
Available online at www.sciencedirect.com

Physica A 317 (2003) 581–590
www.elsevier.com/locate/physa

Robustness in biological neural networks
Alkiviadis Kalampokisa, Christos Kotsavasilogloub,

Panos Argyrakisa ;∗, Stavros Baloyannisb
aDepartment of Physics, University of Thessaloniki, GR-54124 Thessaloniki, Greece

bDepartment of Neurology I, School of Medicine, University of Thessaloniki,
GR-54124 Thessaloniki, Greece

Received 19 January 2002; received in revised form 22 April 2002

Abstract

We present a computational model to study the robustness and degradation of dynamics on a
network that includes a large number of units and connections between them. Each unit has an
internal structure and it is connected to other units through contact points. These contact points
correspond to the synapses of the biological neural networks. We monitor the network activity
as a function of time, after we initiate an input signal at random in the network. We vary the
number of connections (as a function of several properties of each connection), and observe
that there exists a critical crossover value regarding the loss of connections below which all
network activity decreases at a much faster rate than the expected normal loss. This crossover
value is in the range of 70–80% loss. A similar critical value observed in biological neural
networks may de3ne the limit between the healthy state and the disease. Correlations between
the computational and the biological model are discussed.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

There has been considerable interest [1–4] recently in the properties of networks,
mainly due to the emergence of scaling laws that have been discovered in a very
large number of di:erent types of networks examined, such as the World Wide Web,
the Internet, the citation patterns in publications, the chemical network of a cell, and
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numerous other cases which range from the natural sciences, to social sciences, to
medicine, or other complex systems that are encountered in daily life. The novelty
brought by these studies is that many network characteristics, which seemed to be
random, are now found to obey deterministic equations by which one can predict such
important properties as the growth of the network, its robustness to external attacks,
and other properties of interest. Nevertheless, all previous work has been limited to
the geometrical (static) properties only, several of which are now well understood.
However, one would like to extend this knowledge to dynamic properties, such as, e.g.,
signal propagation on a network. This task is considerably more complicated, because
it involves the superposition of two stochastic but independent processes, namely, the
random connectivity of the network nodes (static property) and the random signal
di:usion (dynamic property). A model that addresses both of these characteristics,
namely, the internal structure and signal transfer between the elementary units could
possibly pertain to the biological neural networks.
Neural networks are made of elementary units (cells), the neurons, which are inter-

connected together in a complex pattern with a de3nite structure, resulting in a picture
that involves very rich dynamics, as it depends on a multitude of parameters. They
form the basis of the central nervous system (CNS). The points of physical contact
between the neurons are the so-called synapses. These are the equivalent of a connec-
tion between two nodes in a generalized network. It is through the synapses that the
electrical signals propagate through the networks. It is now well understood that it is
the collective character of the neural units together with their connectivities that make
all functions of the living organism possible. Isolated neurons or collections of neu-
rons without interconnecting synapses can perform no function at all. There are several
physical and chemical processes occurring at the synapses which determine indirectly
the functions of the network as a whole. Naturally, any degradation of the synapses, or
total destruction of them, will immediately reCect on the signal processing through the
neural network, and its robustness. But it is well known that such degradation and loss
routinely occur with advancing age in the CNS and the human brain. This loss occurs
without any manifestation of a disease. It is strongly believed that the rate of loss of
cells in this case is linear. However, in the presence of a disease there is a neuronal
loss with a much faster rate of cell destruction, e.g. exponential. In this regard there
exists experimental evidence [5], that normal aging is accompanied by a gradual loss
of neurons, whereas a very severe decrease appears in patients with a neural disease,
regardless of age.
Until now there is no clear relationship between the loss of neurons and the occur-

rence of the 3rst disease symptoms. In the case of the substantia nigra there are no
clinical signs until at least 50% of the nigral neurons are lost [6]. Similar 3ndings exist
for other cerebral regions. In order to improve our understanding of the early stages of
nervous system diseases, we believe that it is imperative to investigate the details of
such relationship, between the neuronal loss and the impairment of the nervous system
functions. In particular, a crucial question is, whether this relationship is linear in the
entire range or if there is some critical threshold, beyond which there is a characteristic
di:erence and a very fast degradation. This is important both from the theoretical point
regarding the function of neural networks, but additionally it will help to answer the
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question of what part (percentage) of the brain neural networks can be incapacitated
before total loss of functions will occur? Apparently, if we know this answer we will
be able to predict the details of how and when does the human brain degrade, di:er-
entiate the degradation in normal age from that in a disease, and will ultimately help
in the search for a cure.
There are many citations in the literature about such relationships, for di:erent parts

of the brain, with a variety of di:erent answers. However, they are all either qualitative
or the data have a very large dispersion. There is a total lack of a theoretical basis
for such relationship. The present paper attempts to shed some light in this direction
by utilizing a complex computational model recently developed [7]. We map the brain
function to a quantity called network activity, a (see below), and investigate this activity
as a function of the neural loss and other net parameters.
Since we know that the connectivity pattern between the neurons is very complicated,

it is reasonable to assume that this relationship is not simply linear. Two neurons can
be connected at several di:erent points via di:erent synapses. Thus, when a single
synapse is removed this does not necessarily preclude any connectivity between these
two neurons. Assuming that this is true we see that it is very important to treat the
individual neurons not as simple binary entities, but one is forced to take into account
their internal structure. This is exactly what we do in the present study. Each neuron
(cell) is made of a very large number of parts, as a real one is. We believe that if we
consider the neuron as one single unit, as practically all theoretical models until now
have done, that it is diGcult to address our basic question.

2. The model

We recently [7] introduced a computer simulation model of a neural network that is
based on a collection of dendritic structures, the so-called di:usion-limited aggregates
(DLA). These entities originated and are derived from solid-state physics [8], but nev-
ertheless, resemble very much the picture of the backbone of an actual brain neuron,
and this is why we adopt them. Fig. 1 contains one DLA simulated structure, and a
camera lucida [9] drawing of a Purkinje neuron. We can see that each unit possesses
a dendritic nature. The only related study until now utilizing similar structure is that
of Caserta et al. [10]. A collection of these units placed randomly in space at high
densities make up an entire neural network. Such a network is shown in Fig. 2. Thus,
each neuron is made of several thousands of building blocks placed according to the
DLA model on a lattice. At this stage no di:erentiation is made for the soma, axon,
etc., but all building blocks are treated equally. Because they are closely packed there
is a large overlap between them, especially on the branched dendrites. These overlaps
can be thought of being the synapses. In the model a synapse can be declared active
or inactive at will, and this is one of the external parameters that we control. Each
synapse is a one-way channel, meaning that the signal can be propagated only along
one of the two directions. In order for this to happen the value of the signal must be
greater than the synapse threshold, �. Thus, each synapse is assigned a � value. The
procedure of the signal transfer from one unit to the next is not instantaneous, but the
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Fig. 1. (a) A simple isolated DLA cluster, and (b) a camera lucida drawing of a typical Purkinje neuron.

Fig. 2. A collection of eight DLA clusters built on a 350× 350 lattice. The cluster mean size is 2200 sites.

transmission is delayed for a certain time, called the synaptic delay, SD, as it is well
known that the signal transfer in the synapse is of the order of 1000 times slower
than the transfer inside a neuron. After 3ring the synapse goes into a refractory period,
RP, during which the synapse cannot be active any more, but must necessarily remain
passive. All synapses are characterized as either excitatory or inhibitory. The fraction
of each (out of the total number of synapses) is fe and fi, respectively. The identity
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of each synapse is determined at random with a probability according to that fraction.
Generally, the excitatory (inhibitory) characterization describes the property that brings
closer (further away) the synapse signal value to the synapse threshold.
Our interest is focused on the details of signal transport throughout the network.

This process is dynamic in nature, and thus we de3ne the smallest increment of time
to be the actual time that it takes for the signal to transfer from one lattice point to
its nearest neighbor inside the same neuron. This time unit is arbitrary, typically in
computer simulations it is called one (1) Monte-Carlo Step (MCS). While it could be
related to actual time (e.g. ms) in a real system, at this stage we will not attempt to do
so. At any rate, this timing is the smallest time increment required for these processes,
and as such it is probably much smaller than the time it takes for a neuron to remodel
its structure. Originally, at time t = 0 some initial signal is randomly given to a small
subset of the neural network. This signal is allowed to travel throughout the system,
i.e. both inside the neurons and also, when reaching a synapse, to transfer to adjacent
neurons. This is done by “transferring” the signal to all of its nearest-neighbor sites,
and incrementing time by one time unit. Next, this step is repeated again and thus
again and time advances up to a certain limit.

3. Results

Initially, we investigate the connectivity properties of the generated structures. We
do this by using the parameter fs, which is the fraction of active synapses out of the
total number of sysnapses. Thus, here 0¡fs¡ 1:0, and it is treated as a parameter.
An fs = 1 value means that all synapses are active (allowed), while at the other limit
an fs = 0 value means that neurons are not connected at all, as no synapses exist.
Following Ref. [3], we de3ne as S the fraction of neurons that are contained in the
largest cluster formed. Thus, S = 1 when fs = 1. Additionally, when a large number
of the connections is cut-o:, then we see that we have the formation of small isolated
clusters (islands). We also de3ne here as 〈s〉 the average size of these isolated clusters.
We calculate these quantities for the entire fs range, and the results are shown in
Fig. 3. We see that S initially starts at 0, and pretty fast reaches a constant value
of 1, meaning that practically all units quite fast are part of the largest cluster. No
small clusters exist, but only in the very beginning. Complementary to this is the
behavior of 〈s〉 in the same 3gure. The peak observed in the mean size of the isolated
clusters indicates a critical point at about fs = 0:01 implying the existence of a point
below which the network loses its connectivity, while it is quite stable at fs values
greater than that of the critical point. We note here that this analysis is based only
on the spatial properties of the model and thus, this critical point reCects only static
characteristics of the network. No comparison can be made at this point between the
behavior of the model system and actual biological neural networks. These results are
in excellent (qualitative) agreement with the model of (Ref. [3], Fig. 3), even though
the networks are quite di:erent. Nevertheless, their connectivity properties are quite
the same. This point implies that the connectivity patterns are quite general for all
networks, regardless of their detailed structure.
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Fig. 3. Network fragmentation under random failures of neuron synapses. The relative size of the largest
cluster (S) and the mean size of the isolated clusters (〈s〉) are plotted as a function of the percentage of the
network synapses used (fs). Note that the 0 of the x-axis is on the right of the plot.

We next monitor the activity, a, of the entire network, which is de3ned as the
ratio of (active neurons/total number of neurons). An active neuron is one that carries
signal in any part of it. Thus, 0¡a¡ 1 at all times. We examine in detail the network
activity as a function of the fraction of active synapses, fs. We saw above the two
limiting cases of fs=0 and 1. Our interest now is in the intermediate range. We cover
the entire fs range in detail. The results are given in Figs. 4–6. In all three 3gures
we plot the network activity vs. fs, but varying di:erent parameters in each case. In
Fig. 4 we vary the refractory period, in Fig. 5 we vary the synaptic delay, while in
Fig. 6 we vary the fraction of excitatory synapses. In all these 3gures the behavior
is quite similar. Starting at the right of each diagram we see that initially there is a
linear decrease of a, up to a certain value which is around the value fs = 0:2–0.3.
Then, at this point starts a much sharper decrease of a, eventually leading down to
zero. This intersection point of the two linear segments constitutes a crossover, whose
value must be a critical value or critical threshold for such networks. Above and below
this crossover value the decrease is linear, but with very di:erent slopes in the two
regions. The crossover between the two regions is around the value fs = 0:2 or 0.3.
This result implies that a neural network could sustain destruction of its synapses up to
70% or 80% maximum, and still operate normally. After this point there is a crossover
leading to a degradation, and subsequently to zero activity. Note that this crossover
behavior characterizes the dynamics of the signal transfer and it is qualitatively and
quantitatively di:erent than the crossover behavior of S and 〈s〉 of Fig. 3, which was
characteristic of the geometry (static) of the clusters formed.
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Fig. 4. System activity a vs. the fraction of the synapses used, fs, for various values for the refractory
period RP = 300; 700; 1200. SD = 800, fe = 0:8. Mean neuron size 2200, lattice 800× 800.
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Fig. 5. System activity a vs. the fraction of the synapses used, fs, for various values for the synaptic delay.
SD = 200; 800; 1500. RP = 200, fe = 0:8.

In Fig. 7, we employ neurons of size 50 and 190 units, which are 10 and 40 times
smaller than the size (2200 units) used in the previous 3gures. We immediately observe
that we do not have the crossover breakdown at the critical value, as we did earlier,
but instead we have a rather smooth behavior. Thus, this is clear evidence that the
internal neuron structure plays a dominant role in the appearance of a breakdown of
the entire network, as it has been hypothesized before. Systems that use neurons as
single point elements cannot exhibit this behavior.
A direct comparison between this (or other) computational model and a biological

one it is not possible at this stage. This is because of the di:erences in the complexity of
each system and our limited knowledge about the functions of the synapse. However,
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Fig. 6. System activity a vs. the fraction of the synapses used, fs, for various values of the excitatory
synapses ratio, fe = 0:8; 0:4; 0:2. SD = 800, RP = 300.
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Fig. 7. Plot of network activity: a vs. the percentage of synapses used (fs). With squares: Mean neuron
size 190, Lattice 300× 300; distance between neurons 13 lattice sites, fe = 0:8, RP = 100, SD= 100. With
circles: mean neuron size 50, Lattice 100× 100; distance between neurons 5 lattice sites, fe = 0:8, RP = 5,
SD = 5.

there are interesting similarities that must be underlined. The critical point for the
appearance of the crossover behavior observed in the simulation may correspond to
the borderline between health and disease in the CNS. The concept of disease in the
CNS is unique because during the process of cell destruction the CNS reacts with
a continuous remodeling of the dendritic structure of the remaining neurons in order
to maintain its functionality (neuronal plasticity). Obviously, there is a critical point,
which di:erentiates the healthy state from that of disease. This crossover point is a
function of many factors, where the most important is the number of the remaining
functional cells and the number of synapses together with the overall metabolic capacity
of neurons for the synthesis of neurotransmitters. Other factors, such as the functionality
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of the blood supply system (arteriols and capillaries), etc., are very important, but these
almost always manifest themselves initially as a decrease of the metabolic functionality,
and then as neuronal loss.
A disease that has been extensively studied in the last decades is Alzheimer’s disease,

which is well known that results in a tremendous loss of neurons. Microscopically this
neuronal depletion is observed in the cerebral cortex, in the nucleus basalis of Meynert
and Locus Coeruleus [11]. It is found that the same loss occurs in the substantia nigra
of patients with Alzheimer disease, where the number of neurons was reduced in
the range 97–78% of the control values from the medial to the lateral substantia
nigra [12].
A typical example of neuronal depletion and the manifestation of a disease is the

substantia nigra and the Parkinson’s disease. It has been found that there is a loss
of 91% in the lateral ventral tier of the substantia nigra and 71% and 56% in the
medial ventral tier and dorsal tier, respectively [13]. The same authors suggest that
the onset of symptoms starts at around 68% of cells in the lateral ventral tier and
48% in the caudal nigra as a whole [13]. Other authors have reported a 76% decrease
of pigmented neurons in the entire substantia nigra in respect to control values [14].
All these studies point to the same conclusion: patients with neural diseases have well
above 1

2 of the constituent neurons destroyed. They are all experimental, over a wide
time period, referring to several di:erent brain sections, a wide variety of patients,
pointing to the same conclusion, as in the present study.
The model presented here has attempted to include most of the principal character-

istics of the CNS. This includes the geometrical structure of the elementary unit and
subsequently the geometrical distribution of the synapses, the presence of excitatory
and inhibitory synapses, the propagation time in the synapse, etc. One drawback of the
model at this stage is that it maintains its structure intact during the simulation time,
whereas we know well that there is a continuous remodeling of the dendritic neural
structure. But as mentioned earlier, our time domain is too short for such remodel-
ing to take place. Additionally, the synapses in this model were randomly created and
not as a consequence of dynamic interactions between neurons in response to partic-
ular stimuli, which is what happens in reality. Our main hypothesis is that the brain
exhibits a similar crossover behavior in its functions as the model, all depending upon
the structure of the neurons and their synapses. In other words, the brain has an inherent
resistance to the manifestation of diseases due to its geometrical structure.

4. Conclusions

Summarizing, we have presented a theoretical neural net model, and studied its
robustness as a function of the synapses present. The model itself is made of DLA
clusters that resemble neural cells, and as such it is only a zeroth-order approximation.
We 3nd that such systems undergo through two di:erent regimes when the number
of their synapses is decreased. First, there is a linear decrease of their functions. This
decrease goes up to a certain point, at which time starts a second regime, in which
there is sharp change in the rate of this decrease, the rate (slope) becoming much
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faster. The crossover point where this occurs is around 20–30% of active neurons
(80–70% loss). In order for this model to become of functional importance, it is
necessary to accept that neurons have a complicated internal structure approaching in
nature the real one. The model agrees with several experimental observations in the
literature. It gives a 3rst handle at distinguishing the degradation of synapses due to
age vs. one of the well-known diseases, such as Parkinson’s or Alzheimer’s. In the
aging process one expects a linear loss of neurons/synapses throughout the entire range.
This loss occurs gradually, it a:ects the CNS very little, which continues to function
satisfactorily until late in one’s life. Therefore, if no disease has appeared the critical
damage will occur, but it will occur quite late. On the other hand, if a disease has
appeared, then, relatively early in one’s life the symptoms of the damage will become
evident, as the organism goes through the crossover change in the rate of loss.
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