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Mass transport in an ordered three-dimensional lattice-gas system
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Diffusion phenomena on a three-dimensional discrete lattice are studied both analytically and by means of
computer simulations. The case of repulsive interaction between the particles occupying nearest-neighbor
lattice sites is considered. It is shown that in the case of the disordered particle arrangement, transport phe-
nomena can be described within a theory based on the assumption of uncorrelated particle jumps. In contrast,
strong correlation in particle motion, which takes place in antiferromagnetically ordered systems results in
considerably lowering the diffusion coefficients. Both random walks and generation-recombination processes
of “structural defects” of the ordered state govern mass transport in this case. It is shown that jumps of
individual defectgvacancies and excess particles of the almost filled and empty sublattices, respeatidely
dimers contribute to mass flow. In the vicinity of stoichiometric concentration the defect jumps accompanied
with their recombination may also contribute significantly. The jump and collective diffusion coefficients are
derived analytically. Comparison of the analytical forms with Monte Carlo data shows a good agreement.
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[. INTRODUCTION nism may arise and essentially lower the values of the above-
mentioned diffusion coefficients when a strong interaction is
Lattice-gas(LG) models are widely employed to describe present.
thermodynamic and kinetic properties of various physical The effect of jump correlation on particle migration was
systems. In general, two-dimensioiiaD) models are useful studied in Refs. 7 and 8. A lattice with square symmetry and
for theoretical study of surface mass transport, while 3Da strong repulsive interaction between particles in the
models are appropriate to describe bulk phenomena, such asarest-neighbofNN) positions was considered there. Due
ionic conductivity, solid electrolyte transport, etc. to strong repulsion, the lattice of equivalent sites is divided
The general intention of early theories which concern LGin two interpenetrating sublatticéalmost filled and almost
transport(see, for example, Refs. 1)-8vas to include the empty sublatticeswhen the particle concentratianis close
effect of strong particle-particle interaction in the mobility to 1/2 per sitdsee Fig. 1a8)]. All sites of one sublattice have
and in the diffusion coefficient. In these papers the kineticnearest neighbordN'’s) belonging to the other. The ordered
problem was reduced to the calculation of the grand partitiort(2X 2) structure is formed as a result of second-order phase
function and its derivatives with respect to chemical poteniransition. Particle jumps from the filled to the empty sublat-
tial and interaction parameters. Unfortunately, these papeitsce result in almost immediate backward junipack corre-
give a naive method for the analytical study of transportlation). Such flip-flop displacements giving no contribution
coefficients, since they ignore the effect of correlation into mass transport are counted by uncorrelated jump theory as
successive particle jumps. Sometimes such simplification isffective. It was showhthat only jumps of structural defects,
adequate, but not always. Thus, for example, the applicatione., vacanciegexcess atomsn filled (empty sublattices are
of this approach to the problem of tracer transport gives affective in diffusion and conductivity phenomena.
value for the tracer diffusion coefficient that is equal to the The results of the theory developed in Refs. 7 and 8 differ
jump diffusion coefficienti.e., the adatom mobility But it ~ from those obtained within the assumption of uncorrelated
is known that the tracer and the jump diffusion coefficientsparticle motion:~3 The disagreement concerns mainly the
have different values, even in the simplest case of zero-valumnge of the highly ordered state. The goal of the present
particle-particle interactiofsee, for example, Refs. 4%6 paper is to generalize the theory of Ref. 7 to the 3D case and
In the absence of particle-particle interactions, the imporillustrate the importance of jump correlations. It follows
tance of jump correlatio@memory effeck for the tracer dif-  from our consideration that the problem of mass transport in
fusion was explained in Refs. 4—6. Jump correlation is rea well-ordered state of cubic lattice is reduced to the kinetics
sponsible for the prevailing tendency of a tagged patrticle t@f rarefied gas of the defects. The present analysis shows that
return to the previous residence site. It is just the site whictsingle defects as well as dimer configurations of defects give
is not occupied immediately after the tracer displacementdominant contribution to mass transport, while trimers and
The other lattice sites are characterized with probabilitiesnore complex configurations are not effective. We obtain the
which correspond to the average concentration. Such “backange of parameters where correlation is important. Com-
correlation” lowers the effective jump frequency of the tracerbined analytical and Monte Carl@MC) simulation results
while the collective and jump diffusion coefficients are notmake it possible to test and compare various theoretical ap-
affected. Nevertheless, the analog of back correlation mecharoaches.
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In addition to the works cited above, different approaches
for mass transport in LG systems have appearé&tMost H=2> onin;, 1)
authors ignore the correlations, sometimes without sufficient i
reasons. Thus the second important goal of this paper is twhere we use the variables of occupation numlgrsiith
emphasize the importance of correlation effects in the kinetn,=1 (0) for occupiedunoccupied lattice sitei; the nota-
ics of lattice systems. tion (ij ) implies the summation in Eq1) over NN sites and
each pair enters the sum only ongejs the interaction en-
ergy of the NN particles measured in unitslof.

The ideal zero-temperature{- =) structure for concen-
trationc=1/2 is a sequence of empty and filled lattice sites.

We consider a cubic lattice-gas system with NN repulsiveFilled sites form a face-centered-cubic lattice with a period

interactions. The corresponding Hamiltonian is given by ~ Of 2a [see Fig. 1b)]. The lattice of empty sites having the
same geometry is displaced laywith respect to the filled

D one. The ordering is formed spontaneously as a result of the
O @ ® O o strong repulsive interaction. The critical value of the interac-
tion parameterp is equal to 0.887. A filled site in the empty
sublattice[site 1 in Fig. 1b)] and an empty site in the filled
sublattice[site 8 in Fig. 1b)] represent two types of the
“defects,” i.e., the excessive particle and vacancy, respec-
tively. Similar to the 2D case, defects of each type are away
from one another by a distance of more than one lattice con-
stanta, hence there is no direct interaction between them.
Such favorable circumstance gives the possibility to obtain
the defect concentrations in the case of equilibrium systems
described by the statistical operator

p=Q‘1exp[,u2 ni—H], (2

where u is the dimensionless chemical potential, and the
partition functionQ is determined by the normalization con-
dition sp{p}=1. Similarly as in Ref. 7 we can easily obtain
the average occupancy of vacancigsand excess particles
n®* of each site of the filled and empty sublattices, respec-
tively. They are given by

II. EQUILIBRIUM CONCENTRATIONS AND JUMP
PROBABILITIES OF THE DEFECTS

2
+e %

()

A simple way to derive Eq(3) is as follows: When the
defects are spaced a large distance apart, then the state of
each of them can be described by its own statistical operator.
For example, the state of the excess particle in sifsee

Fig. 1(b)] is determined by, which is given by

p1=(Qq) texg un;—6¢ny], (4

where the parameters and ¢ are the same as in EQR).
Then the average occupancy of site 1 is given by

nveX=g 3¢+ (k=3¢) = ( c— %

1
C__

* 2

FIG. 1. Schematics of antiferromagnetic ordering in the vicinity
of c= 1/?. (a)_ Repre_se_ntatlon of 2[_) square Iattlce-ggs modgl. Blgck neX= (nl)zsp(plnl)ze”“‘ﬁ“’, (5)
and white circles indicate occupied and unoccupied lattice sites,
respectively. The ideal ordering is distorted by the presence of twavhere the conditiom®*<1 is used. A similar consideration
types of defect§a vacancy and excess particle are shown by arfgr a vacancy results in
rows). (b) Schematic of cubic lattice-gas model. Black and gray
circles show occupied, and white circles unoccupied sites. Two de- n=e ~, (6)
fects in sites 1 and 8 can be seen. The displacement of the defect in
site 1 is possible only after a jump of one of the side particles. Combining Eqs(5) and (6) with the “neutrality” condition
Jumps of side particle 2 to NN unoccupied sites are indicated by1®*— n’=2(c—3) results in the defect concentrations as
five arrows. given in Eq.(3).
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It can be easily seen from E(B) that the total number of = —ay,,—ag, anda,# —ay. All of these are satisfied when
both defect types is minimum at half filling, i.e., @& 3. In  the following order of summing up i&, is used:(i) a, runs
this case it is given bgN(n”+n®)=Ne 3¢, whereNis the  over six valuesii) a, runs over five valuesijii ) as runs over
total number of lattice sites. We can see that the system tendige values whera;=a, and only four values whea,#a,.
to ideal ordering exponentially whep— o (with decreasing  As a result, we hav&,=126. Hence the generation term is
temperaturg given by

It is evident that the number of defects fluctuates in time.
The encounter of two defects of different types results in G=126v,e” °%. (8)
their annihilation. In contrast, the process of pair creation
increases the defect concentration. At equilibrium both pro- The recombination occurs through the same paths as the
cesses have equal rates. The generation-recombination bgleneration, but in the reverse order. Hence arguments similar
ance condition can also be used for obtaining equilibriumto previous ones may be repeated to obtain the recombina-
defect concentrations. In the following we will derive the tion term. It is given by
generation-recombination terms. Their explicit form is used
for the complete description of the defect kinetics.

To study the generation and recombination of the defects, R= Voe‘DZ ningy, . 9
the mechanism of particle jumps should be specified. We
restrict ourselves to the model in which only jumps to theFor convenience, the stochastic variabtésand nex of va-
NN unoccupied sites are allowed. The probability of the dis-cancies and excess particles are introduced in analogy with
placements from filled site to one of the nearest-neighbor the occupation numbers of particles. After averaging Eq.

empty siteg per unit time can be taken in the form (9) over the ensemble and replaciffn*,) by the product
of average values’n®* the balance conditio®=R is re-
vij = voexpei}, (7)  duced to the form
wheree;= =Ny, sitesi andk are the nearest neighbors. n’n*=e%¢, (10)

Such dependence of the jump frequencygandn, means

that NN repulsive interactiong>0) facilitates overcoming As we see from Eq(10), the product of vacancy and excess
the potential barrier by the jumping particle. This is not aparticle concentrations depends only on the interaction pa-
unique choice of the jump frequency. Sometimes, an alterl@metere but not on the jump mechanism. Such a situation
nate model of particle jumps is uséske, for example, Refs. is typical for equilibrium thermodynamic systems. A jump
13-15 and 19-21 Our formalism can be generalized to mechanism governs the time for attaining equilibrium but
accommodate different jump frequencies. Within our ap-does not affect the equilibrium defect concentrations. Com-
proach, the effect of “saddle point'can also easily be con- bining Eq.(10) with the “neutrality” condition results in the
sidered. defect concentrations coinciding with E@).

Each generation event is a result of a series of low prob- To study the defect kinetics, not only the concentrations,
ability elementary jumps. Some successions of jumps resulfut also the defect jump frequency should be obtained. Let
ing in pair formation are shown schematically in Figa)tffor ~ Us consider the displacements of isolated defects. Again, we
the 2D case. A series of three jumps—A,B—C,A—B use Figs. 1a) and(b) for explanations. The displacement of
results in creation of the vacancy and excess particle in site€e particle in site 1 is possible only if one of the adjacent
X and C, respectively. This series of jumps we name pathSites becomes vacant. Hence the first stage of the defect dis-
Alternate paths resulting in pair creatigfor exampleX  placement involves jump of side atom 2 to one of the free
—A, B—D, and A—B) occur with probabilities exactly sites 3,4, etc. The probability of the first jump—23 per
the same as the first one. It is shown in the Appendix that thémall time intervalAt is given by Atv; (v=wvee?). The
rate P of each path in the 3D case is given bye °¢. The  new particle arrangement has a very short lifetifoé the
derivation employs the inequalitg” “<1. This inequality —order ofvg ') because each particle in sites 1 and 3 has five
does not introduce strong restriction on the range of applicaNN filled sites. For this time, any of them undertakes a jump
bility of the theory. Thus, for example, the exponent® is  to site 2 with probability equal to 1/2. The jump-32 re-
equal to 0.4 for the critical value af. Our theory is con- turns the system to the initial state while the other jump 1
cerned only with the region below the critical poinp ( —2 completes the defect displacement:B to two lattice
>@0). constants. The jump-%2 represents the second stage of the

The overall probability of the vacanciexcess particle  defect displacement. The product of the probabilities of both
generation in a given site is equal to the product of patrstages is given bty X 5.
probability times the number of paths. To obtain the number As we see, the probability of the excess particle jump 1
of paths, we use an observation that the excess particle pe-3 (i.e., the jump to the next-NN site of the empty sublat-
sition (with respect to vacancy positipis determined by a tice) per unit time is given by v;. The defect jump to the
vectorr =a;+a,+ a3, where|a|=a. Each vecto; may be NN site of the empty sublattic6for example, 1-4) has a
oriented along positive and negative directions of any ofprobability twice as high because two equivalent paths 1
three principal axes of the cubic lattice. A choice of three—2—4 and 1-7—4 contribute. The corresponding jump
vectors a is restricted by the obvious conditions;  probabilities of the vacancies are given by, and .
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lll. DIFFUSION DUE TO JUMPS OF ISOLATED DEFECTS ing relation(17) we get the diffusion equation for concentra-
AND RECOMBINATION JUMPS tion disturbance. It is given by
If we know the dependence of the defect concentrations ac(r,t)=D.Ac(r,t), (18)

and jump frequencies, we can easily now derive the collec-
tive and jump diffusion coefficients. Master equations forwhere the collective diffusion coefficielt. is given by
both species of defects are given by
n’+e®n®*+ (85/3) e 5¢
1 D.=6Dg , (19
o= — > v (N=n®)+G—R, n’+n®
© where Do=rya2. As we see, there are no thermodynamic
1 relations(like the Kubo-Green formu)athat are required to
an? = — EVOE (n{—ni,)+G—R, (11 obtain the diffusion coefficiend.. We have derived it con-
{st sidering migration and recombination of individual defects
where vectors is given bys=a;+a, and the summation is only.
over all possible orientations @ , excludinga,= —a,. If one knowsD., the jump diffusion coefficient can be
After statistical averaging over equilibrium distributipn ~ obtained using a Kubo-Green relation. It is given Dy
Egs. (11) are reduced to the trivial conditioB=R. Let us  =Dc[du/dIn(c)]" It follows from Egs.(19) and(3) that
now suppose that a small concentration inhomogeneity is
impoggd on the systefm?-¢*—n?-**+ 5n.”’ex(.i,t)]. Then the DJ=§D0[n0+e“’nex+ (85/3e~5¢]. (20)
quantitiesn?”®* can be changed b§n”-¢*(i,t) in Eq.(11) and c
the G—R terms, linearized insn?-€%(i,t), are given by

It can be seen from Eq$19) and (3) that D(c) is a
nearly monotonic function. A maximum at=3+ (1

S(G—R)¥=—v > [an®(i)n’+an°(i+1)n°*] (12 —e~ %) is noticeable only at comparatively low valuesf
n In contrast, the jump diffusion coefficient has a deep mini-
for the first of Egs(11) and mum close toc=0.5. More precisely, the minimum is at

Cmin%%(l_e_zs‘p) and DJ(Cmin)"N‘lZDOe_ZI&P(l
+ 8e72%), The concentratior,,;, corresponds to a cross-
over in the transport mechanism from a vacancy to excess
o en s particle. The exponentially low value & ;(c;,) is due to
for the second one. When the perturbatiémt"® is slowly e |ow defect concentration at this point. We should add
varying in spacdi.e., the characteristic length of inhomoge- here that a similar minimum was obtained theoretically by
neity | is much greater thaa), Eqs.(11) can be rewritten in - ga16 and KikucH? for 2D honeycomb ordered lattice.
a differential form as There is an alternative procedure for the derivatioDgf
DX 1\ D.eX vex _ pyu.ex It is based on obtaining the response of the system on an

9 on”=(1,t) =D* AT, )+ S(G-R)™, (14) external homogeneous fie{dee details in Ref.)7 The alter-

where A=(4/4i)?, and the diffusion coefficients of single native formalism results in the expression @ exactly

S(G—R)V=— v1% [Sn®(i)n®+ Sn®X(i+r)n] (13)

vacanciesD’ and excess particld3®* are given by coinciding with Eq.(20). In this case the derivation employs
only a kinetic approach but not a Kubo-Green relation.
DY (&9 =6a%vq 1. (15 Analytical formulas(19) and (20) describe diffusion co-
The terms8(G—R)®* in Eq. (14) is given by efficients in a short range afclose to 1/2. In the following
we consider also the motion of more complex defect con-
8(G—R)®= — 126p,[ 5n®X(i)n” + dn®(i)n®¥] figurations. This will give the possibility to generalize the
theory far beyond=0.5.
—85v,a%n®*A on?(i), (16)
and an explicit form for5(G— R)" can be obtained from Eq. IV. CONTRIBUTION OF THE DIMER MOTION
(16) by formal changing indicegx—uv andv—ex When It follows from Eq. (3) that the defect concentration is

the spatlaelx gradients are small enough, i@ > increased with increasing deviation offrom the stoichio-
<126v,n"*" the generatlon-recomblnatloerl terms  becomematric value 1/2. Also, the probability of two or more defects
dominant in Eq.(14) and the solutionsn®®* must satisfy g pe NN or next NN of the corresponding sublattice is in-
the condition creased. Figure 2 illustrates the particle arrangement where
U SHEX(i eX SU iV — two defects(excess particles in sites 1 and 2) are NN’s of
126v,[n"onX(i) + n*on"(1) ]=0. (17) the empty sublatticep. These two defects incr)ease the jump
Equation(17) describes the local equilibrium in the defect probabilities of two adjacent particles in sites 3 and 8 con-
system. It relates perturbations of the defect densities whesiderably(to valuesv,). The arrows indicate four possible
their space-time evolution is a slow process. displacements of particle 3. After any of these jumps, the
Subtracting the equation for vacancy evolution from thenew configuration of the system is highly unstable because
one for excess particles evolution given by Etd) and us- each of the three particlegwo defects and the displaced
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of vacancies is somewhat lower than that of single vacancy
while the concentration of dimers is much smaller. This is in
contrast to the case of excess particles where the dimer high
mobility make them competitive in mass transport.

As we see the motion of single defects and dimers of the
excess particles prevails in mass transport in the range of low
defect concentration. In fact, our consideration applies to that
part of the phase diagram where ordering oc¢arcluding
only the boundary regions

The theory developed in Sec. 1l can be easily generalized
to take into account the effect of dimer motion. The deriva-
tion of the diffusion coefficients can be facilitated if we take
into account two important factors. First of all, we should
consider only the most probable jumps of the dimers, i.e., the
jumps with the probability given by »,. Second, the posi-

FIG. 2. Two defects in sites 1 and 2 are nearest neighbors in thgons of different defects are not correlated and their local
empty sublattice. They form a NN dimer. Particles in sites 3 and 8concentration is determined by the local concentration of the
have high probabilityequal tor,) to be displaced. Any jump of narticles as given by Eq3). A straightforward calculation
pgrticle 3 s_h_own by the arrow results in the dimer displacemen;empbying the scheme outlined in Sec. Il results in the dif-
with probability »,/3. fusion coefficient given by

particle has five nearest neighbors. Thus three particles have

equal probabilities per unit timev§) to be displaced to site n® +e®n®*+ §(e<pneX)2+ 8_56—5<p
3. The displacement of one of the particles at sites 1 or 2 D —6D 3 22)
results in the dimer displacement. A series of two particle ¢ 0 nY & nex '

jumps, which results in the dimer displacement, can be con-

sidered as a single dimer jump with the total probability The terms in the numerator determine contributions(ipf
equal to3v,. The dimers bring to the kinetic coefficients a isolated vacanciegii) isolated excess particlegii) dimers,
contribution comparable to or higher than that of single ex-and(iv) recombination jumps, respectively. The correspond-
cess particles when the number of defects is sufficientling value of the jump diffusion coefficient is given by

large, i.e.,

3 8 85
n®ef=1. (21) D,=Dq n’ +en®*+ §(e‘°nex)2+ ge*&” . (23
Thus the contribution of the dimers is important when their

small concentration is compensated by high mobility.
When condition(21) is fulfilled it is conceivabe to think V. APPROXIMATION OF UNCORRELATED JUMPS

that more complex defect configuratioffer example, trim- The theoretical schemes developed in Refs. 1-3 are based
ers and compact clusters of four and five defeotght also 4 the approximation of uncorrelated jumfsJ's). It is as-
be effective in mass transport. Nevertheless, the preseq{meq that a local particle flux can be described by small

simple analysis shows that the motion of complex defects igyca| perturbations in the statistical operator. The modified
rather rotational than translational. The following explana- , .. . ~ . .
§tat|st|cal operatop is similar to the one given by Ed2)

tion elucidates this important point. Let us consider the most . ; . e
probable jumps of the trimer formed by excess particles inW|th the only difference that the chemical potential is no

sites 1, 2, and 6. In contrast to the dimer case, we see hepéore constant., _bUt a furlct.ion slowly varying .in space and

only one site(site 3) where a particle has the highest jumptime. The explicit form ofp is assumed to be given by

probability gliven by v,. After any of trimer jumps(with

probabilitiesz v3), a particle in site 3 has again the highest ~ =

probability of jump. The site in which a particle has the p=Q 1exp{§i: “i”i_% ening

highest jump probability does not change its position in the

_course_of trimer displacem_ents: The trimer perfo_rrr_]s MaNY, g a local flux between NN sitésandj is determined bﬁ

jumps involving the immobile site 3 before the disintegra-

tion. These strongly correlated jumps are not effective in

mass transport similar to the case of flip-flop jumps. The 5

above explanation also concerns the correlated motion of ~ o i Tl — e M

clusters formed by four and five defects. spiplnihjvij—njhiv I} =vo(hihjer —=(i=), (25
We do not consider the contribution of complex configu-

rations of the vacancies. The effect of their motion is negli-whereh;=1—n;, the jump frequency;; is given by Eq(7).

gible because of low mobility and small concentration. Thus,The expansionu(j)= w(i) +(du/di)(j—i) is employed in

for example, the jump frequency of the dimer configurationthe course of derivation of E@25).

(24)
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The local flux density can be easily calculated using Eq. T T T T
(25). It can be written in a form of Fick’s law ag 1

=— Dﬁc, where the collective diffusion coefficient is given

b o
y B"*w_ With jump correlation
D.—D(hh et du b 0 26 neglecte\
o= Do(hiny) c d(lnc) Ja(lnc)” (26)

Equation(26) is obtained under the assumption that the local 4|
relationship betweem andc {u(i)=u[c(i)]} is valid. At ]
first, formula(26) was derived in Ref. 3. It connects explic- 1
ity the diffusion coefficients D. and Dj;) with u, ] Withac ‘f”tt.fm
dula(Inc), and(h;h;). The last quantity is the equilibrium Jump correration
probability of two NN sites to be vacant. To get an explicit

dependence of the diffusion coefficients orand ¢, one 00 04 0 05 060
needs only to calculate the partition function and its deriva- c
tives with respect t@ and ¢. , -

The diffusion coefficients in E(26) obtained within the FIG. 3. Theoretical dependence B%(c)/Do. Thick lines show

UJ theory can be calculated analytically in the range of€Sults of the present paper approgste Eq.(23)]. Dotted lines
highly ordered state, i.e., in the range where the defect corﬁhow the same but with recombination transport mechanism ne-
centrations are give,n by,EQS). To simplify calculations, it gl_ec_ted. Thin solid Iines_show the dependence of €4), obtained

is convenient to rewrite E¢26) in an alternate form as within the uncorrelated jump theory.

ek Briefly, we add a few remarks. This scheme employs the
DJ=D0<hihj>? probabilities of particle jumps given by E¢7). Both com-
puter simulations and theory are based on the same model of
1 random particle jumps, therefore a direct meaningful com-
EDOE<e£inihj> parison is possible.
Initially particles are distributed randomly on the lattice.
1 ox ox s Then they are allowed to diffuse. Each particle is allowed to
~Do(1=n")(A-n")[1+n*(e*~1)]>. (27  jump to one of its neighbor sites with a probability deter-
mined by the occupancy of the adjacent sites. Time is moni-
It follows from Eq. (27) thatD;~2Do whenc=1/2.e>1.  (greq in terms of MC steps. One MC step corresponds to
At the same time, the value of the jump diffusion coefficient,;nqom interrogations of lattice sitéen average, one per

: : =2 —
defined by Eq(23) is equal to ®e “¢ atc=0.5. Thus the  gjs The probability of each jumP; cannot exceed 1. We
theory based on thg assumption of uncor_related Jumps giVeS fina P. as P.—e‘i-5¢ where the interaction energy of
a value ofD; which is by a factor ok?¢/3 higher than ours. . in ! articlle s 7alwa s less or equal togs This
The large disagreement between the different approaches cifinPing p i Y q

be easily explained. The UJ theory does not distinguish bet oice of P; ensures that 2P;, and each MC step corre-

tween effective and ineffective jumps. It deals with the aver-SPONdS to an interval of real time equaltis=e 416w
age jump frequency which is much higher than the frequency The explicit form ofts may be used to estimate the re-
of the effective jumps in the range of 6=%. The difference  quired number of MC stepsNg) for various kinetic pro-
between the results of both theories is not so pronounce@esses. For example, the jump of a given particle from a
whenc>0.5, because the jumps of excess partitiéective  filled site to any NN site of the empty sublattice occurs with
jumps prevail in that region. a duration of (6,9) 1. The corresponding value dfg is
Figure 3 illustrates the dependence of the jump diffusiorgiven by Ng=(6vots) ~t=e>%. This is just the number of
coefficients given by Eq$23) and(27) on the concentration MC steps required for the elementary displacement of a va-
c. The difference between the two theories is larger forcancy. As we see, the value bl grows exponentiallyas
higher values of the interaction parametger The corre- e°¢) when the interaction parameter is increagibé same is
sponding data can differ by more than an order of magnitudealso true for the required computer time to carry out the
The difference, however, 'decreases for vaIues\qhich are  calculation. Thus, for exampleNg is equal to 2.5%10%
away from the central poird=0.5. This is an obvious trend \hen o= 2. To study the diffusion motion of particles in the

caused by the weakening of the correlation in a low-orderedange of vacancy-controlled transport, this number should be
state. Also, the significance of recombination mechanism cagyxen much highefat least by several ordeérs

be seen in Fig. 3. The contribution of recombination jumpsto 5 gjow process of defect generation introduces another

D, is noticable mainly in the vicinity o£=0.5 for o=1.5.  egyriction on the minimum value Ms. It follows from our
Qomp?‘“son of theorgtlcal and computer simulation data '?)revious consideration that the thermal generation governs
given in the next section. the establishment of the equilibrium defect concentration in
the vicinity of c=0.5, while outside this region the concen-
tration of the defect majority is given by|@—0.5. The de-

To obtain the jump diffusion coefficient we use a com-fect system can attain equilibrium when the number of de-
puter simulation method described in Refs. 23 and 24fects generated during the simulation process is much higher

VI. COMPARISON WITH COMPUTER SIMULATIONS
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FIG. 5. The dependence bBX;/D, on the concentration in the

FIG. 4. The dependence oD,(c)/D, for ¢=1.2668 (T high-temperaturédisordered phase. The notation is the same as in

=0.7T;). Symbols show results of MC simulations of particle mi- Fig. 4.

gration on a lattice of sizBl=30x 30X 30. A total of 1000 different

realizations were averaged. The thin solid line shows the results aflusions follow from Ref. 25 where similar computer

uncorrelated jump theorycomputer calculations employing Eq. experiments were employed to study square lattice-gas trans-

(26)]. Dash lines in regions<<0.3 andc>0.7 show the results of port.

approximate calculation@ethe approximatiorusing Eq.(26). The Finally, we present the results of analytical calculations of

rest of the notation is the same as in Fig. 3. D, as defined in Eq(26). The Bethe(quasichemical ap-
proximation is employed to obtain the partition functi@ee

than their equilibrium number. As a rough estimate, the dedetails in Ref. 26 The result is shown by the dash lines in
fect concentration can be taken equaktc** in the vicinity ~ the side regiong<0.3 andc>0.7. As we see, this simple
of c=0.5. Hence the corresponding criterion is given by&PProximation is sufficient to reproduce with a good accu-
NctsG>e~3¢. More explicitly, it is given by racy the dgpendence @f,(c) in the d!sordered region. At
the same time, it should be emphasized that the Bethe ap-
proximation as well as defect transport theory are not appli-
cable for the description of boundary regions of concentra-
tions where the order-disorder transitions occur. The former
is not good here because of insufficient accounting of the
The exponentia| growth dﬂs imposes restrictions on the correlations, while the latter fails to describe high-density
range of interaction parameters which can be studied bgas of the defects. The boundary regions require alternative
means of computer simulation. We choose the maximun®pproaches that is beyond our study.
value of ¢=1.2668 that corresponds t6=0.7T.. This To illustrate the accuracy of the Bethe approach for the
value of ¢ is sufficiently large to consider the particle ar- study of disordered systems, we consider the case of low
rangementin the vicinity of c=0.5) as well-ordered since Value of the interaction parameter=0.7< ¢ . This value of
only 2% of lattice sites are occupied by defects. The simula$ corresponds to the disordered state in the entire interval of
tion results forD;/D, are shown in Fig. 4 by symbols. The C- Figure 5 illustrate a good agreement between the analyti-
results of the theory based on the defect transport mechanisf®l and MC data.
are shown by solid line in the interval 6<3<0.8. In gen-
eral, a good agreement between the two is observed. To em-
phasize the effect of recombination jumps, we show the the-
oretical data with these jumps ignorédotted ling. As we This work deals with the peculiarities of mass transport in
see, the maximum contribution of this mechanism is of thethe ordered 3D lattice-gas model under a repulsive potential.
order of 40% forT=0.7T.. To our knowledge, the recom- As in the case of 2D systems, we observe that the system
bination mechanism of transport has not been previouslgoes into a well-ordered state when it reaches equilibrium.
considered in the literature. This is the outcome of a second-order phase transition,
The thin solid line in Fig. 4 represents the results of thewhich is caused by strong particle-particle repulsion. Any
UJ theory[see Eq.26)]. The dependence of both chemical changes of the ordered state induce microscopic forces,
potential and averaggh;h;) onc, which enter Eq(26), were  which restore the initial order. These forces give rise to cor-
obtained by simulations in the grand canonical ensembleelation in particle motion in an ordered lattice.
(absorption-desorption algorithm, see Refs. 23 and 24 for The underlying idea of the theory employed here is to
detaily. We see that the results given by the UJ theory dis-consider the motion of structural defects rather than that of
agree considerably with the MC modeling the particle jumpsndividual particles. The defects can be considered as rarified
in the range ofc close to 0.5. At the same time both ap- gas of long-living quasiparticles, whose movement over the
proaches give almost identical results in the disordered rdattice entirely determines the mass transport. Elementary
gion (far outside the middle part of the pjofThe same con- displacements of the defects being a result of two or three

Ng>e’#/21. (29

VII. CONCLUSIONS
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strongly correlated jumps of individual particles are not cor- Con(tHAD) —ni(b)
related. This factor facilitates the analytical derivation of the o= lim At (A2)
diffusion coefficients. Equation®2) and (23) show an ex- At—ee

plicit dependence ob. and D; on the concentrations and
jump probabilities of the defects. The comparison betwee
the analytical and the simulation dd&ee Fig. 4 shows that
the model is quite adequate. At the same time we see that
theory that ignores jump correlations fails to describe mas
transport in the ordered state.

Fquations(Al) connect the evolution of stochastic variables
Ny, Ng, andng, which can take the value of either 1 or 0. It
ig convenient to describe the evolution of particle arrange-
Qwent in terms of the corresponding probabilities. A simple
algebraic manipulation and statistical averaging makes it
possible to derive from EqgAl) a closed system of two

equations, which is sufficient for our purpose. It is given by
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dNnanc) = — (2v4+ vg)(Nanc) + vi(nang).  (A3)
APPENDIX
) ) S The initial conditions for the two Eq9A3) are given by

For explanations, we employ Fig(d considering it a (nang)(t=0)=1 and(nanc)(t=0)=0. This choice corre-
section of a 3D lattice. In the following we keep in mind that sponds tae=0 andny=ng=1 whent=0.
similar planes are present below and above the one shown in gg|ution of Eqs(A3) is given by
here. Let us consider a small time intenk (vo) 1. Dur-
ing this time the probability of jumX— A is equal todtv.
Further evolution of the particle arrangement where sites (nang)=
and B are initially occupied is governed by a kinetic equa-
tion, which takes into account strong particle-particle inter-
actions through the dependence of jump frequency on 1
e;, i.e., on the filling of sites adjacent to thih one. Onz can (Nang) = V—1[0t+ (2v4+vs)(nanc), (A4)
easily see that the particle in sife which has five nearest
neighbors, will jump to its previous positiod for a small  where
time interval 8t, [(vo) e °¢< ét,< 6t] with a probability
close to 1. Two flip-flop jumpsX—A and A—X do not v,
change the state of the system. Nevertheless, there is a small N1p=— o T VaT vst
probability for a particle jump from sitB to any of free sites
(C,D,E, and to two free sites in perpendicular direcjion
while site A is occupied. After any of the last jumps, a par- T vi(vatvs) = (vi+vs)(2vs+ vs)
ticle in site A has a low probability to be displaced to sie
and to complete the creation of a pair. Each series of jumps,
which results in pair defect creation in sitésand C, X and
D, etc., has very low probability whesi ¢<1. Therefore the
probability of each path can be calculated independently o
the others.

It follows from the above that a system of coupled equ
tions for the occupancy of sites,B,C can be written as

V1
N—

Aqt Aot
el —et2t),
)\2( )

2

LN
14 14
2 4 5

12

The function{nan¢)(t), which is the probability of two
sites (A andC) to be occupied, can be used to calculate the
robability of pair generation. This probability per unit time
FP) is given by the product of the probabilities of the first
ajump (equal tovy) and jump from siteA to site B during the

time when siteC is filled. Thus we have

é'[“C vinaNg lS“C(l “B)v f
F—V 14 dt nan 1).
o¥4 o < A C>()

ding=vsNc(1—ng)—viNaNg+ v4Nanc,

A straightforward calculation employing inequaligy <1
NA= —2v4NANc— VsNaNg, (A1) 9 ploying Inequaley

results in
wherev, = v,e*¢, the derivatives for discontinuous functions
Na, Ng, andng are determined in a usual manner as P=wpge °¢.
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