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Mass transport in an ordered three-dimensional lattice-gas system
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Diffusion phenomena on a three-dimensional discrete lattice are studied both analytically and by means of
computer simulations. The case of repulsive interaction between the particles occupying nearest-neighbor
lattice sites is considered. It is shown that in the case of the disordered particle arrangement, transport phe-
nomena can be described within a theory based on the assumption of uncorrelated particle jumps. In contrast,
strong correlation in particle motion, which takes place in antiferromagnetically ordered systems results in
considerably lowering the diffusion coefficients. Both random walks and generation-recombination processes
of ‘‘structural defects’’ of the ordered state govern mass transport in this case. It is shown that jumps of
individual defects~vacancies and excess particles of the almost filled and empty sublattices, respectively! and
dimers contribute to mass flow. In the vicinity of stoichiometric concentration the defect jumps accompanied
with their recombination may also contribute significantly. The jump and collective diffusion coefficients are
derived analytically. Comparison of the analytical forms with Monte Carlo data shows a good agreement.
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I. INTRODUCTION

Lattice-gas~LG! models are widely employed to describ
thermodynamic and kinetic properties of various physi
systems. In general, two-dimensional~2D! models are usefu
for theoretical study of surface mass transport, while
models are appropriate to describe bulk phenomena, suc
ionic conductivity, solid electrolyte transport, etc.

The general intention of early theories which concern
transport~see, for example, Refs. 1–3! was to include the
effect of strong particle-particle interaction in the mobili
and in the diffusion coefficient. In these papers the kine
problem was reduced to the calculation of the grand parti
function and its derivatives with respect to chemical pot
tial and interaction parameters. Unfortunately, these pa
give a naive method for the analytical study of transp
coefficients, since they ignore the effect of correlation
successive particle jumps. Sometimes such simplificatio
adequate, but not always. Thus, for example, the applica
of this approach to the problem of tracer transport give
value for the tracer diffusion coefficient that is equal to t
jump diffusion coefficient~i.e., the adatom mobility!. But it
is known that the tracer and the jump diffusion coefficie
have different values, even in the simplest case of zero-v
particle-particle interaction~see, for example, Refs. 4–6!.

In the absence of particle-particle interactions, the imp
tance of jump correlation~memory effect! for the tracer dif-
fusion was explained in Refs. 4–6. Jump correlation is
sponsible for the prevailing tendency of a tagged particle
return to the previous residence site. It is just the site wh
is not occupied immediately after the tracer displaceme
The other lattice sites are characterized with probabili
which correspond to the average concentration. Such ‘‘b
correlation’’ lowers the effective jump frequency of the trac
while the collective and jump diffusion coefficients are n
affected. Nevertheless, the analog of back correlation me
0163-1829/2002/66~5!/054303~9!/$20.00 66 0543
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nism may arise and essentially lower the values of the abo
mentioned diffusion coefficients when a strong interaction
present.

The effect of jump correlation on particle migration wa
studied in Refs. 7 and 8. A lattice with square symmetry a
a strong repulsive interaction between particles in
nearest-neighbor~NN! positions was considered there. Du
to strong repulsion, the lattice of equivalent sites is divid
in two interpenetrating sublattices~almost filled and almost
empty sublattices! when the particle concentrationc is close
to 1/2 per site@see Fig. 1~a!#. All sites of one sublattice have
nearest neighbors~NN’s! belonging to the other. The ordere
c(232) structure is formed as a result of second-order ph
transition. Particle jumps from the filled to the empty subl
tice result in almost immediate backward jumps~back corre-
lation!. Such flip-flop displacements giving no contributio
to mass transport are counted by uncorrelated jump theor
effective. It was shown7 that only jumps of structural defects
i.e., vacancies~excess atoms! in filled ~empty! sublattices are
effective in diffusion and conductivity phenomena.

The results of the theory developed in Refs. 7 and 8 di
from those obtained within the assumption of uncorrela
particle motion.1–3 The disagreement concerns mainly t
range of the highly ordered state. The goal of the pres
paper is to generalize the theory of Ref. 7 to the 3D case
illustrate the importance of jump correlations. It follow
from our consideration that the problem of mass transpor
a well-ordered state of cubic lattice is reduced to the kine
of rarefied gas of the defects. The present analysis shows
single defects as well as dimer configurations of defects g
dominant contribution to mass transport, while trimers a
more complex configurations are not effective. We obtain
range of parameters where correlation is important. Co
bined analytical and Monte Carlo~MC! simulation results
make it possible to test and compare various theoretical
proaches.
©2002 The American Physical Society03-1
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In addition to the works cited above, different approach
for mass transport in LG systems have appeared.9–18 Most
authors ignore the correlations, sometimes without suffic
reasons. Thus the second important goal of this paper i
emphasize the importance of correlation effects in the kin
ics of lattice systems.

II. EQUILIBRIUM CONCENTRATIONS AND JUMP
PROBABILITIES OF THE DEFECTS

We consider a cubic lattice-gas system with NN repuls
interactions. The corresponding Hamiltonian is given by

FIG. 1. Schematics of antiferromagnetic ordering in the vicin
of c51/2. ~a! Representation of 2D square lattice-gas model. Bla
and white circles indicate occupied and unoccupied lattice s
respectively. The ideal ordering is distorted by the presence of
types of defects~a vacancy and excess particle are shown by
rows!. ~b! Schematic of cubic lattice-gas model. Black and gr
circles show occupied, and white circles unoccupied sites. Two
fects in sites 1 and 8 can be seen. The displacement of the defe
site 1 is possible only after a jump of one of the side particl
Jumps of side particle 2 to NN unoccupied sites are indicated
five arrows.
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H5(̂
i j &

wninj , ~1!

where we use the variables of occupation numbersni with
ni51 (0) for occupied~unoccupied! lattice sitei; the nota-
tion ^ i j & implies the summation in Eq.~1! over NN sites and
each pair enters the sum only once;w is the interaction en-
ergy of the NN particles measured in units ofkT.

The ideal zero-temperature (w→`) structure for concen-
tration c51/2 is a sequence of empty and filled lattice site
Filled sites form a face-centered-cubic lattice with a per
of 2a @see Fig. 1~b!#. The lattice of empty sites having th
same geometry is displaced bya with respect to the filled
one. The ordering is formed spontaneously as a result of
strong repulsive interaction. The critical value of the intera
tion parameterw is equal to 0.887. A filled site in the empt
sublattice@site 1 in Fig. 1~b!# and an empty site in the filled
sublattice@site 8 in Fig. 1~b!# represent two types of the
‘‘defects,’’ i.e., the excessive particle and vacancy, resp
tively. Similar to the 2D case, defects of each type are aw
from one another by a distance of more than one lattice c
stant a, hence there is no direct interaction between the
Such favorable circumstance gives the possibility to obt
the defect concentrations in the case of equilibrium syste
described by the statistical operator

r5Q21expH m(
i

ni2HJ , ~2!

where m is the dimensionless chemical potential, and t
partition functionQ is determined by the normalization con
dition sp$r%51. Similarly as in Ref. 7 we can easily obta
the average occupancy of vacanciesnv and excess particle
nex of each site of the filled and empty sublattices, resp
tively. They are given by

nv,ex5e23w7(m23w)57S c2
1

2D1AS c2
1

2D 2

1e26w.

~3!

A simple way to derive Eq.~3! is as follows: When the
defects are spaced a large distance apart, then the sta
each of them can be described by its own statistical opera
For example, the state of the excess particle in site 1@see
Fig. 1~b!# is determined byr1, which is given by

r15~Q1!21exp@mn126wn1#, ~4!

where the parametersm and w are the same as in Eq.~2!.
Then the average occupancy of site 1 is given by

nex5^n1&.sp~r1n1!.em26w, ~5!

where the conditionnex!1 is used. A similar consideration
for a vacancy results in

nv5e2m. ~6!

Combining Eqs.~5! and ~6! with the ‘‘neutrality’’ condition
nex2nv[2(c2 1

2 ) results in the defect concentrations
given in Eq.~3!.
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MASS TRANSPORT IN AN ORDERED THREE- . . . PHYSICAL REVIEW B 66, 054303 ~2002!
It can be easily seen from Eq.~3! that the total number o
both defect types is minimum at half filling, i.e., atc5 1

2 . In
this case it is given by12 N(nv1nex)5Ne23w, whereN is the
total number of lattice sites. We can see that the system te
to ideal ordering exponentially whenw→` ~with decreasing
temperature!.

It is evident that the number of defects fluctuates in tim
The encounter of two defects of different types results
their annihilation. In contrast, the process of pair creat
increases the defect concentration. At equilibrium both p
cesses have equal rates. The generation-recombination
ance condition can also be used for obtaining equilibri
defect concentrations. In the following we will derive th
generation-recombination terms. Their explicit form is us
for the complete description of the defect kinetics.

To study the generation and recombination of the defe
the mechanism of particle jumps should be specified.
restrict ourselves to the model in which only jumps to t
NN unoccupied sites are allowed. The probability of the d
placements from filled sitei to one of the nearest-neighbo
empty sitesj per unit time can be taken in the form

n i j 5n0exp$« i%, ~7!

where« i5w(knk , sites i and k are the nearest neighbor
Such dependence of the jump frequency onw andnk means
that NN repulsive interaction (w.0) facilitates overcoming
the potential barrier by the jumping particle. This is not
unique choice of the jump frequency. Sometimes, an al
nate model of particle jumps is used~see, for example, Refs
13–15 and 19–21!. Our formalism can be generalized
accommodate different jump frequencies. Within our a
proach, the effect of ‘‘saddle point’’9 can also easily be con
sidered.

Each generation event is a result of a series of low pr
ability elementary jumps. Some successions of jumps res
ing in pair formation are shown schematically in Fig. 1~a! for
the 2D case. A series of three jumpsX→A,B→C,A→B
results in creation of the vacancy and excess particle in s
X and C, respectively. This series of jumps we name pa
Alternate paths resulting in pair creation~for exampleX
→A, B→D, and A→B) occur with probabilities exactly
the same as the first one. It is shown in the Appendix that
rateP of each path in the 3D case is given byn0e25w. The
derivation employs the inequalitye2w!1. This inequality
does not introduce strong restriction on the range of appl
bility of the theory. Thus, for example, the exponente2w is
equal to 0.4 for the critical value ofw. Our theory is con-
cerned only with the region below the critical point (w
.wc).

The overall probability of the vacancy~excess particle!
generation in a given site is equal to the product of p
probability times the number of paths. To obtain the num
of paths, we use an observation that the excess particle
sition ~with respect to vacancy position! is determined by a
vectorr5a11a21a3 , whereuaiu5a. Each vectorai may be
oriented along positive and negative directions of any
three principal axes of the cubic lattice. A choice of thr
vectors ai is restricted by the obvious conditions:a1
05430
ds
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Þ2a2 ,2a3 , anda2Þ2a3 . All of these are satisfied when
the following order of summing up in( r is used:~i! a1 runs
over six values;~ii ! a2 runs over five values;~iii ! a3 runs over
five values whena15a2 and only four values whena1Þa2 .
As a result, we have( r5126. Hence the generation term
given by

G5126n0e25w. ~8!

The recombination occurs through the same paths as
generation, but in the reverse order. Hence arguments sim
to previous ones may be repeated to obtain the recomb
tion term. It is given by

R5n0ew(
$r %

ni
vni1r

ex . ~9!

For convenience, the stochastic variablesni
v and nj

ex of va-
cancies and excess particles are introduced in analogy
the occupation numbers of particlesni . After averaging Eq.
~9! over the ensemble and replacing^ni

vni1r
ex & by the product

of average valuesnvnex, the balance conditionG5R is re-
duced to the form

nvnex5e26w. ~10!

As we see from Eq.~10!, the product of vacancy and exce
particle concentrations depends only on the interaction
rameterw but not on the jump mechanism. Such a situati
is typical for equilibrium thermodynamic systems. A jum
mechanism governs the time for attaining equilibrium b
does not affect the equilibrium defect concentrations. Co
bining Eq.~10! with the ‘‘neutrality’’ condition results in the
defect concentrations coinciding with Eq.~3!.

To study the defect kinetics, not only the concentratio
but also the defect jump frequency should be obtained.
us consider the displacements of isolated defects. Again
use Figs. 1~a! and ~b! for explanations. The displacement o
the particle in site 1 is possible only if one of the adjace
sites becomes vacant. Hence the first stage of the defect
placement involves jump of side atom 2 to one of the fr
sites 3,4, etc. The probability of the first jump 2→3 per
small time intervalDt is given byDtn1 (nk[n0ekw). The
new particle arrangement has a very short lifetime~of the
order ofn5

21) because each particle in sites 1 and 3 has
NN filled sites. For this time, any of them undertakes a jum
to site 2 with probability equal to 1/2. The jump 3→2 re-
turns the system to the initial state while the other jump
→2 completes the defect displacement 1→3 to two lattice
constants. The jump 1→2 represents the second stage of t
defect displacement. The product of the probabilities of b
stages is given byDtn13 1

2 .
As we see, the probability of the excess particle jump

→3 ~i.e., the jump to the next-NN site of the empty subla
tice! per unit time is given by1

2 n1. The defect jump to the
NN site of the empty sublattice~for example, 1→4) has a
probability twice as high because two equivalent paths
→2→4 and 1→7→4 contribute. The corresponding jum
probabilities of the vacancies are given by1

2 n0 andn0.
3-3
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III. DIFFUSION DUE TO JUMPS OF ISOLATED DEFECTS
AND RECOMBINATION JUMPS

If we know the dependence of the defect concentrati
and jump frequencies, we can easily now derive the col
tive and jump diffusion coefficients. Master equations
both species of defects are given by

] tni
ex52

1

2
n1(

$s%
~ni

ex2ni1s
ex !1G2R,

] tni
v52

1

2
n0(

$s%
~ni

v2ni1s
v !1G2R, ~11!

where vectors is given bys5a11a2 and the summation is
over all possible orientations ofa1,2 excludinga152a2 .

After statistical averaging over equilibrium distributionr,
Eqs. ~11! are reduced to the trivial conditionG5R. Let us
now suppose that a small concentration inhomogeneit
imposed on the system@nv,ex→nv,ex1dnv,ex( i,t)#. Then the
quantitiesni

v,ex can be changed bydnv,ex( i,t) in Eq. ~11! and
the G2R terms, linearized indnv,ex( i,t), are given by

d~G2R!ex52n1(
$r %

@dnex~ i!nv1dnv~ i1r !nex# ~12!

for the first of Eqs.~11! and

d~G2R!v52n1(
$r %

@dnv~ i!nex1dnex~ i1r !nv# ~13!

for the second one. When the perturbationdnv,ex is slowly
varying in space~i.e., the characteristic length of inhomog
neity l is much greater thana), Eqs.~11! can be rewritten in
a differential form as

] tdnv,ex~ i,t !5Dv,exDdnv,ex~ i,t !1d~G2R!v,ex, ~14!

where D[(]/] i)2, and the diffusion coefficients of singl
vacanciesDv and excess particlesDex are given by

Dv(ex)56a2n0(1) . ~15!

The termd(G2R)ex in Eq. ~14! is given by

d~G2R!ex52126n1@dnex~ i!nv1dnv~ i!nex#

285n1a2nexDdnv~ i!, ~16!

and an explicit form ford(G2R)v can be obtained from Eq
~16! by formal changing indicesex→v and v→ex. When
the spatial gradients are small enough, i.e.,Dv,exl 22

!126n1nv,ex the generation-recombination terms beco
dominant in Eq.~14! and the solutionsdnv,ex must satisfy
the condition

126n1@nvdnex~ i!1nexdnv~ i!#50. ~17!

Equation~17! describes the local equilibrium in the defe
system. It relates perturbations of the defect densities w
their space-time evolution is a slow process.

Subtracting the equation for vacancy evolution from t
one for excess particles evolution given by Eq.~14! and us-
05430
s
c-
r

is

e

en

ing relation~17! we get the diffusion equation for concentr
tion disturbance. It is given by

] tc~r ,t !5DcDc~r ,t !, ~18!

where the collective diffusion coefficientDc is given by

Dc56D0

nv1ewnex1~85/3!e25w

nv1nex
, ~19!

where D05n0a2. As we see, there are no thermodynam
relations~like the Kubo-Green formula! that are required to
obtain the diffusion coefficientDc . We have derived it con-
sidering migration and recombination of individual defec
only.

If one knowsDc , the jump diffusion coefficient can be
obtained using a Kubo-Green relation. It is given byDJ
5Dc@]m/] ln(c)#21. It follows from Eqs.~19! and ~3! that

DJ5
3

c
D0@nv1ewnex1~85/3!e25w#. ~20!

It can be seen from Eqs.~19! and ~3! that Dc(c) is a
nearly monotonic function. A maximum atc5 1

2 1 3
85 (1

2e2w) is noticeable only at comparatively low values ofw.
In contrast, the jump diffusion coefficient has a deep mi
mum close toc50.5. More precisely, the minimum is a
cmin'

1
2 (12e22.5w) and DJ(cmin)'12D0e22.5w(1

1 85
6 e22.5w). The concentrationcmin corresponds to a cross

over in the transport mechanism from a vacancy to exc
particle. The exponentially low value ofDJ(cmin) is due to
the low defect concentration at this point. We should a
here that a similar minimum was obtained theoretically
Sato and Kikuchi22 for 2D honeycomb ordered lattice.

There is an alternative procedure for the derivation ofDJ .
It is based on obtaining the response of the system on
external homogeneous field~see details in Ref. 7!. The alter-
native formalism results in the expression forDJ exactly
coinciding with Eq.~20!. In this case the derivation employ
only a kinetic approach but not a Kubo-Green relation.

Analytical formulas~19! and ~20! describe diffusion co-
efficients in a short range ofc close to 1/2. In the following
we consider also the motion of more complex defect c
figurations. This will give the possibility to generalize th
theory far beyondc50.5.

IV. CONTRIBUTION OF THE DIMER MOTION

It follows from Eq. ~3! that the defect concentration i
increased with increasing deviation ofc from the stoichio-
metric value 1/2. Also, the probability of two or more defec
to be NN or next NN of the corresponding sublattice is
creased. Figure 2 illustrates the particle arrangement wh
two defects~excess particles in sites 1 and 2) are NN’s
the empty sublattice. These two defects increase the ju
probabilities of two adjacent particles in sites 3 and 8 co
siderably~to valuesn2). The arrows indicate four possibl
displacements of particle 3. After any of these jumps,
new configuration of the system is highly unstable beca
each of the three particles~two defects and the displace
3-4
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particle! has five nearest neighbors. Thus three particles h
equal probabilities per unit time (n5) to be displaced to site
3. The displacement of one of the particles at sites 1 o
results in the dimer displacement. A series of two parti
jumps, which results in the dimer displacement, can be c
sidered as a single dimer jump with the total probabil
equal to 1

3 n2. The dimers bring to the kinetic coefficients
contribution comparable to or higher than that of single
cess particles when the number of defects is sufficie
large, i.e.,

nexew>1. ~21!

Thus the contribution of the dimers is important when th
small concentration is compensated by high mobility.

When condition~21! is fulfilled it is conceivabe to think
that more complex defect configurations~for example, trim-
ers and compact clusters of four and five defects! might also
be effective in mass transport. Nevertheless, the pre
simple analysis shows that the motion of complex defect
rather rotational than translational. The following explan
tion elucidates this important point. Let us consider the m
probable jumps of the trimer formed by excess particles
sites 1, 2, and 6. In contrast to the dimer case, we see
only one site~site 3) where a particle has the highest jum
probability given byn3. After any of trimer jumps~with
probabilities 1

4 n3), a particle in site 3 has again the highe
probability of jump. The site in which a particle has th
highest jump probability does not change its position in
course of trimer displacements. The trimer performs ma
jumps involving the immobile site 3 before the disintegr
tion. These strongly correlated jumps are not effective
mass transport similar to the case of flip-flop jumps. T
above explanation also concerns the correlated motion
clusters formed by four and five defects.

We do not consider the contribution of complex config
rations of the vacancies. The effect of their motion is neg
gible because of low mobility and small concentration. Th
for example, the jump frequency of the dimer configurati

FIG. 2. Two defects in sites 1 and 2 are nearest neighbors in
empty sublattice. They form a NN dimer. Particles in sites 3 an
have high probability~equal ton2) to be displaced. Any jump of
particle 3 shown by the arrow results in the dimer displacem
with probability n2/3.
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of vacancies is somewhat lower than that of single vaca
while the concentration of dimers is much smaller. This is
contrast to the case of excess particles where the dimer
mobility make them competitive in mass transport.

As we see the motion of single defects and dimers of
excess particles prevails in mass transport in the range of
defect concentration. In fact, our consideration applies to
part of the phase diagram where ordering occurs~excluding
only the boundary regions!.

The theory developed in Sec. III can be easily generali
to take into account the effect of dimer motion. The deriv
tion of the diffusion coefficients can be facilitated if we tak
into account two important factors. First of all, we shou
consider only the most probable jumps of the dimers, i.e.,
jumps with the probability given by13 n2. Second, the posi-
tions of different defects are not correlated and their lo
concentration is determined by the local concentration of
particles as given by Eq.~3!. A straightforward calculation
employing the scheme outlined in Sec. III results in the d
fusion coefficient given by

Dc56D0

nv1ewnex1
8

3
~ewnex!21

85

3
e25w

nv1nex
. ~22!

The terms in the numerator determine contributions of~i!
isolated vacancies,~ii ! isolated excess particles,~iii ! dimers,
and~iv! recombination jumps, respectively. The correspon
ing value of the jump diffusion coefficient is given by

DJ5
3

c
D0H nv1ewnex1

8

3
~ewnex!21

85

3
e25wJ . ~23!

V. APPROXIMATION OF UNCORRELATED JUMPS

The theoretical schemes developed in Refs. 1–3 are b
on the approximation of uncorrelated jumps~UJ’s!. It is as-
sumed that a local particle flux can be described by sm
local perturbations in the statistical operator. The modifi
statistical operatorr̃ is similar to the one given by Eq.~2!
with the only difference that the chemical potential is
more constant, but a function slowly varying in space a
time. The explicit form ofr̃ is assumed to be given by

r̃5Q̃21expH(
i

m ini2(̂
i j &

wninj J , ~24!

and a local flux between NN sitesi and j is determined byr̃
as

sp$r̃@nihjn i j 2njhin j i #%5n0^hihj&e
m

]m

] i
~ i2 j !, ~25!

wherehi512ni , the jump frequencyn i j is given by Eq.~7!.
The expansionm( j )5m( i)1(]m/] i)( j2 i) is employed in
the course of derivation of Eq.~25!.
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The local flux density can be easily calculated using E
~25!. It can be written in a form of Fick’s law asJ
52Dc¹W c, where the collective diffusion coefficient is give
by

Dc5D0^hihj&
em

c

]m

]~ ln c!
[DJ

]m

]~ ln c!
. ~26!

Equation~26! is obtained under the assumption that the lo
relationship betweenm and c $m( i)[m@c( i)#% is valid. At
first, formula~26! was derived in Ref. 3. It connects explic
itly the diffusion coefficients (Dc and DJ) with m,
]m/](ln c), and ^hihj&. The last quantity is the equilibrium
probability of two NN sites to be vacant. To get an expli
dependence of the diffusion coefficients onc and w, one
needs only to calculate the partition function and its deri
tives with respect toc andw.

The diffusion coefficients in Eq.~26! obtained within the
UJ theory can be calculated analytically in the range
highly ordered state, i.e., in the range where the defect c
centrations are given by Eq.~3!. To simplify calculations, it
is convenient to rewrite Eq.~26! in an alternate form as

DJ5D0^hihj&
em

c

[D0

1

c
^e« inihj&

'D0

1

c
~12nv!~12nex!@11nex~ew21!#5. ~27!

It follows from Eq. ~27! that DJ'2D0 whenc51/2,ew@1.
At the same time, the value of the jump diffusion coefficie
defined by Eq.~23! is equal to 6D0e22w at c50.5. Thus the
theory based on the assumption of uncorrelated jumps g
a value ofD j which is by a factor ofe2w/3 higher than ours.
The large disagreement between the different approaches
be easily explained. The UJ theory does not distinguish
tween effective and ineffective jumps. It deals with the av
age jump frequency which is much higher than the freque
of the effective jumps in the range of 0.5>c. The difference
between the results of both theories is not so pronoun
whenc.0.5, because the jumps of excess particles~effective
jumps! prevail in that region.

Figure 3 illustrates the dependence of the jump diffus
coefficients given by Eqs.~23! and~27! on the concentration
c. The difference between the two theories is larger
higher values of the interaction parameterw. The corre-
sponding data can differ by more than an order of magnitu
The difference, however, decreases for values ofc which are
away from the central pointc50.5. This is an obvious trend
caused by the weakening of the correlation in a low-orde
state. Also, the significance of recombination mechanism
be seen in Fig. 3. The contribution of recombination jumps
DJ is noticable mainly in the vicinity ofc50.5 for w51.5.
Comparison of theoretical and computer simulation data
given in the next section.

VI. COMPARISON WITH COMPUTER SIMULATIONS

To obtain the jump diffusion coefficient we use a com
puter simulation method described in Refs. 23 and
05430
.

l

-

f
n-

t

es

an
e-
-
y

d

n

r

e.

d
n

o

is

.

Briefly, we add a few remarks. This scheme employs
probabilities of particle jumps given by Eq.~7!. Both com-
puter simulations and theory are based on the same mod
random particle jumps, therefore a direct meaningful co
parison is possible.

Initially particles are distributed randomly on the lattic
Then they are allowed to diffuse. Each particle is allowed
jump to one of its neighbor sites with a probability dete
mined by the occupancy of the adjacent sites. Time is mo
tored in terms of MC steps. One MC step corresponds tN
random interrogations of lattice sites~on average, one pe
site!. The probability of each jumpPj cannot exceed 1. We
define Pj as Pj5e« i25w, where the interaction energy o
jumping particle,« i , is always less or equal to 5w. This
choice ofPj ensures that 1>Pj , and each MC step corre
sponds to an interval of real time equal totS5e25w/6n0.

The explicit form of tS may be used to estimate the r
quired number of MC steps (NS) for various kinetic pro-
cesses. For example, the jump of a given particle from
filled site to any NN site of the empty sublattice occurs w
a duration of (6n0)21. The corresponding value ofNS is
given by NS5(6n0tS)215e5w. This is just the number of
MC steps required for the elementary displacement of a
cancy. As we see, the value ofNS grows exponentially~as
e5w) when the interaction parameter is increased~the same is
also true for the required computer time to carry out t
calculation!. Thus, for example,NS is equal to 2.53104

whenw52. To study the diffusion motion of particles in th
range of vacancy-controlled transport, this number should
taken much higher~at least by several orders!.

A slow process of defect generation introduces anot
restriction on the minimum value ofNS . It follows from our
previous consideration that the thermal generation gove
the establishment of the equilibrium defect concentration
the vicinity of c50.5, while outside this region the conce
tration of the defect majority is given by 2uc20.5u. The de-
fect system can attain equilibrium when the number of
fects generated during the simulation process is much hig

FIG. 3. Theoretical dependence ofDJ(c)/D0.Thick lines show
results of the present paper approach@see Eq.~23!#. Dotted lines
show the same but with recombination transport mechanism
glected. Thin solid lines show the dependence of Eq.~27!, obtained
within the uncorrelated jump theory.
3-6
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MASS TRANSPORT IN AN ORDERED THREE- . . . PHYSICAL REVIEW B 66, 054303 ~2002!
than their equilibrium number. As a rough estimate, the
fect concentration can be taken equal toe23w in the vicinity
of c50.5. Hence the corresponding criterion is given
NStSG@e23w. More explicitly, it is given by

NS@e7w/21. ~28!

The exponential growth ofNS imposes restrictions on th
range of interaction parameters which can be studied
means of computer simulation. We choose the maxim
value of w51.2668 that corresponds toT50.7Tc . This
value of w is sufficiently large to consider the particle a
rangement~in the vicinity of c50.5) as well-ordered since
only 2% of lattice sites are occupied by defects. The simu
tion results forDJ /D0 are shown in Fig. 4 by symbols. Th
results of the theory based on the defect transport mecha
are shown by solid line in the interval 0.3,c,0.8. In gen-
eral, a good agreement between the two is observed. To
phasize the effect of recombination jumps, we show the t
oretical data with these jumps ignored~dotted line!. As we
see, the maximum contribution of this mechanism is of
order of 40% forT50.7Tc . To our knowledge, the recom
bination mechanism of transport has not been previou
considered in the literature.

The thin solid line in Fig. 4 represents the results of t
UJ theory@see Eq.~26!#. The dependence of both chemic
potential and averagêhihj& on c, which enter Eq.~26!, were
obtained by simulations in the grand canonical ensem
~absorption-desorption algorithm, see Refs. 23 and 24
details!. We see that the results given by the UJ theory d
agree considerably with the MC modeling the particle jum
in the range ofc close to 0.5. At the same time both a
proaches give almost identical results in the disordered
gion ~far outside the middle part of the plot!. The same con-

FIG. 4. The dependence ofDJ(c)/D0 for w51.2668 (T
50.7Tc). Symbols show results of MC simulations of particle m
gration on a lattice of sizeN530330330. A total of 1000 different
realizations were averaged. The thin solid line shows the resul
uncorrelated jump theory@computer calculations employing Eq
~26!#. Dash lines in regionsc,0.3 andc.0.7 show the results o
approximate calculations~Bethe approximation! using Eq.~26!. The
rest of the notation is the same as in Fig. 3.
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clusions follow from Ref. 25 where similar compute
experiments were employed to study square lattice-gas tr
port.

Finally, we present the results of analytical calculations
DJ as defined in Eq.~26!. The Bethe~quasichemical! ap-
proximation is employed to obtain the partition function~see
details in Ref. 26!. The result is shown by the dash lines
the side regionsc,0.3 andc.0.7. As we see, this simple
approximation is sufficient to reproduce with a good acc
racy the dependence ofDJ(c) in the disordered region. A
the same time, it should be emphasized that the Bethe
proximation as well as defect transport theory are not ap
cable for the description of boundary regions of concen
tions where the order-disorder transitions occur. The form
is not good here because of insufficient accounting of
correlations, while the latter fails to describe high-dens
gas of the defects. The boundary regions require alterna
approaches that is beyond our study.

To illustrate the accuracy of the Bethe approach for
study of disordered systems, we consider the case of
value of the interaction parameterw50.7,wc . This value of
w corresponds to the disordered state in the entire interva
c. Figure 5 illustrate a good agreement between the ana
cal and MC data.

VII. CONCLUSIONS

This work deals with the peculiarities of mass transport
the ordered 3D lattice-gas model under a repulsive poten
As in the case of 2D systems, we observe that the sys
goes into a well-ordered state when it reaches equilibriu
This is the outcome of a second-order phase transit
which is caused by strong particle-particle repulsion. A
changes of the ordered state induce microscopic for
which restore the initial order. These forces give rise to c
relation in particle motion in an ordered lattice.

The underlying idea of the theory employed here is
consider the motion of structural defects rather than tha
individual particles. The defects can be considered as rari
gas of long-living quasiparticles, whose movement over
lattice entirely determines the mass transport. Elemen
displacements of the defects being a result of two or th

of

FIG. 5. The dependence ofDJ /D0 on the concentrationc in the
high-temperature~disordered! phase. The notation is the same as
Fig. 4.
3-7
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PANOS ARGYRAKIS AND ALEXANDER A. CHUMAK PHYSICAL REVIEW B 66, 054303 ~2002!
strongly correlated jumps of individual particles are not c
related. This factor facilitates the analytical derivation of t
diffusion coefficients. Equations~22! and ~23! show an ex-
plicit dependence ofDc and DJ on the concentrations an
jump probabilities of the defects. The comparison betwe
the analytical and the simulation data~see Fig. 4! shows that
the model is quite adequate. At the same time we see th
theory that ignores jump correlations fails to describe m
transport in the ordered state.
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APPENDIX

For explanations, we employ Fig. 1~a! considering it a
section of a 3D lattice. In the following we keep in mind th
similar planes are present below and above the one show
here. Let us consider a small time intervaldt!(n0)21. Dur-
ing this time the probability of jumpX→A is equal todtn0.
Further evolution of the particle arrangement where siteA
and B are initially occupied is governed by a kinetic equ
tion, which takes into account strong particle-particle int
actions through the dependence of jump frequencyn i , j on
« i , i.e., on the filling of sites adjacent to thei th one. One can
easily see that the particle in siteA, which has five neares
neighbors, will jump to its previous positionX for a small
time intervaldt1 @(n0)21e25w,dt1!dt# with a probability
close to 1. Two flip-flop jumpsX→A and A→X do not
change the state of the system. Nevertheless, there is a
probability for a particle jump from siteB to any of free sites
(C,D,E, and to two free sites in perpendicular direction!,
while siteA is occupied. After any of the last jumps, a pa
ticle in siteA has a low probability to be displaced to siteB
and to complete the creation of a pair. Each series of jum
which results in pair defect creation in sitesX andC, X and
D, etc., has very low probability whene2w!1. Therefore the
probability of each path can be calculated independently
the others.

It follows from the above that a system of coupled equ
tions for the occupancy of sitesA,B,C can be written as

] tnC5n1nAnB2n5nC~12nB!,

] tnB5n5nC~12nB!2n1nAnB1n4nAnC ,

] tnA522n4nAnC2n5nAnB , ~A1!

wherenk[n0ekw, the derivatives for discontinuous function
nA , nB , andnC are determined in a usual manner as
05430
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] tni[ lim
Dt→`

ni~ t1Dt !2ni~ t !

Dt
. ~A2!

Equations~A1! connect the evolution of stochastic variabl
nA , nB , andnC , which can take the value of either 1 or 0.
is convenient to describe the evolution of particle arran
ment in terms of the corresponding probabilities. A simp
algebraic manipulation and statistical averaging make
possible to derive from Eqs.~A1! a closed system of two
equations, which is sufficient for our purpose. It is given

] t^nAnB&52~n11n5!^nAnB&1~n41n5!^nAnC&,

] t^nAnC&52~2n41n5!^nAnC&1n1^nAnB&. ~A3!

The initial conditions for the two Eqs.~A3! are given by
^nAnB&(t50)51 and^nAnC&(t50)50. This choice corre-
sponds tonC50 andnA5nB51 whent50.

Solution of Eqs.~A3! is given by

^nAnC&5
n1

l12l2
~el1t2el2t!,

^nAnB&5
1

n1
@] t1~2n41n5!#^nAnC&, ~A4!

where

l1,252
n1

2
2n42n56F S n1

2
1n41n5D 2

1n1~n41n5!2~n11n5!~2n41n5!G1/2

.

The function^nAnC&(t), which is the probability of two
sites (A andC) to be occupied, can be used to calculate
probability of pair generation. This probability per unit tim
~P! is given by the product of the probabilities of the fir
jump ~equal ton0) and jump from siteA to siteB during the
time when siteC is filled. Thus we have

P5n0n4E
0

`

dt^nAnC&~ t !.

A straightforward calculation employing inequalitye2w!1
results in

P5n0e25w.
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