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ABSTRACT Diffusion-limited binary reactions in low dimensions may lead to
the spontaneous formation of spatial structures and to associated “anomalous” rate
laws for the global densities of the reacting species. For example, the irreversible
reactions A+ A — 0 and A + B — 0 under “normal” circumstances are described
by second-order rate laws, whereas the asymptotic rate law for the former reaction
is of apparent order (1 + 2/d) for dimensions d < 2 and for the mixed reaction it is
of apparent order (1 + 4/d) for d < 4. The slowdown implied by the higher order
is a consequence of the spatial distribution of reactants and its rapid deviation from
a random distribution, which is in turn a consequence of the fact that diffusion is
not an effective mixing mechanism in low dimensions. The principal effect in the
mixed reaction is the formation of aggregates of like particles. The spatial regions
in which the density of one type of particle is overwhelmingly greater than that of
the other grow in time. Since the reaction can essentially occur only at the interfaces
between aggregates, and since the number of these interfaces decreases with time,
the reaction slows down relative to the rate that would describe a random mixture
of reactants. Note that initial spatial fluctuations in relative densities are essential
for this ordering effect to occur: These fluctuations grow in size as the reaction that
eliminates close opposite pairs proceeds. The particular rate law of order (1 + 4/d)
appropriate for an initial distribution of reactants that is completely random changes
if the initial distribution is not totally random. In this chapter, we discuss the various
regimes of kinetic behavior of the densities of reactants from the initial time until
the asymptotic behavior is reached, and we estimate the crossover times from one
regime to another. Our analysis deals with the effects of the initial conditions on
this characterization. In particular, we find that initial spatial correlations limit the
initial (and hence subsequent) fluctuations in the particle numbers, and hence they
affect the rate laws and the underlying spatially segregated patterns. We also present
numerical simulation results in one and two dimensions and analyze these results in
terms of our model.

12.1 Introduction

Diffusion-limited binary reactions in low dimensions under a great variety of con-
- ditions lead to the spontaneous formation of spatial patterns and to associated
“anomalous” rate laws for the global densities p(z) of the reacting species. A vast
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literature on the subject includes the references to this chapter, where many spe-
cific examples can be found. For example, the irreversible reaction A + A — 0
under “normal” circumstances is described by the rate law p = —kp? whereas
[1-11] the asymptotic rate law for dimensions d < 2 in an infinite volume is
p = —kpU*2/®_ Physically, the slowdown implied by the higher exponent is a
consequence of the spatial distribution of As. A random or “mixed” disiribution
of As has a Hertz distribution [12] of nearest neighbor distances, and this distri-
bution in turn leads to the normal rate law. The salient characteristic of the Hertz
distribution is its maximum at zero separation, indicative of the presence of many
extremely close nearest neighbor pairs of reactant particles. An anomalous rate
law implies a deviation from the Hertz distribution wherein there are many fewer
close reactant pairs. Indeed, in dimensions lower than two, an initially random
distribution quickly settles into a distribution that peaks at a finite (nonzero) near-
est neighbor separation, leading to an almost crystal-like average arrangement of
reactants. This nonrandom distribution arises from the fact that diffusion is not an
effective mixing mechanism in low dimensions.

Another example of anomalous kinetics in low dimensions is the diffusion-
limited irreversible reaction A + B — 0. Under normal circumstances, the rate
laws for the global densities p4 and pg are pa = pp = —kpapp. If pa(t =0) =
pe(t = 0) = p(t = 0), then the densities of the two species are equal at all
times, and we can dispense with the subscripts so that once again p = —kp?.
The actual asymptotic rate law in an infinite volume in dimensions d < 4 for an
initially random distribution of reactants is instead p = —kp('**/®). In this system,
the principal cause of the anomalous behavior is the formation of aggregates of
like particles. The spatial regions in which the density of one type of particle
is overwhelmingly greater than that of the other grow in time (while the total
density within each aggregate of course decreases with time). Since the reaction can
essentially occur only at the interfaces between aggregates, and since the number
of these interfaces decreases with time, the reaction slows down relative to the rate
that would describe a random mixture of reactants. Again, this behavior reflects
the fact that diffusion is not an effective mixing mechanism in low dimensions.
Initial spatial fluctuations in relative densities can thus grow in size as the reaction
that eliminates close opposite pairs proceeds.

This description of the A + B — 0 reaction depends on the presence of initial
spatial fluctuations in the reactant densities. The particular rate law p = —kp+4/D
more specifically depends on an initial distribution of reactants that is completely
random. A random initial distribution leads to fluctuations in the initial local den-
sities so that the difference in the number of particles of type A and type B in a
volume V is initially of the order of the square root of the total number of particles
in that volume.

The situation of course changes with different initial fluctuations in the particle
distribution. Although initial fluctuations in general tend to grow in low dimensions
and hence lead to anomalous behavior in the global rate laws, the specific exponent
in the rate law differs from the value (1 + 4/d) appropriate for an initially random
distribution, and the critical dimension for anomalous behavior in general differs
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fromd = 4.

In this chapter, we discuss the various regimes of kinetic behavior of the densi-
ties of reactants from the initial time until the asymptotic behavior is reached. The
work reviewed here has to a large extent been presented elsewhere [13-15]. We
characterize the various regimes and estimate the cross-over times from one regime
to another. Our analysis deals with the effects of the initial conditions on this char-
acterization, in particular, when the A—B pairs are initially placed in the system in a
random way [13, 14] and in a spatially correlated way [13, 15]. Initial correlations
limit the initial (and hence subsequent) fluctuations in the particle numbers, and
hence they affect the rate laws. Indeed, we show that greater randomness in the
initial conditions leads to more ordered (more segregated) asymptotic distributions
and consequently to greater anomalies in the rate laws. We also present numerical
simulation results in one and two dimensions and analyze these results in terms of
our model.

Much of our analysis is based on the reaction-diffusion model for the local
densities p4(r, t) and pp(r, t) [13, 16, 17]:

pa(r, 1) = D v? pa(r, 1) — kipa(r, t)pg(r, t) (12.1)

and similarly for pg(r, t), where k; is the time-independent local rate coefficient
and D is the diffusion coefficient for both species. It is convenient to deal instead
with the difference and sum variables [13, 16, 17]

1 1
yr,n= E[PA(r, 1) — pp(r, 1], p(r,t) = §[pA(r, D+ pp(r, 0] (12.2)
The difference variable satisfies the linear diffusion equation
y(x,1)= DVy(r,0), (12.3)

which can be solved exactly. The sum variable satisfies the equation obtained by
summing Eq. (12.1) and its partner for pg:

p(x, 1) = DV?p(x, 1) — kilp*(r, 1) — ¥*(r, D). (12.4)

This equation can only be handled approximately.

In Sec. 12.2, we specify in detail the initial conditions to be considered and
explicitly solve for the difference variable for these initial conditions. Section
12.3 describes our simulation methods. Section 12.4 deals with the analysis of the
sum variable equation for the random initial distribution of reactants, the different
kinetic regimes that might be observed as the densities decay from their initial dis-
tributions, and the crossover times from one sort of kinetic behavior to another. We
also present simulation results and analyze them in terms of our theoretical predic-
tions. Section 12.5 deals with the same issues for the correlated initial condition.
Section 12.6 presents a brief overall summary of our results.
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12.2 Initial Conditions and Difference Equation

12.2.1 Random and Correlated Initial Conditions

The initial local densities of particles are

N N
par, 0= 8 1),  pp(r,0=) 8 —rf) (125
j=1

J Jj=1
where {r;‘} and {rf} with j = 1, ..., N are the initial locations. The initial distribu-
tion of particles is specified by the distribution function p(r{, ..., rd;r8, ... r8).

For random initial conditions, the locations are statistically independent [13,
14],

N N
1
pat, el e = [rahH [ pa) = e (12.6)
j=1 j=1

where V is the system volume and, for a random distribution of molecules,

1
p?) = p(r®) = v (12.7)

The second situation that we deal with assumes that initially A—B pairs are de-
posited at random locations (so that the single-particle distributions in Eq. (12.7)
are still valid), but the members of each pair are constrained to be a distance ¢
apart [13, 15]. Different A—B pairs may interpenetrate. The A-B distance con-
straint could be relaxed into a distribution around an average distance c, but if the
distribution has finite moments, most of the results are similar to those found for
a fixed distance. In place of Eq. (12.6), we now have the distribution function

N
p(rf‘,...,rﬁ;rf’,...,rf,)=1_[p(rf,rf), (12.8)
j=1

where the probability density for each A-B pair is

T/

= v=in dQs? —rt —¢). (12.9)

p?, r?)

Here, c is a vector of length ¢ and random orientation, and the integration is over
these orientations, and I"(x) is the y -function.

12.2.2  Solution of Difference Equations

The difference variable satisfies the linear diffusion equation, Eq. (12.3), which
is easily solved (see Sec. 12.7). The quantity of interest turns out to be its mean
square value (y2(r, t)) (see later), where the brackets indicate an average over
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the initial distribution of reactants. We find (see Sec. 12.7) for a random initial
distribution of reactants,

2 Po —d/2
(y‘(r,t)) = ————— = Ot . (12.10)
YA = 2 @n Dy
Hara n = AN /1 iqc tha initial dangity Af aithar gcnariag and EAa 719 TN\ Aafinagq tha
LAVIV ,Jo w— A% / ¥ 1D Uuiv l1iiiuai Ubllbll] Ul Vil Dl.l\a\/l\ab, [etyivg L\i. \lb-l\l} UL liiivo uiv
coefficient Q. For a correlated initial distribution of reactants, we find
2 C2
(Y2r, 1) = 01~/ (1 e /80') ~ Qe (12.11)

where the last expression is valid for times ¢ > ¢2/8D.

12.2.3 Discretization

Our Monte Carlo simulations are performed on discrete lattices of lattice constant
a, and the total number of lattice sites is L, so that V = La“. In the continuum
limita — 0 and L — oo in such a way that V remains finite. Denoting the lattice
densities by p'®(Z, t) where the index I labels the lattice sites, we have the relation
o ~ p'/a?. The maximum value of p'* when multiple occupancy of a site is
not allowed is thus unity. The diffusion coefficient D in the discretized problem
has the value D = 1/2 (the distance scale implicit in the diffusion coefficient is
thus different in different dimensions). For correlated initial conditions, we write
the correlation distance as ¢ = Aa, where A is the number of lattice constants that
separates a correlated pair. In our discussion of simulation results, we usually omit
the superscript “lat,” since the usage is clear from the context.

12.3 Method of Simulations

Simulations are performed using the conventional techniques described in our
earlier papers [18-20]. Briefly, lattices of sizes up to 10° sites in one dimension
and up to 2000 x 2000 = 4 x 10° sites in two dimensions are generated. For
random initial conditions, A and B particles are initially placed in the lattice at
random but disallowing multiple occupancy of sites. Cyclic boundary conditions
are utilized at the ends of the lattice. The particles then diffuse by performing
independent random walks to nearest neighbor sites. Two As or two Bs are not
allowed to occupy the same site. If an A and a B step onto the same site, they react,
which means that they are removed from the system. Cyclic boundary conditions
are employed at the ends of the lattice for the random walk as well. We monitor
the particle density as a function of time for times ranging up to 10® steps.

For correlated initial conditions, A—B pairs are placed on the lattice so that
the A particle and B particle of each pair are placed exactly A sites apart. Here
we present results only for one-dimensional simulations: First the A particle is
positioned on a random site on the lattice, provided it is unoccupied. Then its B
partner is placed in one of the two possible sites exactly A sites away from the A.
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The choice is again made at random. If the chosen site happens to be occupied by
another particle, then the other choice is tested. If both sites at a distance A sites
away are occupied, then the pair is removed from the system, and a new effort is
initiated to position the pair somewhere else. Cyclic boundary conditions are again
used, so that it is possible for an A—B pair to be split at the ends of the lattice. After
the initial landing of the pairs, all A and B particles perform independent random
walks and carry no further memory of their counterparts. Particle densities as a
function of time are again monitored for times ranging up to 10? steps.

Note that, contrary to the simulations, our continuum theory does not deal with
excluded volume effects and hence does not disallow multiple occupancy. The
unimportance of this discrepancy has been shown in detail in earlier simulations
[19].

12.4 Kinetic Behavior for Random Initial Conditions

Our subsequent analysis is based primarily on the ensemble average of Eq. (12.4)
over the initial distribution of reactants:

(B(r, 1)) = DV*(o(r, 1)) — ki[{p*(r, 1)) — (y2(r, )], (12.12)

which makes the need for Egs. (12.10) and (12.11) apparent. Note that the squared
difference variable appears as a source term in the equation; the fluctuations in the
difference variable thus drive the dynamics of the system. When the fluctuations
in the difference variable are large, they play an important role in determining the
overall dynamics. A comparison of Egs. (12.10) and (12.11) confirms that random
initial conditions allow for greater fluctuations in the difference variable than do
correlated initial conditions (i.e., Eq. (12.11) decays more rapidly). This difference
lies at the root of the differences in the dynamical behavior of the systems with
different initial conditions.

To proceed further, one must find a way to deal with the quantity (o?(r, ¢)) and,
in particular, with its relation to the global density p(t) = (po(r, t)). We note that
we can calculate (p?(r, 0)) exactly (see Sec. 12.8):

(P2 (r, 0)) = (p(r, 0))* + prmax (P(F, 0)) = P2 + Prmax o- (12.13)

Here, we have dropped terms of O(N/V?). The quantity ppay is the highest pos-
sible density of each reactant in the simulations with which our results will subse-
quently be compared: In Sec. 12.8, we deal with a discrete lattice of unit cells of
volume a“; Eq. (12.13) is obtained if one assumes that at most one molecule can
be placed at each lattice site, whence pmax = 1/2a. In a continuum model, strictly
speaking, a — 0 and pmax — o0 [see Eq. (12.56)]. However, we retain it as a
finite quantity to represent the effect of the finite size of the A and B molecules and
the resultant excluded volume effect. Note that the second term on the right-hand
side of Eq. (12.13) is greater than the first (unless p, = Pmax)- The crux of non-
classical reaction kinetics is the departure of (p2(r, t)) from the relation (12.13).
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To characterize this departure, we write

(P2(r, 1)) = n{p(r, 1) + omax (p(T, 1)), (12.14)

which constitutes a definition of 7 and p. We argue later that the variation of
between 1 and 0 (and, less importantly, that of n between 1 and 1/2) captures all

the important kinetic regimes of the A + B — 0 reaction.

12.4.1 Kinetic Regimes

The first kinetic regime occurs at t = 0. The diffusion term in Eq. (12.12) vanishes
att = 0, since {o(r, 0)) = p, is independent of r. The average (o(r, 0)) is given
in Eq. (12.13). Clearly, Eq. (12.10) is inappropriate for the evaluation of the initial
mean square difference variable (the difficulty arises from the limits that have been
taken in evaluating Eq. (12.10)). Instead, we again use the results in Sec. 12.8 to
evaluate directly

(¥*(r, 0)) = Pmax (0(T, 0)) = Prmax o (12.15)

(the infinity in Eq. (12.10) as ¢t — 0 arises from the fact that in the strict continuum
limit pmax — 00). Thus, Egs. (12.13) and (12.15) in Eq. (12.12) at ¢t = 0 yield
(A(x, D)) |i=0 = —k; {o(r, 0))2, that is,

B(t)i=0 = —k; 0*(0). (12.16)

Here we have noted that p(0) = (p(r, 0)) = p,. Equation (12.16) is precisely
the classical rate equation for a bimolecular reaction. We note that the local rate
coefficient &; is also the rate coefficient for the global rate law in this case. Thus,
very near t = 0 we have p(t) = po/(1 + k; pot) and also {(o(r, 1)) = po/(1 + k; pot).
We must in general use this more precise form rather than (p) ~ ¢! because ¢ is so
short in this regime. Note also that this behavior could have been deduced directly
from the original reaction-diffusion equation (12.1) since at ¢ = 0 the diffusion
term DV?2(p,) vanishes because (p,) is independent of r, and the average of the
product (o4 pp) separates exactly into the product of the averages,

(pa(r, 0)pp(r, 0)) = (pa(r, 0)) (op(r, 0)). (12.17)

The analysis that leads to classical behavior at very early times is unstable to
any fluctuations that lead to a deviation from the strict equality (12.17). Precisely
such fluctuations are of course embodied in the driver (y2(r, t)). Thus, as soon as
these fluctuations destroy the equality so that

(pa(r, Dpp(r, 1)) # (palr, D)) (pp(r, 1)), (12.18)

another kinetic behavior necessarily sets in. This is associated with the nonrandom
distribution implied by Eq. (12.18). Contiguous pairs of A and B molecules react
quickly, and unless diffusion can just as quickly replenish such pairs, there will
be deviations from a random distribution. Although we are unable to estimate the
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time ¢, at which the classical behavior ends, simulations (see following discussion)
indicate that it is extremely short.

Since Eq. (12.10) is an exact result, deviations from a strictly random distribution
are already built into it. In Eq. (12.14) deviations from randomness appear in the
deviation of 1 and 7 from unity. However, as long as u is still of O(1), the second
term on the right-hand side of Eq. (12.14) dominates the first.

In order to balance contributions of various terms in Eq. (12.12) so as to establish
the time dependence of (p(r,t)) in the time regime where the distribution of
reactants may no longer be strictly random but u is still of O(1), we explicitly
substitute Eqs. (12.10) and (12.14) into Eq. (12.12):

(b(r, 1)) = DV*{p(r, 1)) — kiln(p(r, D)* + tpmax (p(r, 1)) — Q™21 (12.19)
For d = 1 the dominant time dependence of {po(r, ¢)) must be of the form

an~;ga”@ (12.20)

max

The largest terms in Eq. (12.19), which are the last two terms, then balance each
other. For d > 2 the dominant balance is established with the leading behavior
(with perhaps logarithmic corrections in time in two dimensions) (o(r, 7)) ~ L
When d = 2 the dominant balance involves the diffusion term, the term linear in
the density, and the last term in Eq. (12.19). In dimensions d > 3, the last term
becomes unimportant.

In this “intermediate” time regime, we have thus found that the main time
dependence of the mean density goes as

(p(r, 1)) ~ 1792, d <2
~t7 d>a2. (12.21)

This behavior is nonclassical in one dimension and is in fact completely analogous
to the nonclassical regime of the A+ A — Oand A+A — Areactions [10, 18, 21].
In those cases, the slower-than-classical decay ¢ ~!/2 has been well documented to
arise from the “depletion zone” that forms around each surviving reactant after the
initially very close pairs have quickly reacted [1, 11]. Diffusion in one dimension
is known to be an ineffective mechanism toward refilling the depletion zone [18,
22, 23]. The same happens here in the A + B — 0 reaction. After the rapid initial
reaction of very nearby A—B pairs (classical regime), each surviving A and B
is surrounded by a region relatively poor in the other species (depletion zone)
[18, 24, 25]. In our analysis of the dominant balances of terms in Eq. (12.19) in
one dimension, the diffusion term was indeed a higher-order contribution, while
the dominant contribution came from the species fluctuational contribution. The
logarithmic corrections to classical behavior (o(r, )) ~ ¢t~! in two dimensions are
well documented in the A + A problems [18, 20, 23, 25-28]. In dimensions d > 3,
the behavior is dominated by the classical contributions. Diffusion is now effective
in countering any depletion around reactants, and species density fluctuations play
only a higher-order role.
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After a sufficiently long time has elapsed, it is well known [1, 2, 18, 24, 29-31]
that the system evolves toward macroscopic segregation and that (o(r, t)) ~ ¢ ~4/4
for d < 4. This behavior is captured if we set & = O({p)/Pmax) and n = 1/2 in
Eq. (12.14) (see following discussion). The choice n = 1/2 implies a complete
segregation of species, i.e., that (pa(r, t)pg(r, t)) = 0. This choice is not crucial
to the term balancing arguments. More important is the choice of x. One might
naively assume that the ¢ ~¢/4 behavior is mainly due to the macroscopic segregation
and that the spatial distribution of molecules within each aggregate is of lesser
importance. This is not the case. Indeed, were we to assume an essentially random
distribution within each aggregate, we would set u = 1, and we would be back to
the previous analysis, with the result that (o(r, ¢)) ~ ¢t~4/2 ford < 2.Inreality, the
formation of macroscopic aggregates is accompanied by a nonrandom (clumped
up) distribution within each aggregate [18, 24]. Hence the choice u <« 1. We
will see that setting i = O({p)/pmax) captures the proper behavior. Thus, in this
regime, in place of Eq. (12.19) we now analyze the balances implicit in

(p(r, 1)) = DV (p(r, 1)) — ki[ee{p(r, 1))* — Qt~4/7, (12.22)

where a = O(1) [13, 17].
For d < 4 the dominant balance must occur inside the square brackets, whence

Q 1/2
(p(r,t))~(;) 14, (12.23)

For d > 4 a balance occurs if (o(r, t)) ~ Bt~' (classical behavior). This balance
does not involve the (y2) ~ t~%/2 term.

Any simulation with which we wish to compare our analysis necessarily takes
place in a finite volume. At sufficiently long times, finite volume effects will
therefore affect the results of such simulations. It is well known that finite volume
effects eventually cause an exponential decay of the density:

(p(r, 1) ~e™x, (12.24)

where x is a constant inversely proportional to the square of the linear size L of
the system, x ~ L~2. This behavior is expected to take over when the size of
each aggregate is of the order of the size of the system, or, if the initial density is
too small to lead to segregation before finite size effects set in, when the average
distance between particles is of the order of the size of the system.

12.4.2 Crossovers

The “major” crossover time #; and average crossover density ps for d < 4 occur
when the =4/ segregation behavior sets in. For d < 2 this occurs from the
depletion zone, while for d > 2 it occurs directly from the classical regime. In
either case, this onset is determined by the rough balance of all three terms in the
square brackets in Eq. (12.19). We recall that well before this onset . ~ O(1),
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while in the segregation regime, i ~ O({0)/Pmax). At crossover, we setn = 1/2,
assuming substantial segregation to have begun. We write the crossover density as
a fraction of the initial density,

Ps ~ faPos (12.25)

where f, is adimension-dependent fraction assumed to be of O (1) and independent
of the initial density. The balance of the first two terms in the square brackets in
Eq. (12.19) then yields p; ~ fa00/2pmax- The balance of the first and third terms,
p2/2 ~ o ~ f2p2/2, yields for the crossover time with Q given by Eq.
(12.10) .

t; ~ P ok

Equations (12.26) and (12.25) are the main results of this section to be tested against
numerical simulations. The value of f; must be determined from the simulations.
If our assumption that f; is independent of p, is correct, then £, pg/ 4 should be
independent of the initial density p,. Likewise, the ratio of the crossover density
to the initial density, p;/po, should be independent of p,.

For d = 1 there is an additional crossover at very early times from the classical
(00/(1 +k;1p5)) to the depletion zone ¢ ~!/2 behavior. We do not have a quantitative
estimate of this crossover time. It may be similar to that forthe A + A — A
reaction, solved exactly by Doering and Ben-Avraham [21].

Finally, at long times, the finite size of the system causes an exponential decay of
the densities. When the initial density is high enough for there to be a segregation
regime, the finite size effects set in when the aggregates of like molecules are of
the order of the size of the system. Ford = 1 and d = 2, it is known [2, 25, 31],
that the linear size of the aggregates on the average grows with time as a4(Dt)"/ 2,
Here a, is a dimension-dependent constant of proportionality, which, based on the
work of Leyvraz and Redner [25], appears to be approximately 4 in one dimension.
There is actually a distribution of aggregates around this average that is skewed
toward large aggregates. Finite size effects are thus expected to set in at a time ¢
such that the average linear size of the aggregates is some fraction g4 ~ O(1) of
the linear size L of the system, a;(Dts)"/? ~ gq4L; i.e.,

(12.26)

tr~ g ——- (12.27)
17 8 aﬁD
Here g4, a dimension-dependent fraction expected to be independent of the initial
density, is to be determined from simulations.

On the other hand, if the initial density is low, then segregation may never be
observed, because finite size effects set in when the average distance between

particles is of the order of the size of the system; i.e., when

1 Le. (12.28)

Pf
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FIGURE 12.1. Possible time progression of kinetic behaviors discussed in the text for a
random initial condition. (a) d < 2; (b) d = 3.

The associated time ¢, depends on whether the density p; is achieved in the
depletion zone regime or in the classical regime and must be extracted accordingly.

Figure 12.1 summarizes a possible progression of kinetic behaviors as discussed
earlier. In Fig. 12.1, we have assumed that ¢ > t;. This need not be the case: As
the system size decreases, ¢/ sets in earlier and earlier.

12.4.3 Comparison With Monte Carlo Simulations

Figure 12.2 shows our Monte Carlo simulation results for the reactant density as a
function of time for random initial conditions in one-dimensional lattices of various
sizes L. The initial density in all cases is p, = 0.2 for each species. Here and later,
densities are in units of particles per site. The initial slope in all cases is seen to be
the same as that of the A + A problem; indeed, the initial slope in Fig 12.2 overlaps
that of a direct A + A simulation. In turn, A + A kinetics is initially classical (slope
1 in Fig. 12.2) but very quickly crosses over to the t~!/2 behavior characteristic of
the depletion zone (slope 1/2 in Fig. 12.2). We find that the “average slope” over
the first 10 steps is 0.55. At very long times, the largest lattices show the Zeldovich
behavior. Indeed, for the largest lattice we find an average slope of 0.249 over the
last decade of the simulation. The crossover time from the A + A depletion zone
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FIGURE 12.2. {p)~! — p;! vs. ¢ for lattices of various sizes L in one dimension with a

random initial condition. The initial density of each species in number per lattice site is
po = 0.2 in all cases.

behavior to the Zeldovich behavior is discussed later and found to be ¢, ~ 102.
The smaller lattice simulations show the “peel off” due to finite lattice size effects.
Each of the simulations for L = 100, 1000, and 10,000 was cut off when only a
single particle of each kind was left on the average. For L = 100 we find that finite
size effects begin to set in when# = ¢ ~ 20. According to Eq. (12.27), the average
size of the aggregates is approximately g,L ~ 4(Dt;)"/* ~ 13; i.e., g = 0.13.
Thus, each aggregate of each species is on the average larger than 1/10 of the size
of the system (which of course must contain at least two aggregates). There is a
substantial probability of even larger aggregates [25].

Since we assume that the fraction g4 is independent of L, we can use the value
of g, obtained earlier to predict the crossover times ¢, for the other lattices. We
find that 1, ~ 2 x 10% for L = 1000 and t; ~ 2 x 10° for L = 10, 000. Both of
these are consistent with the simulation results. To emphasize this point, in Fig.
12.3 we have replotted the results of Fig. 12.2 as a function of the scaled time
t/L?. On this scale, the finite size effects for all the finite lattices begin to appear at
approximately 7 /L? ~ 2 x 1073, Figure 12.3 makes evident the scaling relation
ty ~ L2,

Note that although the larger systems contain larger aggregates when finite
system size effects set in, the number of particles per aggregate at that point is
smaller in the larger lattices, since more time has gone by and therefore the total
density has had an opportunity to decrease further than in the smaller lattices.
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FIGURE 12.3. {p)~' — p;! vs. scaled time ¢ /L? for the same cases as in Fig. 12.2.

Figure 12.4 shows our Monte Carlo simulation results for the reactant density
as a function of scaled time for random initial conditions in a one-dimensional
lattice for various initial densities p,. Straight lines have been drawn to aid in
the visualization of the crossover times #, from one kinetic behavior (¢~'/?) to
another (¢t ~1/#). The crossover time ¢, is of course not sharply defined, and therefore
these lines are not to be taken too literally. The lowest densities do not reach the
crossover within the time regime shown. Note also that finite lattice size effects
are not apparent in the time regimes shown in this figure. The product £, p? is fairly
insensitive to the initial condition, as predicted in Eq. (12.26). The observation that
t;p2 = 0(10°) — 0(10') leads to f; ~ 0.3 — 0.5. This in turn leads to values of
Ps ~ fapo that are indeed consistent with the crossover densities in Figure 12.4.

Figure 12.5 shows the Monte Carlo results for the reactant density vs. time
for random initial conditions in two-dimensional lattices of various sizes (cf. Fig.
12.2). Again, the initial density in all cases is p, = 0.2 for each species. The initial
slope is consistent with the A + A behavior of unity within logarithmic corrections.
The average slope over the first ten steps is 0.78. At long times, the largest lattices
show Zeldovich behavior: We find a slope of 0.53 in the time domain 10* — 10°
for the largest lattice; the crossover time to this behavior occurs at #;, ~ 250 (see
later).

For L = 60 we find that finite size effects begin to set in when ¢t = ¢y ~ 150.
We do not have explicit information about the proportionality constant a; in Eq.
"(12.27), so we can only determine the ratio g, /a, from this information, g,/a, ~



184 12. Hierarchies of Nonclassical Regimes

1045
1-dim A p
0.0002 £
L=1,000,000 7
s 0.002
103';
2 ]
1 1
)
o
101 3
]
0
10 T 1 1 I T 1 1 1 1 ] 1 1
10°710°610-510410310210-1 100 10! 102 103 104 105 108
tp2
[¢]
FIGURE 12.4. (p)~' — p>' vs. tp? in one dimension with a random initial condition for

the various initial densities indicated. Simulations are on one-dimensional lattices of one
million sites. The initial densities are in number per lattice site.

0.14. If ay ~ a; = 4, this would give g, ~ 0.6, but we have no basis for this
particular choice. However, since we assume that both a, and g, are independent
of L, we can use this ratio to predict the crossover times ¢5 for the other lattices
according to the relation z; ~ 0.041 L2. We thus find ¢ ¢ ~ 1660 for L = 200,
t; ~ 1.5 x 10* for L = 600, and #; ~ 1.7 x 10 for L = 2000. These are all
consistent with the simulation results. Again, to emphasize this point, in Fig. 12.6
we have replotted the results of Fig. 12.5 as a function of the scaled time ¢/ L.
On this scale, the finite size effects for all the finite lattices begin to appear at
approximately ¢7/L? ~ 4 x 1072, Figure 12.6 again makes evident the scaling
relation t; ~ L?.

Figure 12.7 shows our Monte Carlo results for the reactant density as a function
of scaled time for random initial conditions in a two-dimensional lattice for var-
ious initial densities. The crossover from the early time ! behavior to the t~!/2
Zeldovich behavior has been noted at the higher initial densities. Again, the insen-
sitivity of #; 0, to the initial density as predicted in Eq. (12.26) is evident. With the
value f; ~ 0.03 read from these results, one can see that the prediction ps ~ f400
is again excellent (i.e., f; is independent of p,). At long times, the crossover to
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finite size effects is apparent in the upturn of all the curves.

12.5 Kinetic Behavior for Correlated Initial Conditions

The continuum limit implicit in a reaction-diffusion equation places certain con-
straints on parameter values and variables. One of these is that the correlation
distance ¢ must be sufficiently large for there to be many particles between cor-
related pairs; i.e., we must have (o(r, 1))c? > 1. This condition can at best hold
only up to some time ¢; once (p(r, #)) becomes sufficiently small, the condition
is necessarily violated. Nevertheless, we can still argue heuristically about some
features of the behavior of the system even at very low densities.

We begin again with the ensemble-averaged equation (12.2). For the initially
correlated distribution of reactants, we again obtain Eq. (12.13) (restricting our-
selves to A # 0). Therefore, we again write Eq. (12.14) as a way to characterize
the departure of (p?(r, t)) from the initial form.

Our earlier analysis of the random initial condition case was explicitly or im-
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plicitly based on the appearance of a number of length scales whose interplay
determines the way in which the system evolves. One of these is the distance be-
tween nearest neighboring particles; the second is the linear size of an aggregate
of like particles, and the third is the size of the system. Here, a fourth length scale
appears, namely, the distance c initially separating a correlated A-B pair. This
additional length leads to a rich variety of new behavior determined by its size
relative to the other scales.

12.5.1 Kinetic Regimes and Crossovers

We assume that the continuum condition holds at least initially, i.e., poc? > 1,
and will later comment on the behavior of the system when this is not the case.
The ¢t = O analysis presented in Sec. 12.4.1 is still valid and leads to classical
behavior until the instabilities that lead to Eq. (12.18) set in. This is not surprising;
at very early times, reacting pairs of particles are not correlated pairs since the
latter are still too far apart. Instead, reactions involve uncorrelated partners, and
the dynamics is therefore indistinguishable from the random situation.

As time proceeds, the principal new behavior here arises from the change in
(y2(r, 1)) (see Eq. (12.11)), which now in place of Eq. (12.19) leads to

(p(r, 1)) = DV*{p(r, 1)) — ki[n(p(r, 1))*
+ Womax(p(r, 1)) — Q™42 (1 — e‘cz/w’)]. (12.29)

The dominant balances now depend not only on 7 and u but also on the relative
importance of the exponential contribution to the last term. The exponential be-
comes important at times ¢ ~ f., where ¢, is proportional to the time that it takes
on the average for a particle to cover a distance c,

t. = c?/8D. (12.30)

At times greater than ¢, correlated particles have had an opportunity to meet one
another; at times prior to ¢, correlated particles “‘do not know” of one another’s
existence, and the system should therefore behave as with a random initial condi-
tion. This is indeed the case. The differences between the random and correlated
systems only setin beyond time ¢., and the entire further analysis depends on where
this time falls in relation to the other characteristic times of the system. This is
simply another way of saying that the subsequent behavior depends on the relation
of the length scale c to the other characteristic length scales.

If z. is greater than ¢,, then the transition to depletion zone behavior will again
occur at time #,. The subsequent behavior of the system depends on the relative
magnitudes of the time ¢, introduced in Eq. (12.26) and the time z.. Recall that
t; marks the beginning of the aggregation process in the random initial condition
case and the consequent slowing down of the reaction. If z; is smaller than ¢., then
the evolution of the correlated system continues as that of the random system,
and segregation begins to set in before the correlation length is felt by associated
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partners. If, on the other hand, ; > 1., then the correlation effects are felt before
segregation sets in, segregation does not occur, and the behavior is quite different.
We discuss these two cases separately.

Dynamics with Segregation. Consider first the case f; < #.. With the explicit
expressions in Eqgs. (12.26) and (12.30), the condition ¢; < ¢, can be translated to
the statement

¢! po > (12.31)

In one dimension, our simulation results led to f; ~ 0.3 — 0.5, so that Eq. (12.31)
requires that cp, > 6: If this condition is satisfied, then segregation sets in at time
t; as in the random initial condition case. In two dimensions, we found f; ~ 0.03,
so that segregation sets in at time #;, provided that ¢2p, > 350. Note that with
condition (12.31) both in one and two dimensions, the density of the system at time
t, still satisfies the condition for the continuum approximation to be applicable; i.e.,
cdp; ~ ¢ f4po > 1. This is consistent with the notion that segregation implies
the existence of many particles separating correlated partners. Note that in this
segregation regime, as time and the reaction proceed, the system density decreases
while the number of particles in each aggregate of like particles increases relative
to the total number of particles.

Segregation continues as with a random initial condition until time z.: At this
time the exponential contribution to the last term in Eq. (12.29) becomes important,
and the balance of terms changes. Note that the average density p, at this time is
still sufficiently high for the continuum approximation to be valid. An estimate
of p. can be obtained from the relation p. ~ (t./t;)~%/*ps, which leads to the
expression
. o)

cpe~ 7 (12.32)

With ¢?p, > 1, we then satisfy the continuum condition for ¢? p, as well.
At and beyond times ¢ ~ 1., the exponent in Eq. (12.29) can be expanded and
Eq. (12.29) can be rewritten as

2
(B(r, ) = DV p(r, 1)) = ki[1{p(r, 1)) + ppmax (p(r, 1) — %;—f("”’”].

(12.33)
At time 7., the system is still segregated. Since in general the size of an aggregate
at time ¢ is of the order of the region covered by a random walker in time ¢ (at
least in dimensions d < 2, where random walks are compact), the average linear
dimension of the aggregates of like particles at ¢. is ~ c. The coefficient 5 in Eq.
(12.33) is of O(1), while u ~ O(0), and the dominant balance then immediately
leads to

(p(r, 1)) ~t~@D/% ford <2,
~ 7! ford > 2. (12.34)
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The decay of the density in Eq. (12.34) not only is faster than that of the segregation
regime but, ford < 2,indeed, is even faster than in the A+ A depletion zone regime!
This behavior comes about because the correlated initial condition places a limit
of order ¢ on the size of a segregated aggregate. The initial correlations suppress
fluctuations in relative densities of A and B particles necessary for the growth of
the segregation pattern to continue beyond that. Indeed, as time increases beyond
t. and the overall density of particles continues to decrease due to the reaction, so
does the number of like particles in an aggregate relative to the total number of
particles. As a consequence, the relative number of A-B interfaces at which the
reaction can take place increases. This “shrinkage” of aggregates leads to the rapid
decay in Eq. (12.34).

Eventually, a configuration is reached where each A particle is essentially sur-
rounded by Bs and vice versa; the aggregates have now “shrunk” to essentially
single particles. This occurs at a time that we call ¢, (the subscript stands for “end
of shrinkage”) at an average density p.; determined from the fact that the only sur-
viving particles in the aggregates of size c are those in the center of the aggregates,
i.e., such that c¢? p,; ~ O(1). These surviving particles are at a distance of order ¢
apart. It is important to note that in general A—B pairs that are now a distance ¢
apart are not originally correlated partners, since chances are that the correlation
partner of any given particle has already reacted. The configuration at this point
is only indirectly reflective of but certainly due to the original correlations. The
time ,; can be estimated from the relation p,; ~ (t./t.s)~“*?/2p.. With Egs.
(12.30) and (12.32), this estimate leads to t.;/t. ~ (c p,/m4/?)"/@+D Ford = 1

this reduces to s
Les CPo
— )~ —= , 12.35
( t ) (ﬁ ) (12:3%)

a form that is useful for our later analysis. Note that the times #.; and 7. become
ever closer with decreasing ¢ and decreasing p,. Therefore, the aggregate shrinkage
regime can be seen more clearly with larger values of ¢ (for given p,). This in turn
requires that the simulation be carried out to very long times.

At time ?,; the continuum approximation has ceased to be valid, so that further
arguments must be made heuristically. A—B pairs are now narrowly distributed
around a distance c, so after a time narrowly distributed around ~ ¢2/2D they will
meet and react. Until this happens, the density does not change much. Thus, at a
time of order

Lip ~ los +C2 /2D ~ Lo +1, (12.36)

we expect a sharp increase in the reaction rate. We call this a slow burst (a further
discussion of bursts and slow bursts follows). Following the slow burst, the system
returns to the uncorrelated depletion zone A + A behavior (r~¢/?) at a time ¢,, a
behavior that may be overshadowed by the onset at ¢ of finite system size effects.
Finite size effects lead to exponential decay of the density when (p) ~ 1/L¢.
Figure 12.8 summarizes the progression of kinetic behaviors discussed above.

Dynamics without segregation. Next, consider the situation where the correlation
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FIGURE 12.8. Possible time progressions of kinetic behaviors for a correlated initial condi-
tion when the initial particle density is sufficiently high for there to be a segregation regime.
(a)d <2;(byd =3.

distance is sufficiently short that correlation effects set in before segregation can
occur; that is, 7. < . In this case, even if initially ¢?p, > 1, ¢?(p(r, )) becomes
of O(1) at time ¢, while the system is still in the A + A depletion regime or perhaps
even in the classical behavior mode. Our arguments in this regime are therefore
heuristic, since the continuum approximation is no longer valid. In this case there
should be no distinction between the A + B and A + A problems over the entire
time regime; that is, initially tightly correlated A + A’s should evolve in exactly the
same way as initially tightly correlated A + B’s. Figure 12.9 is a typical simulation
in this regime that shows the reactant density for both reactions. In this particular
one-dimensional simulation, cp, = 2. As we will see later, when the initial pairs
are even more tightly correlated, the evolution of the two reactions is even more
parallel.

Consider first the very low initial density case, ¢? o, < 1. Animportant behavior-
determining feature in this situation is the fact that, with the exception of a few
uncorrelated pairs that were initially closer than distance ¢ and that may therefore
react before time ¢., originally correlated pairs are now able to react because they
have an opportunity to encounter one another before either partner has reacted with
another molecule. This fact, coupled with the fact that correlated pairs started out
at exactly a distance c apart, means that at times very narrowly distributed around
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FIGURE 12.9. {p)~! — p;! vs. t in one dimension with a fairly tightly correlated initial
condition for the initial density p, = 0.2. The evolution for the two reactions is very similar.

t. many pairs suddenly encounter one another, and the reaction rate suddenly
experiences a sharp (short-lived) burst. We thus expect the density to experience a
sharp decrease at times ¢ ~ z.. Note that this burst due to the reaction of correlated
partners is not observed in the high initial density case, but a remnant of this effect
is observed (the slow burst). Once the burst is over because most of the initially
correlated pairs have reacted with one another (time ¢, ), the situation reverts back to
that of the uncorrelated A + A problem, since each remaining particle is essentially
surrounded by uncorrelated particles of the opposite kind. The system thus never
reaches the Zeldovich regime, and the asymptotic behavior for an infinite system
is 1742 (d < 2),ort~' (d > 3). The return to the depletion zone behavior may
again be overshadowed by finite size effects.

Next consider the case c?p, > 1 (but ¢ p, not sufficiently large for segregation
to occur). In this case, there is still a burst that sets in at around ., albeit a slow
one (reflective of the initial interpenetration of correlated pairs). This slow burst
is consistently observed for both A + A — and A + B — reactions.

Figure 12.10 summarizes the progression of kinetic behaviors discussed above.

12.5.2 Comparison With Monte Carlo Simulations

Figure 12.11 shows the Monte Carlo simulation results for one-dimensional lattices
of one million sites for various correlated initial conditions. The initial density in
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all cases is 0.2 particles of each species per lattice site. The discrete correlation
distance A is indicated on each curve. The “random” curve corresponds to the
random initial condition and is the same as the L = 1,000,000 curve in Fig. 12.2.

Consider the A =10,000 curve in Fig. 12.11a, for which p,A = 2000 > 6. The
expected kinetic progression is as shown in Fig. 12.8a. The time ¢, should occur
in the same region as for the random initial condition, since #; is independent
of the correlation distance. Earlier, we found that for p, = 0.2, t; ~ 102. The
independence of #; from A is indeed observed in Fig. 12.11a; the two curves are
superimposed for times that are much longer than ¢;. The faster decay of the A =
10,000 density is expected to set in at about z, = A2/8D = (10,000)?/4 = 2.5x 10.
This is consistent with the observed behavior. We find that in the range 2 x 107
to 10® the average slope of the curve is 0.77, that is, close to the predicted 3/4.
The reactant density predicted from Eq. (12.32) at #. is p. ~ 3 x 1073, which
is consistent with the density obtained from Fig. 12.11a at z.. The crossover time
tsp into the slow burst regime is predicted at about 108 (see Eq. (12.35)), that is,
beyond our time scale. However, we do see the beginning of a sharp increase in
the reaction rate, perhaps indicative of the expected slow burst.

Next consider the A = 1000 curve in Fig. 12.11b. Now p,A = 200 > 6, so the
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various correlation lengths A, as indicated. The initial density of each species in all cases is
Po = 0.2. (a) and (b) differ in the time length of the simulations. The “random” curves in
both are for a random initial condition and are the same as the L = 1,000,000 curve in Fig.
12.2.
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expected kinetic progression is again as shown in Fig. 12.8a. The time #, ~ 10°
is still well within the regime where the A = 1000 curve is essentially the same
as the random initial condition curve. The faster decay of the density is expected
to set in at ¢, = 2.5 x 10°, which is consistent with the observed behavior. The
reactant density predicted from Eq. (12.32) at this onset is p. ~ 1072, which is
again consistent with the density obtained from Fig. 12.11b at #.. The crossover
into the slow burst regime is predicted at t;, ~ 109, only a factor of 5 above ¢,.
This range is too narrow to extract a reliable slope, even though the curve does go
through a slope of 3/4 within the range. A sharp increase beyond the slope of 3/4 is
clearly observed in the last decade of the simulation, indicative of the slow burst.

For the A = 100 case, with p,A = 20, we are still in the kinetic progression of
Fig. 12.8a, but some of the kinetic regimes become extremely narrow. The curve
hugs the random curve beyond time £; ~ 10? and into the Zeldovich regime, but the
time #. = 2.5 x 103 is only about an order of magnitude beyond ¢;. Therefore, the
slope 1/4 is never achieved; instead, the lowest observed slope is 1/3. The time £,
in turn is only about twice #.. Therefore, the slow burst starts almost immediately
beyond ¢.. Each simulation for A = 100 is ended when only about one particle of
each type remains.

When A = 10 the Kinetic progression is as shown in Fig. 12.10a (with a slow
burst). This is the same curve as the A+ B curve in Fig. 12.9. Here, the progression
goes directly from the ¢ ~!/2 behavior to the slow burst regime. Again, simulations
were ended when only about one particle of each type remained.

Note that a return from the slow burst to an uncorrelated A + A behavior is not
observed in any of the cases shown in Fig. 12.11b. Presumably, finite system size
effects obfuscate this regime.

In Fig. 12.12 we consider a number of one-dimensional cases that fall within
the parameter regimes of “dynamics without segregation,” that is, appropriate to
the kinetic regimes shown in Fig. 12.10a, both with 1p, < 1 and with Ap, > 1.
The solid curves are the A + B simulations. As a baseline for comparison, we
include the curve for a random initial distribution of reactants. This is the same
as the p, = 0.002 curve in Fig. 12.4. Here, as in Fig. 12.4, we see that almost the
entire curve lies in the A + A depletion zone regime (¢ ~!/2), and only in the last
time decade in Fig. 12.12 is there a beginning of the crossover into the Zeldovich
regime. The time z; is about 10%. The dashed line in Fig. 12.12 is the result of
A+ A — 0 simulations with p, = 0.002 and random initial condition. The A + A
and A + B curves are clearly similar until the crossover of the A + B curve begins.
The long-time slope of the dashed line is 0.56.

Consider now the finite A cases, starting with the smallest value of A. In Fig.
12.12, the solid curve is the A + B simulation, and the diamonds are the results
of A+ A — 0 simulations. As noted earlier, we expect (and, indeed, see) es-
sentially identical behavior of the two in this tightly correlated situation. Since
Por = 0.02 « 1, we expect to be squarely within the “fast burst” kinetic pro-
gression of Fig. 12.10a. Indeed, at early times the A = 10 curve hugs the random
initial condition curve. The time ¢, = 25 is within the range of the observed fairly
sharp burst. Once the burst is over, the curve reverts to the expected t~'/2 behavior:
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various correlation lengths A, as indicated. The initial density of each species in all cases is
Po = 0.002. The solid curves are for the A + B — 0 simulations. The dashed curve is for
simulations of the reaction A + A — 0 with random initial conditions. The symbols are for
A + A simulations with A = 10 (diamonds), A = 100 (pluses), and A = 1000 (squares).

The observed slope is 0.52. Finite system size effects are not reached within this
simulation.

When A = 100 we are still in the fast burst regime of Fig. 12.10a, since p,A =
0.2 < 1. The solid curve for the A + B simulation and the +’s for the A + A
simulation are almost the same (the initial correlations are of course not as tight
as for A = 10). The curve again hugs the random initial condition curve, and the
burst crossover time is expected at about ¢, = 2500. This is again well within the
crossover region. Beyond the burst, the slope again reverts to the expected 1/2 (the
actual value is 0.53).

When A = 1000 we have p,A = 2; that is, we now expect a slow burst rather
than a fast burst. Note that p,A has the same value as for the curves in Fig. 12.9.
The solid curve is the A + B curve, the squares are the simulations for A + A with
A = 1000, and recall that the dashed curve is for A + A — 0 with random initial
conditions. The three curves are obviously very close. The slow burst is expected
to begin at ~ 2.5 x 10°, and the A + B curve may show an early indication of this
effect.

In Fig. 12.13 we show the curves for the A + B reaction in one dimension with
A = 10 for various initial densities. The p, = 0.002 curve is the same as the
A = 10 curve in Fig. 12.12, and the p, = 0.2 curve is the same as the A = 10 curve
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in Fig. 12.11b. Figure 12.13 illustrates the transition from the kinetic progression
involving a fast burst to one involving a slow burst. Most notable is the observation
that the density curves cross; that is, at long times a system with an initially higher
density has fewer particles left than one with an initial density 10 or even 100 times
lower! These crossings must be a consequence of the different particle distributions
in the different cases, leading to a rate that is not just dependent on the value of
the global density. For the p, = 0.02 and the p, = 0.002 curves, the long time
slopes are 1/2 and the interparticle distributions are those characteristic of the A+ A
depletion zone; that is, a skewed exponential [18]. For the p, = 0.2 curve, we do
not know the particle distribution, but it clearly must be different.

Figure 12.14 is similar to Fig. 12.13, but now A = 100. The crossover ¢ is
expected at 2.5 x 103. The p, = 0.02 curve (oA = 0.2 < 1) shows a fast burst
in that regime, and the 0.2 and 0.4 curves (p,A = 20 and 40) exhibit slow bursts
starting about then (note that the 0.2 curve is the same as the A = 100 curve in Fig.
12.11b). The p, = 0.02 curve (which, with p,A = 2, is in the slow burst regime)
marks the transition between the fast burst and slow burst behavior. Note that both
the 0.02 and 0.002 curves have slopes of about 1/2 before as well as after the burst.
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FIGURE 12.14. {p)~! — p;! vs. t for different initial densities. In all cases A—B pairs are
initially placed A = 100 sites apart.

Thus, this figure clearly illustrates the change in behavior from the slow burst that
follows the aggregate shrinkage (Fig. 12.8a) through the slow burst in the absence
of segregation to the fast burst (Fig. 12.10a) as p, A decreases. For fixed A we expect
the onset of these various bursts to occur at about the same time, ¢ ~ ¢, as indeed
they do in Fig. 12.14 at around ¢ ~ 2.5 x 10°.

12.6 Summary

In this final section, we summarize our major results. We do this separately for the
random and correlated initial conditions.
For the random initial conditions, we find three main novel features:

1. Atearly times, the A+ B — 0 system does not segregate. Instead, it behaves
exactly as does the A + A — 0 system, with both classical r~! and non-
classical t=4/2 (for d < 2) behavior.

2. This behavior stops at a time #;, when segregation begins. We have found
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scaling laws for ¢, and for the density p; at time #;. Our simulations yield
the unknown dimension-specific parameters ford = 1 and d = 2.

Eventually, finite system size effects set in at a time 7, whose scaling be-
havior we have confirmed. Again, we have determined dimension-specific
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information on the segregation process in infinite lattices.

Our simulations are in excellent agreement with our theoretical predictions.

For correlated initial conditions, we have clarified the variety and complexity
of different time progressions as a function of the initial conditions. The most
important characterizing parameter is the product p,A¢ of the initial density and
the correlation volume. If this product is small, we find the following principal
features:

1.

The A + B — O reaction behaves exactly as the A+ A — 0 reaction for the
same values of p, and A. In particular, there is no segregation in the A + B
system in this case. Neither one of these two reactions has been studied
before our work in this regime to the best of our knowledge.

. Atearly times, the behavior is that of the uncorrelated A + A problem, again

including both classical and nonclassical regimes. At time . = A2/8D,
an increase (burst) in the reaction rate is observed, which arises from the
annihilation of correlated pairs.

. Once the burst is over, the behavior settles back to the uncorrelated nonclas-

sical A + A form and/or behavior caused by finite system size effects.

When p,A? is large, segregation does occur in the A + B — 0 reaction. The
progression of events is as follows:

1.

At early times, the A + B — 0 reaction again (as always) behaves the same
as the A + A — 0 reaction (classical, ¢ ~9/2).

The A + B system departs from this behavior at the same time #; determined
in the random initial condition problem, and segregation begins (z~/4).

The segregation process is halted at time 7. = A2/8 D, when the aggregates,
which at this point are of linear size ~ A, actually begin to shrink (¢ ~@*2/4)
until only one particle per aggregate remains at time Z,;.

. At a time t,5, which is of order A2/2D beyond ¢,;, there is a (slow) burst

when these remaining particles meet. These are not the originally correlated
particles, so one might call this a burst echo or delayed burst.

. Once the burst has exhausted itself, the nonclassical A + A behavior resumes

and/or finite size effects take over.
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12.7 Appendix: Solution of Difference Equations

The solution of the linear diffusion equation, Eq. (12.3), is well known to be given
by

1 ; ,
v, == 3 [ arekegpln, w0 o), (12.37)
|4 n J
where, for periodic boundary conditions, k = 27wn/V and n is a d-tuple of inte-

gers. We need to evaluate the mean square quantity (y2(r, t)), where the brackets
indicate the average over the initial distribution of A’s and B’s,

1 . .
Y, 1) = V2 ZZfdrle"k"(""")fdrze""z'("”)
k2

k;
x e PEH (y (ry, 0)y (12, 0)), (12.38)

with Eq. (12.5):

(v (@1, 0y (r2, 0)) = 5 (3 _[8(r1 —x}) =800y —r )] 3 (82 —17) —8(r2 —r)]).
j=1 Jj=1
(12.39)
Only two distinct types of terms occur in this average. One is of the form (8(r; —
r{)8(r, — r)), which for random initial conditions separates into the product of
the averages,

1
(8(ry — r{)3(rz — 1)) = (8(ry — 1)) (8r2 — 1)) = 75, (12.40)
and for correlated initial conditions is

(8(ry —rHs(r, —rf)) = f dr f drBsr, — rHs, —rP)pad, rf)

r'd/2)

- W dQ(S(l’] — Iy — C). (1241)

The other type of term that appears in Eq. (12.39) is
1 1
(8(ry —rHd(r — 1)) = f dr} 78 = s, —r) = 78 —r2). (12.42)
With proper weighting of these contributions, we find for random initial conditions

N N
(y(r1,0)y(r2, 0)) = syt W6(r, -1). (12.43)

V2
Substituting this result into Eq. (12.38) readily yields

N N )
FAE, D)) = —— + —— Y e 2Pk, (12.44)
2v2 T 2y2 ;
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With correlated initial conditions

N T'(d/2)

(y(r1,0)y(r2,0)) = 2 2vadn

N 1
dQé(r;—r;—c)+ > VS(r, —r), (12.45)
and consequently,

N o N T(d)2) e 24K
Y )y = o Y e R . /dQe’ ce=2dk't (12 46)
2V & 2V2 27d/2 ;

The sums in Eqgs. (12.44) and (12.45) cannot in general be done in closed form
exceptin the large-volume limit, where they can be converted to integrals according
to

.1 1
Jim Zk: fk) = oy / dKk £ (K). (12.47)

The resulting integrals can easily be carried out to yield Egs. (12.10) and (12.11).

12.8 Appendix: Initial Averages

It is useful to first deal with initial averages for a discrete system in which the A
and B molecules occupy lattice sites separated by lattice constant a. Subsequently,
we discuss the continuum limit. Molecules A and B are initially located at sites
11 and 1%, respectively, with j = 1,2, ..., N. In place of p(r*)dr* and p(r®)dr?
of Eq. (12.7), we now have p(l*) = p(lB ) = 1/L. The average initial density of A
molecules is

N
(Pia, 0)) = Z PR o Trap. (12.48)

Jj=1

where in analogy with Eq. (12.5) we have

p2(1,0) = 25(1 %), (12.49)

Jj=1

and § is the Kronecker delta. We readily find that (0%2(Z, 0)) = (0j(, 0)) = N/L,
as must be the case. The average of the square of the initial density of A particles
is also readily calculated, and one finds
N(N—-1) N
lat 2
LOF)=s——57—+—. 12.50
(lpa", 0)]%) 2 2 ( )
Note that ([0'*'(Z, 0)]1%) # (0'*'(l, 0))? and that in fact the difference between them
is larger than (p'*')? when N/L < 1.
The average of the product of the initial densities of A’s and B’s for random
initial conditions is the product of the averages, (0'*(Z, 0)p'(l, 0)) = N?/L2.
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For correlated initial conditions, we set ¢ = aA, where A is an integer. In one
dimension, the discrete version of the probability density in Eq. (12.9) simply
places the B partner of an A molecule at either of the lattice sites A or —A units
from A with equal probability. In higher dimensions, a problem immediately arises
of how to formulate a discrete version of the continuum probability density in Eq.
(12.9). A simple (not necessarily optimal) procedure in two dimensions is to place
the B partner of a given A molecule either north, south, east, or west of it with
equal probability. The discrete form replacing Eq. (12.9) then is

p*,1%) = EZZ s — (12.51)

where in one dimension m = A and m = —A; in two dimensions m = (A, 0),

(=X, 0), (0, A), and (0, —1). The average of the product of the initial densities of
A and B molecules now is

N
(PR 0 0) = Y3 o, 0o, 0) ] ptf 1%

@y ;) -
N(N —1) ,
N(N—-1) N
= (—m_)+_ if A=0, (12.53)

independent of dimensionality. Thus, unless the A—B pair lands on exactly the
same site, the average of the product reduces to the product of the averages as in
the random initial condition case (except for the small difference N/L?). In our
simulations A = 0 is not allowed.

The continuum version of the average density in Eq. (12.48) is

(pa(r, 0)) = / f ﬂdr pa(r, 0)]'[p(r“) (12.54)

Jj=1

and one straightforwardly finds {pa(r,0)) = (ps(r,0)) = N/V. The correspon-
dence between the discrete and continuum mean square densities is somewhat
more problematic. Dividing Eq. (12.50) by a®? yields
NN-1) N1
—_—+ ——.

V2 V a4
The second term clearly diverges as a — 0. Indeed, a calculation based directly
on the continuum average yields

(pi(r,0)) = (12.55)

N(N—-1) N
(p3(x,0)) = —Vi Yy / dri 8@ — )P, (12.56)

where the second term, being an integral of the square of a § function, clearly
diverges. Equation (12.55) provides insight into the nature of this divergence.
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The calculation of {(p4(r, 0)pg(r, 0)) for random initial conditions straightfor-
wardly yields, as expected, (o4 (r, 0)pz(r, 0)) = N2/ V2. With correlated initial
conditions, a transcription of Eqgs. (12.52) and (12.53) into the continuum by di-
viding by a* gives

N(N — 1)

(pa(r,0)ps(r, 0)) = ‘T—’ if A0 (12.57)
=N(%l—)+gaid if A=0. (12.58)

Note that A = 0 corresponds to a vanishing distance ¢ between correlated molecules,
and that this in turn means that ¢ < a. If in fact the continuum average is carried
out explicitly, we obtain the form that embodies the a — 0 result:

N(N—1) NT(d/2)

(0a(r,0)pp(r,0)) = V2 + YV 2542

d25(c). (12.59)
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