
equation (12) and find mean potentials requiring the in-
dependence of the truncated free energy expression on the
mean potentials. It means that the partial derivatives of
the free energy over the mean potentials are equal to zero.
This approximation is justified in Section 4 by comparing
the calculation and Monte-Carlo simulation results for dif-
ferent thermodynamical and structural characteristics.

For the NN mean potentials (k = 1) the lowest first or-
der terms in the renormalized Mayer functions (that cor-
respond to the first line in Eq. (13)) are kept in equa-
tion (12). It leads to the expressions

Xα
1 (nα

i ) =
1∑

nβ
j =0

exp
(
−βJnα

i nβ
j

)
cβ
j

Xβ
1 (nβ

j )
, (18)

where α and β belong to different sublattices. The solution
of equation (18) can be written in a closed form

Xα
1 (nα

i )Xβ
1 (nβ

j ) = (ηα
1 )nα

i (ηβ
1 )nβ

j (cα
0 + cα

1 /ηα
1 ), (19)

ηα
1 = −cβ

1 − cα
0 − W (cα

0 − cβ
0 )

2cα
0

+

√√√√(cβ
1 − cα

0 − W (cα
0 − cβ

0 )
2cα

0

)2

+
cα
1

cα
0

W, (20)

W = exp(−βJ). (21)

For NN sites the products Xα
1 (m)Xβ

1 (l) are only necessary
to calculate the free energy. All these products can be
calculated making use of equations (19, 20).

Equations (18–21) are equivalent to the quasichemi-
cal approximation. If more distant interactions are taken
into account the mean potentials for arbitrary neighbors
can be calculated by the same equations where subscripts
1 at X and η are replaced by the coordination sphere
number k and the corresponding interaction constants
are used. It leads to the generalized quasichemical ap-
proximation. When concentrations on both sublattices are
equal these equations reduce to the form considered ear-
lier [11,12] for attractive interactions where no ordered
states exist.

The irreducible diagrams linear in the NNN renormal-
ized Mayer functions and containing up to four vertices
(the second, third and forth lines in Eq. (13)) are consid-
ered to calculate the mean potentials of the second neigh-
bors (k = 2). In this case both lattice sites belong to
the same sublattice (A or B). The calculations are rather
tedious although straightforward, and they lead to the fol-
lowing equations for the mean potentials

Xα
2 (m) = (ηα

2 )m
√

cα
0 Wαα

00 + cα
1 Wαα

01 /ηα
2 , (22)

ηα
2 = −cα

1 − cα
0

2cα
0

Wαα
01

Wαα
00

+

√(
cα
1 − cα

0

2cα
0

Wαα
01

Wαα
00

)2

+
cα
1

cα
0

Wαα
11

Wαα
00

, (23)

Wαα
lm = (λBαα

lm + 1)2 , (24)

Bαα
lm =

1∑
k=0

WlkWkmcβ
k

Xα
1 (l)Xα

1 (m)
(
Xβ

1 (k)
)2 − 1, (25)

Wkm = 1 + (W − 1)δ1kδ1m. (26)

δkm is the Kronecker’s δ-symbol. In equation (24) λ is a
parameter that indirectly takes into account contributions
of more complex diagrams. This is the consequence of the
assumption that the square diagram reasonably represents
statistical correlations in the system under consideration
because (Bαα

lm )2 corresponds to the square diagram. In
contrast to the system with attractive interactions [11,12]
the rescaling of the square diagram contribution should
account of the presence of long range order and is carried
out on the level of the reference system. In view of equa-
tion (22) it leads to an additional contribution to the NN
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mean potential ∆ϕ = −4kBT ln λ when the NNN mean
potentials are calculated.

It is worth to note that W in equation (21) is deter-
mined by direct interaction between NNs while Wαα

lm in
equation (24) is defined by quantities Bαα

lm (Eq. (25)) that
reflect indirect correlations between states of NNN sites
through common nearest neighbors. Thus, the NNN mean
potentials are not equal to zero although the direct inter-
action between NNNs is absent.

The NNN mean potentials defined by equa-
tions (22–26) allow one to sum the diagrams shown
in equation (13) and to represent the free energy as

F

kBT
=

1
2

(
B∑

α=A

1∑
m=0

cα
mlncα

m −
2∑

k=1

zk ln[Xα
k (0)Xβ

k (0)]

)

−
B∑

α=A

cα
1 ln πα + Λλ2

1∑
l,m=0

B∑
α=A

(Bαα
lm )2. (27)

The last term here is the square diagram contribu-
tion in agreement with the case of attractive interac-
tions [11,12]. The coefficient Λ = 3 or 6 for simple or body-
centered cubic lattices, respectively. Accordingly, the coef-
ficient λ = 1.24 or 1.47 is evaluated from the requirement
that the critical temperature is equal to its best estimate.

4 Calculation and simulation results
and discussion

4.1 Equilibrium properties

Equilibrium Monte Carlo (MC) simulations were carried
out in the grand canonical ensemble on simple and body
centered cubic lattices. A lattice site i is chosen at random.
The number zi of particles on the NN sites of site i, the en-
ergy difference ∆U = (−1)ni(Jzi −µ) and the probability
P = exp(−β∆U) are calculated. If site i is field (ni = 1)
or vacant (ni = 0) a trail is made to remove or insert the
particle. The trail is accepted when ∆U < 0. Otherwise a
random number 0 ≤ Pr ≤ 1 is generated and the trail is
accepted if P ≥ Pr. One Monte Carlo step (MCS) consists
of n trails.

At a given values of adimensional temperature kBT/J
and the chemical potential µ/J first 104 MCSs are used to
equilibrate the system. Then the number, square number
of particles and number of NN pairs of particles and va-
cancies after each MCS are recorded and averaged over 105

MCSs to provide with mean concentration, mean square
fluctuations, and the distribution functions of particles
and vacancies. In ordered states fluctuations are very week
and to preserve precision of simulations the square devia-
tion of number of particles from an integer number that is
close to the mean number of particles is used. The former
is calculated during 2 × 104 MCSs just after the equili-
bration period while the latter is determined by averaging
over full run. This square deviation is an integer and does
not suffer from the loss of precision when the difference

Fig. 1. Chemical potential versus concentration at several re-
duced temperatures for a lattice gas on SC (a) and BCC (b)
lattices. MC simulation (full circles) and SCDA (solid lines)
results are shown for T/Tc=0.8 (curves 1), 1.2 (2) and 2.0 (3).
The curves are shifted by 5 from each other in vertical direc-
tion. The unshifted curves are characterized by µ/J = 3 (SC
lattice) or 4 (BCC lattice) at c = 0.5 for all temperatures. The
inserts demonstrate the chemical potential behavior in the re-
gion of the ordered states in a bigger scale.

of close values is taken. In this way isotherms of different
characteristics are produced.

The chemical potential isotherms are shown in Fig-
ure 1. It is convenient to represent temperature t = T/Tc

in units of the critical temperature Tc, which is equal to
1.128J/kB and 1.588J/kB for simple and body centered
cubic lattices, respectively. At temperature below critical
(t = 0.8) in the region of the ordered phase a steep increase
of the chemical potential with concentration is observed.
It manifests that the concentration fluctuations are week
in this region〈

(n − n̄)2
〉
/n̄ = (χT )−1, χT = c∂(βµ)/∂c. (28)

χT is a thermodynamic factor, which plays an important
role in description of diffusion processes.

There are no visible peculiarities in the behavior of
the chemical potential in the vicinity of the order-disorder
phase transition. However, the concentration derivative of
the chemical potential (Fig. 2) has a brake indicating the
phase transition. Concentration fluctuations grow imme-
diately just after the transition from the disordered to
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Fig. 2. Thermodynamic factor versus concentration at
T/Tc=0.8 (curves 1), 1.2 (2), 2.0 (3), 6.0 (4) and for a non-
interacting (5) lattice gas on SC (a) and BCC (b) lattices. MC
simulation and SCDA results are shown by full circles (full
squares at T/Tc = 0.8) and solid lines, respectively.

ordered state and then decrease systematically until con-
centration 0.5 is reached when ideal ordering is possible.

The chemical potential and the thermodynamic factor
were calculated by differentiating the free energy equa-
tion (27). However, such a differentiation of the chemi-
cal potential extracted from MC simulations may not be
used because of computer time and precision limitations.
Thus, concentration mean square deviations were directly
obtained from MC simulations and then the thermody-
namic factor was calculated according to equation (28).
The calculation and simulation results are in a good agree-
ment except for the close vicinity of the second order
phase transition curve. MC simulations were performed
for the simulation box of 323 and 163 lattice sites. The
results were almost indistinguishable from each other in-
dicating that there are no size effects beginning from the
box of 163 lattice sites. However, the results become dif-
ferent in the vicinity of the second order phase transi-
tions. Again, the thermodynamic factor calculated as the
concentration derivative of the chemical potential, on one
hand, and as the inverse value of concentration fluctua-
tions, on the other hand, coincide with each other for most
states but the nearest vicinity of the second order phase

Fig. 3. Order parameter versus concentration at T/Tc=0.8 for
SC (a) and BCC (b) lattices. MC simulation and SCDA results
are shown by full circles and solid lines, respectively.

transition curve where better statistics as well as bigger
simulation boxes are required to get higher accuracy of
the simulation results.

In the systems under consideration χT > 1 that differs
from systems with attractive interactions [11,12] where at
low and intermediate concentrations the thermodynamic
factor is less than one up to twice critical temperature.
It means that the concentration fluctuations in systems
with attractive interactions are much stronger than for
repulsive interactions. However, in the phase transition
range the density fluctuations can be quite strong. Bigger
MC simulation boxes are required for their investigation
(see, e.g. Ref. [15]).

The most important structural characteristics of an
ordered state is the order parameter. The comparison of
calculated (Eq. (16)) and simulated results are shown in
Figure 3. The order parameter alongside with the con-
centration fluctuations are used for detecting the phase
transition curve by Monte Carlo simulation. Both meth-
ods lead to identical results that are shown in Figure 4.

The short range ordering is characterized by distri-
bution functions or probabilities F (l, m) for NN lattice
sites to be occupied by particles (l, m = 1) or vacancies
(l, m = 0). They are calculated by differentiating the free
energy over the interaction parameter

F (1, 1) =
2
z1

(
∂F

∂J

)
c,T

, (29)
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Fig. 4. The order-disorder phase transition curves for SC
(curve 1) and BCC (2) lattices.

F (0, 1) = c− F (1, 1), F (0, 0) = 1− 2c + F (1, 1). (30)

However, the correlation functions

g(m, l) = F (m, l)/cmcl, (31)

are more informative objects because they manifest the
deviation of the short range correlations in interacting sys-
tems from the case of noninteracting (Langmuir) lattice
gases. For the latter g(m, l) = 1 for all possible values of
m, l = 0 or 1. The symmetry conditions are that g(0, 0) at
concentration c is equal to g(1, 1) at concentration 1 − c
and g(1, 0) has the same values at c and 1 − c.

The correlation functions are shown in Figure 5. The
long range ordering reflects itself in a short range struc-
ture as well. At temperatures below critical (see curves 1
and 2 for T/Tc = 0.8) the probability to find two NN sites
occupied by particles becomes very low while for a particle
and a vacancy it is high in ordered states due to difference
in the mean particle concentrations on the sublattices. Of
course, the higher the temperature the less pronounced
difference from the Langmuir gas behavior is observed.

For simple and quite accurate calculations of the equi-
librium characteristics the diagram approximation [16]
can be used. It represents the chemical potential in an
analytical form with the accuracy that is only slightly less
precise as compared to SCDA.

4.2 Diffusion characteristics

The lattice gas diffusion has been the subject of consid-
erable attention during last decades. Although extensive
Monte-Carlo simulations were performed [14,17,18] the
deep understanding of the phenomenon can only be at-
tained on the basis of statistical mechanics. Intuitively,
the quasiequilibrium distribution function in presence of
the concentration gradient should give a ground basis for
evaluating the diffusion coefficients. This approach was
used in references [19–21] and the diffusion coefficient was
represented in terms of the average hopping rate of a par-
ticle [20,21]. In this line simple expressions for the lattice
gas diffusion coefficients were derived [22].

However, more careful statistical-mechanical consider-
ations based on the Markovian theory of the lattice gas
dynamics [23] and Zwanzig-Mori projection operator tech-
niques applied to the dynamical structure factor [24,25]

Fig. 5. Correlation functions versus concentration for SC (a)
and BCC (b) lattices. The particle-particle g(1, 1) > 1 and
vacancy-particle g(0, 1) < 1 correlation functions are shown
for T/Tc=0.8 (curves 1 and 2), 1.2 (3 and 4), 2.0 (5 and 6),
and 6.0 (7 and 8).

or concentration fluctuations [13,26] have shown that the
diffusion coefficient expression contains the instantaneous
contribution of the average hopping rate as well as the
term that represents specific statistical memory effects.
The latter are frequently associated with the correlation
between successive jumps of particles that strongly influ-
ence the tracer diffusion coefficient even in the case of
noninteracting lattice gases [27,28]. The contribution of
the correlation between jumps to the chemical (or collec-
tive) diffusion coefficient was already anticipated by Reed
and Ehrlich [20]. The direct Monte-Carlo simulations for a
model of oxygen adsorption layer on a wolfram surface [29]
and for an interacting lattice gas on a square lattice [13,26]
have demonstrated that the memory effects are important
in the ordered states, which appear as a result of the sec-
ond order phase transition at repulsive interparticle inter-
actions. These memory effects were included [30] by con-
sidering the dynamics of defects of the ordered states [14]
(vacancies in the filled sublattice or particles in the empty
one) that allow one to take into account correlations be-
tween the particles jumps. Below we analyze the situation
for 3D lattices.

Diffusion coefficients are simulated for the model of
traps [31] on a SC lattice according to the method de-
scribed in references [17,18]. n = cN particles are dis-
tributed over N lattice sites at random. Then, a site i is
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randomly selected. If filled, a NN destination site j is cho-
sen at random and, if j is vacant, a jump may occur with
probability

Pjump = exp[β(εi − 5J)], εi = Jsi, (32)

otherwise no jump occurs. Here εi is the interaction en-
ergy of a particle on site i with its si nearest neighbors.
The multiplier exp(−5βJ) ensures the probability Pjump

to be less than one. This rescales the time intervals that
is taken back into account when the diffusion coefficients
are evaluated by equation (33). One MCS represents the
consideration of n filled lattice sites. Before starting the
diffusion runs the equilibration of the system is performed
for 2000 MCS. The diffusion runs typically go up to 105

MCS. The lattice size was M=30. Simulations for smaller
(M = 10, 20) and larger lattices (up to M = 50) were
used exemplarily and it was shown that size effects are
negligible for M = 30 and larger, except, perhaps in the
vicinity of second order phase transitions.

The jump diffusion coefficient is calculated by the
Green-Kubo expression [1,3]

DJGK = D0 lim
τ→∞

exp(5βJ)
2τnd

〈(
n∑

i=1

∆ri

)2〉
,

D0 = (z1/2d)w0a
2, (33)

where ∆ri stands for the displacement of the ith particle
from its initial (at τ = 0) position and τ is the number of
MCSs. D0 is the diffusion coefficient at zero concentration,
w0 is the frequency of particle jumps in the low concen-
tration limit, a is the nearest neighbor distance, d = 3 the
space dimensionality.

Unlike Hamiltonian systems, where transport coeffi-
cients are represented by time correlation functions of the
corresponding fluxes, lattice gas dynamics is described by
irreversible master equation and static correlation func-
tions contribute significantly to lattice gas diffusion coef-
ficients [12,13,25].

When static correlations are only taken into account
(through the quasiequilibrium distribution function) in
the model of traps the chemical diffusion coefficient Dch

can be represented as [12,13,22]

Dch = χT DJ, (34)

DJ = D0 exp(βµ)(F (0, 0)/c), (35)

where DJ is the jump diffusion coefficient. The latter being
multiplied by the chemical potential gradient is equal to
the particle flux density. Of course, equation (34) is an
exact representation for the chemical diffusion coefficient
if DJ is considered as Onsager transport coefficient [32]
that includes memory contribution.

Equation (35) is an average jump rate approximation
that takes into account spatial correlations exactly. It can
be given a form

DJ = (z1/2d)a2w(c)F (1, 0)/c, (36)

w(c) = exp(βµ̃)g(0, 0)/g(0, 1), (37)

where µ̃ is the chemical potential excess of the noninteract-
ing gas value, w(c) is the concentration dependent average
rate of hopping attempts and F (1, 0)/c is the availability
factor, i.e. the probability for a particle to have an empty
nearest neighbor destination site. In accordance with the
last expression the chemical potential excess represents
the density and temperature dependent contribution of
interparticle interactions to the average activation energy
of particle jumps. However, the additional contribution
to w(c) comes from the short range correlation functions
that reflect peculiarities of a many-body interacting sys-
tem. It is evident from Figure 5 that the latter contribu-
tion becomes very important in the ordered states where
the correlation functions ratio entering equation (37) at-
tains rather low values. For noninteracting lattice gas all
the correlation functions are equal to one.

Equations (34) through (37) are derived within the
linear response approximation and contain equilibrium
characteristics (the chemical potential and distribution
functions). They can be applied for describing the
noneqilibrium diffusional processes at small gradients of
the chemical potential or concentration. It is difficult to
establish the limits of the applicability of these equations
by analytical means and experimental or computer simu-
lation results have to be invoked. At least, the first Fick’s
law must be valid with a reasonable accuracy. Other-
wise, the chemical diffusion coefficient as a quantity that
is independent on concentration gradient cannot be used
for characterizing the process of particles migration. For
describing strongly nonequilibrium states it is necessary
to average over the corresponding nonequilibrium distri-
bution and equations (35) can be used with nonequilib-
rium correlation functions and chemical potential as a
first approximation.

There exists a variety of experimental methods for
determining the diffusion coefficients in solid solutions,
solid electrolytes and intercalation compounds [3,33–35].
Electrochemical methods [5,35,36] are especially power-
ful because they provide with information about equilib-
rium as well as nonequilibrium characteristics, e.g. jump
and chemical diffusion coefficients can be separately mea-
sured. Lattice gas models are used for clarifying the trans-
port mechanisms and evaluating the microscopic interac-
tion parameters [5,36–39]. The mean field approximation
for the chemical diffusion coefficient is frequently consid-
ered [35,36] when in equation (34) the jump diffusion co-
efficient is put equal to its noninteracting lattice gas value
D0(1−c) and the thermodynamic factor takes into account
interactions in the simplest form χT = 1+ qc(1− c), q be-
ing the interaction constant. Although this approximation
provides with very simple expressions for the diffusion co-
efficients it can at most give a qualitative description of
the phenomenon [39].

For lattice gases with attractive interparticle interac-
tions the static contribution represents well the diffusion
coefficients at arbitrary values of thermodynamical vari-
ables [12,13]. On the other hand, it is shown above that
SCDA represents equilibrium lattice gas characteristics for
repulsive interactions with a high precision. Thus, it is
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Fig. 6. Jump diffusion coefficient for SC (a) and BCC (b)
lattices. Lines represent SCDA results at T/Tc=0.7 (curves 1),
0.8 (2), 1.11 (3), and 1.27 (4). NC simulation results are shown
by full circles (T/Tc=0.7), open circles (0.8), triangles (1.11),
and squares (1.27). No simulations were done for a BCC lattice.

possible to test whether in 3D lattice gases with repulsive
interactions memory effects are important.

Figure 6a demonstrates that equation (35) represents
well the jump diffusion coefficient for a SC lattice ev-
erywhere outside the region of the ordered states where
memory effects are important. Identical concentration de-
pendence of the diffusion coefficient for lattice gases on SC
and BCC lattices is evident from comparison of Figures 6a
and b. The diffusion coefficients isotherms for these two
lattices differ insignificantly when they are calculated at
the same reduced temperatures.

In the ordered states the decrease of the hopping rate
due to spatial correlations is only a part of the jump dif-
fusion coefficient decrease and not only the concentration
dynamics but also the evolution of the order parameter
has to be considered for proper evaluation of the diffu-
sion coefficient. The corresponding calculations that in-
volve dynamics of the defect structures mentioned above
for a simple cubic lattice were performed in reference [40].
The calculation results describe well the decrease of the
jump diffusion coefficient in the ordered phase as com-
pared to its value calculated in the quasiequilibrium ap-
proximation.

The chemical diffusion coefficient is calculated as the
product of the jump diffusion coefficient and the thermo-
dynamic factor (see Eq. (34)).

5 Conclusion

The free energy diagram expansion in terms of the renor-
malized Mayer functions for a lattice gas with long range
ordering is considered. The mean potentials renormalizing
the interparticle interaction potentials are selfconsistently
determined on the basis of the minimal susceptibility prin-
ciple. In the lowest (generalized quasichemical) approxi-
mation they make the two-vertices diagrams as well as
the diagrams that contain a vertex with the only outgo-
ing edge equal to zero. Thus, the generalized quasichemical
approximation is applicable for interparticle interactions
of an arbitrary range.

In the SCDA the mean potentials allow one to sum
the diagrams containing up to four vertices and repre-
sent them in terms of the lowest order irreducible square
diagram. In the assumption that the latter reasonably rep-
resents correlation properties of the lattice gas the equilib-
rium characteristics (the free energy, the chemical poten-
tial, the distribution functions, the order parameter, the
concentration mean square fluctuations, the phase transi-
tion curves) are expressed through a system of algebraic
equations that can be easily solved on a personal com-
puter. In contrast to the lattice gas with attractive NN
interactions the corrections for the square diagram contri-
bution have to be introduced on the level of the reference
system, which is described by the mean potentials.

Monte Carlo simulations were performed to justify the
assumptions used. It is shown that the equilibrium prop-
erties calculated on the basis of the SCDA coincide within
a few per cent with the MC simulation results for all ther-
modynamic states but the nearest vicinity of the second
order phase transition curves. All the quantities investi-
gated behaves similarly for SC and BCC lattices when
the reduced temperature scales are used.

The lattice gas diffusion coefficient is evaluated in the
assumption that the specific statistical memory effects can
be neglected while the spatial correlations are exactly ac-
counted for. The expression for the jump diffusion coeffi-
cient is represented by equilibrium quantities (the chem-
ical potential and the probability for two NN sites to be
vacant) and the diffusion coefficient in the low density
limit. By comparing with MC simulation results it is
shown that similarly to 2D lattice gases the memory ef-
fects are important in the ordered states.

We thank the University of Paderborn (Germany) Com-
puter Center for a computing grant to carry out part of
the calculations.
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